CYWB0320ABX-FDXI CYWB0321ABX-FDXI West Bridge®: Arroyo USB and Mass Storage Peripheral Controller West Bridge®: Arroyo USB and Mass Storage Peripheral Controller Features ■ ■ ■ ■ Multimedia device support ❐ Support next-gen SD, SDHC, SDIO, and MMC+ ® Simultaneous link to independent multimedia (SLIM ) architecture, enabling simultaneous and independent data paths between the processor and USB, and between the USB and mass storage. High speed USB at 480 Mbps ❐ USB 2.0 compliant ❐ Integrated USB 2.0 transceiver, smart Serial Interface Engine ❐ 16 programmable endpoints Flexible processor interface, which supports: ❐ SPI (slave mode) interface ❐ Multiplexing and nonmultiplexing address and data interface ❐ SRAM interface ❐ Pseudo CRAM interface ❐ Pseudo NAND Flash interface ❐ DMA slave support ■ Ultra low power, 1.8 V core operation ■ Low power modes ■ Small footprint, 3.9 × 3.9 mm, 0.4 mm pitch, WLCSP ■ Supports USB Boot, I2C Boot and Processor Boot ■ Clock input frequency ❐ 19.2 MHz ❐ 26 MHz Applications ■ Cellular phones ■ Portable media players ■ Personal digital assistants ■ Portable navigation devices ■ Digital cameras ■ POS terminals ■ Portable video recorders Logic Block Diagram Control Registers µC Processor Interface P Hi-Speed USB 2.0 XCVR Access Control U SLIM™ Mass Storage Interface SD/MMC S Errata: For information on silicon errata, see “Errata” on page 50 and “Errata” on page 51. Details include trigger conditions, devices affected, and proposed workaround. Cypress Semiconductor Corporation Document Number: 001-57458 Rev. *H • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised December 1, 2014 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Contents Functional Overview ........................................................ 3 The SLIM Architecture ................................................. 3 8051 Microprocessor ................................................... 3 Configuration and Status Registers ............................. 3 Processor Interface (P-Port) ........................................ 3 USB Interface (U-Port) ................................................ 3 Clocking ....................................................................... 3 Power Domains ........................................................... 4 Power Modes .............................................................. 5 Pin Assignments .............................................................. 6 Absolute Maximum Ratings .......................................... 13 Operating Conditions ..................................................... 13 DC Characteristics ......................................................... 14 AC Timing Parameters ................................................... 16 P Port Interface ......................................................... 16 S Port Interface AC Timing Parameters .................... 43 Reset and Standby Timing Parameters .................... 45 Ordering Information ...................................................... 47 Ordering Code Definitions ......................................... 47 Document Number: 001-57458 Rev. *H Package Diagram ............................................................ 48 Acronyms ........................................................................ 49 Document Conventions ................................................. 49 Units of Measure ....................................................... 49 Errata ............................................................................... 50 Part Numbers Affected .............................................. 50 Arroyo Qualification Status ........................................ 50 Arroyo Errata Summary ............................................. 50 Errata ............................................................................... 51 Part Numbers Affected .............................................. 51 Arroyo Qualification Status ........................................ 51 Arroyo Errata Summary ............................................. 51 Document History Page ................................................. 52 Sales, Solutions, and Legal Information ...................... 54 Worldwide Sales and Design Support ....................... 54 Products .................................................................... 54 PSoC® Solutions ...................................................... 54 Cypress Developer Community ................................. 54 Technical Support ..................................................... 54 Page 2 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Functional Overview The SLIM Architecture The SLIM architecture enables three different interfaces (P-port, S-port, and U-port) to connect to each other independently. With this architecture, a device using Arroyo is connected to a PC through a USB, without disturbing any of the device functions. The device can still access mass storage when the PC is synchronizing with the main processor. The SLIM architecture enables new usage models, in which a PC accesses a mass storage device independent of the main processor, or enumerates access to both the mass storage and the main processor at the same time. You can do the following in a handset using SLIM architecture: ■ Use the phone as a thumb drive. ■ Download media files to the phone with all the functionalities still available on the phone. ■ Use the same phone as a modem to connect the PC to the internet. 8051 Microprocessor The 8051 microprocessor embedded in Arroyo does basic transaction management for all transactions between the P-Port, S-Port, and the U-Port. The 8051 does not reside in the data path; it manages the path. The data path is optimized for performance. The 8051 executes firmware that supports SD, SDHC, SDIO, and MMC+ devices at the S-Port. Configuration and Status Registers Access to these buffers is controlled by using a DMA protocol or using an interrupt to the main processor. These two modes are configured by the external processor. As a DMA slave, Arroyo generates a DMA request signal to notify the main processor that a specific buffer is ready to be read from or written to. The external processor monitors this signal and polls Arroyo for the specific buffers ready for a read or write operation. It then performs the appropriate read or write operations on the buffer through the processor interface. As a result, the external processor only deals with the buffers to access a storage device connected to Arroyo. In the Interrupt mode, Arroyo communicates important buffer status changes to the external processor using an interrupt signal. The external processor then polls Arroyo for the specific buffers ready for read or write, and it performs the appropriate read or write operations through the processor interface. USB Interface (U-Port) In accordance with the USB 2.0 specification, Arroyo can operate in both full speed and high speed USB modes. The USB interface consists of the USB transceiver. The USB interface can access and be accessed by both the P-Port and the S-Port. The Arroyo USB interface supports programmable CONTROL/BULK/INTERRUPT/ISOCHRONOUS endpoints. Mass Storage Support (S-Port) The S-Port may be configured to support the following: ■ Next-gen SD/SDIO/eMMC+ port When Arroyo is configured through firmware to support SD/SDIO/MMC+, this interface supports the following: The West Bridge® Arroyo device includes configuration and status registers that are accessible as memory-mapped registers through the processor interface. The configuration registers enable the system to specify some behaviors of Arroyo. For example, it can mask certain status registers from raising an interrupt. The status registers convey the status of Arroyo, such as the addresses of buffers for read operations. ■ SD Memory Card Specification - Part 1, Physical Layer Specification, SD Group, Version 2.0, May 9, 2006. ■ SD Memory Card Specification - Part 1, Physical Layer Specification, SD Group, Version 1.10, October 15, 2004. ■ SD Specifications - Part E1 SDIO specification, Version 1.10, August 18, 2004. Processor Interface (P-Port) ■ The Multimedia Card System Specification, MMCA Technical Committee, Version 4.1. Communication with the external processor is realized through a dedicated processor interface. This interface is configured to support different interface standards. This interface supports multiplexing and nonmultiplexing address or data bus in both synchronous and asynchronous pseudo CRAM-mapped, and nonmultiplexing address or data asynchronous SRAM-mapped memory accesses. The interface also can be configured to a pseudo NAND interface to support the processor’s NAND interface. In addition, this interface can be configured to support SPI slave. Asynchronous accesses can reach a bandwidth of up to 66.7 MBps. Synchronous accesses can be performed at 33 MHz across 16 bits for up to 66.7 MBps bandwidth. The memory address is decoded to access any of the multiple endpoint buffers inside Arroyo. These endpoints serve as buffers for data between each pair of ports; for example, between the processor port and the USB port. The processor writes and reads to these buffers through the memory interface. Document Number: 001-57458 Rev. *H West Bridge Arroyo supports 1-bit and 4-bit SD and SDIO cards; 1-bit, 4-bit, and 8-bit MMC; MMC+ cards. For the SD, SDIO, and MMC/MMC Plus, this block supports one card for one physical bus interface. Arroyo supports SD commands including the multisector program command that is handled by API Clocking Arroyo enables connection of an external clock at the XTALIN pin. The power supply level at the crystal supply XVDDQ determines whether a crystal or a clock is provided. If XVDDQ is detected to be 1.8 V, Arroyo assumes that a clock input is provided. For a crystal to be connected, XVDDQ must be 3.3 V. Note Clock inputs at 3.3 V level are not supported. The 81-pin WLCSP supports 19.2 MHz and 26 MHz external clock input. The crystal or clock frequency selection is shown in Table 1 on page 4. Page 3 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 1. Crystal Configuration The XTALIN frequency is independent of the clock and data rate of the 8051 microprocessor or any of the device interfaces (including P-Port and S-Port). The internal PLL applies the proper clock multiply option depending on the input frequency. Arroyo Astoria XTALIN For applications that use an external clock source to drive XTALIN, the XTALOUT, pin must be left floating. The external clock source must also stop high or low and not toggle, to achieve the lowest possible current consumption. The requirements for an external clock source are shown in Table 3. XTAL PLL XTALOUT 12pf 12pf Arroyo has an on-chip oscillator circuit that uses an external 26 MHz (±150 ppm) crystal with the following characteristics: * 12 pF capacitor values assumes a trace capacitance of 3 pF per side on a four layer FR4 PCA ■ Parallel resonant ■ Fundamental mode ■ 1 mW drive level ■ 12 pF (5% tolerance) load capacitors 150 ppm Note CYWB0321ABX-FDXI does not support crystal. Table 1. CYWB0320ABX-FDXI Clock Selection XTALSLC Freq Crystal/Clock NA 26 MHz Clock or Crystal Table 2. CYWB0321ABX-FDXI Clock Selection XTALSLC Freq Crystal/Clock 0 19.2 MHz Clock 1 26 MHz Clock Table 3. External Clock Requirements Parameter Specification Description Min Max – 20 Unit Vn (AVDDQ) Supply Voltage Noise at Frequencies < 50 MHz PN_100 Input Phase Noise at 100 Hz – –75 dBc/Hz PN_1k Input Phase Noise at 1 kHz Offset – –104 dBc/Hz PN_10k Input Phase Noise at 10 kHz Offset – –120 dBc/Hz PN_100k Input Phase Noise at 100 kHz Offset – –128 dBc/Hz PN_1M mV p-p Input Phase Noise at 1 MHz Offset – –130 dBc/Hz Duty Cycle 30 70 % Maximum Frequency Deviation – 150 ppm Overshoot – 3 % Undershoot – –3 % Power Domains Arroyo has multiple power domains that serve different purposes within the chip. VDDQ: This refers to a group of five independent supply domains for the digital I/Os. The nominal voltage level on these Document Number: 001-57458 Rev. *H supplies are 1.8 V, 2.5 V, or 3.3 V. Specifically, the four separate I/O power domains are: ■ PVDDQ – P-Port Processor interface I/O ■ SSVDDQ – S-Port SD interface I/O ■ GVDDQ – Other miscellaneous I/O Page 4 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI UVDDQ: This is the 3.3 V nominal supply for the USB I/O and some analog circuits. It also supplies power to the USB transceiver. VDD: This is the supply voltage for the logic core. The nominal supply voltage level is 1.8 V. This supplies the core logic circuits. The same supply must also be used for AVDDQ. AVDDQ: This is the 1.8 V supply for PLL and USB serializer analog components. The same supply must also be used for VDD. Maximum permitted noise on AVDDQ is 20 mV p-p. XVDDQ: This is the clock I/O supply; 3.3 V for XTAL or 1.8 V for an external clock. Noise guideline for all supplies except AVDDQ is maximum 100 mV p-p. All I/O supplies of Arroyo must be ON when a system is active even if Arroyo is not in use. The core VDD can also be deactivated at any time to preserve power, provided there is a minimum impedance of 1 k between the VDD pin and ground. All I/Os tristate when the core is disabled. Figure 2. Arroyo Power Supply Domains VDD *VDDQ UVDDQ D+ I/O D-CORE USB-IO D- ■ The states of the configuration registers, endpoint buffers, and the program RAM are maintained. All transactions must be complete before Arroyo enters suspend mode (state of outstanding transactions are not preserved). ■ The firmware resumes its operation from where it was suspended, since the program counter is not reset. ■ Only inputs that are sensed are RESET#, GPIO[0]/SD_CD, GPIO[1], SD_D3, D+, and CE#. The last three are wake up sources (each can be individually enabled or disabled). ■ Hard Reset can be performed by asserting the RESET# input, and Arroyo is initialized. Standby Mode Standby mode is a low power state. This is the lowest power mode of Arroyo while still maintaining external supply levels. This mode is entered through deassertion of the WAKEUP input pin or through internal register settings. To leave this mode, assert WAKEUP, CE#, and RESET#; and change the state of GPIO[0]/SD_CD, GPIO[1], or SD_D3. In this mode all configuration register settings and program RAM contents are preserved. However, data in the buffers or other parts of the data path, if any, is not guaranteed in values. Therefore, the external processor must ensure that the required data is read before putting Arroyo into the standby mode. In the standby mode: ■ The program counter is reset on waking up from standby mode. ■ All outputs are tristated and I/O is placed in input only configuration. Values of I/Os in standby mode are listed in the pin assignments table. ■ Core power supply must be retained. ■ Hard Reset can be performed by asserting the RESET# input, and Arroyo is initialized. ■ PLL is disabled. Power Supply Sequence The power supplies are independently sequenced without damaging the part. All power supplies must be up and stable before the device operates. If the supplies are not stable, the remaining domains are in low power (standby) state. Power Modes In addition to the normal operating mode, Arroyo contains several low power states when normal operation is not required. Normal Mode Normal mode is the mode in which Arroyo is fully functional. In this mode data transfer functions described in this document are performed. Suspend Mode This mode is entered internally by 8051 (external processor only initiates entry into this mode through Mailbox commands). This mode is exited by the D+ bus going low, GPIO[0] going to a pre-determined state or by asserting CE# LOW. In Arroyo’s suspend mode: Core Power Down Mode The core power supply VDD is powered down in this state. AVDDQ is tied to the same supply as VDD and is hence, also powered down. Neither the endpoint buffers, configuration registers nor program RAM maintain state. It is required that all VDDQ power supplies (except AVDDQ) are on and not power downer down in this mode. When UVDDQ is powered down, D+/D– can’t be driven by external device. The core power down mode has two power down options: ■ Core only power down – VDD power down. ■ Core and USB power down – VDD and UVDDQ are both powered down. ■ The clocks are shut off. ■ All I/Os maintain their previous state. ■ Core power supply must be retained. In these power down options, the endpoint buffers, configuration registers, or the program RAM do not maintain state. It is necessary to reload the firmware on exiting from this mode. It is required that all VDDQ power supplies are on and not powered down in this mode. Document Number: 001-57458 Rev. *H Page 5 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Pin Assignments Table 4. CYWB0320ABX-FDXI WLCSP Package Pin Assignments Pin Name J3 E2 Pseudo CRAM Interface CE# A7 H1 F2 G2 J1 H2 J2 H3 F3 J4 H4 G4 J5 H5 J6 G6 H6 J7 F6 J8 H7 G7 H8 H9 G8 F8 G9 A7 D6 C6 D9 E9 D7 E7 A6 A5 A4 A3 A2 A1 A0 DQ[15] DQ[14] DQ[13] DQ[12] DQ[11] DQ[10] DQ[9] DQ[8] DQ[7] DQ[6] DQ[5] DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] ADV# OE# WE# INT# DRQ DACK D+ D– NC NC U-Port Int P-Port Ball # I/O I I I I I I I I I I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I O O I SRAM Interface CE# A7 A6 A5 A4 A3 A2 A1 A0 DQ[15] DQ[14] DQ[13] DQ[12] DQ[11] DQ[10] DQ[9] DQ[8] DQ[7] DQ[6] DQ[5] DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] OE# [1] I/O I I I I I I I I I I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I O O I ADM (Address/Data Multiplexing) CE# External Pull Up SDA SCL External Pull Up External Pull Low External Pull Up External Pull Up External Pull Up AD[15] AD[14] AD[13] AD[12] AD[11] AD[10] AD[9] AD[8 AD[7] AD[6] AD[5] AD[4] AD[3] AD[2] AD[1] AD[0] ADV# OE# WE# INT# DRQ DACK Pin Description I/O I I I/O I/O I I I I I I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I O O I PNAND CE# A7 => 1:SBD A7 => 0: LBD SDA SCL WP# External Pull Low External Pull Low R/B# CLE I/O[15] I/O[14] I/O[13] I/O[12] I/O[11] I/O[10] I/O[9] I/O[8] I/O[7] I/O[6] I/O[5] I/O[4] I/O[3] I/O[2] I/O[1] I/O[0] ALE RE# WE# INT# DRQ DACK Power Domain I/O I I I/O I/O I I I O I I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I I O O I I/O/Z I/O/Z I/O/Z I/O/Z CE# A7 PVDDQ VGND A6 or SDA A5 or SCL A4 or WP# A3 A2 A1 or R/B# A0 or CLE D15, AD15, or IO15 D14, AD14, or IO14 D13, AD13, or IO13 D12, AD12, or IO12 D11, AD11, or IO11 D10, AD10, or IO10 D9, AD9, or IO9 D8, AD8, or IO8 D7, AD7, or IO7 D6, AD6, or IO6 D5, AD5, or IO5 D4, AD4, or IO4 D3, AD3, or IO3 D2, AD2, or IO2 D1, AD1, or IO1 D0I, AD0, or IO0 Address Valid Output Enable WE# INT Request GVDDQ VGND DMA Request DMA ACK USB D+ UVDDQ UVSSQ USB D– Left floating Left floating Note 1. Errata: When Arroyo is configured to use SRAM for P-port interface, OE should be asserted simultaneously with CE. If this is not possible, OE should be asserted prior to CE. Otherwise, data can be dropped when external processor reads the Arroyo through SRAM interface. For more information, see the “Errata” on page 50 and “Errata” on page 51. Document Number: 001-57458 Rev. *H Page 6 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 4. CYWB0320ABX-FDXI WLCSP Package Pin Assignments (continued) SSVDDQ VGND S-Port Power Domain C4 A2 B3 C5 B4 A4 B5 A5 A3 A1 E1 D1 D2 C1 C2 D3 B1 B2 G1 F1 SD_D[7] SD_D[6] SD_D[5] SD_D[4] SD_D[3] SD_D[2] SD_D[1] SD_D[0] SD_CLK SD_CMD PB[7] (GPIO) PB[6] (GPIO) PB[5] (GPIO) PB[4] (GPIO) PB[3] (GPIO) PB[2] (GPIO) PB[1] (GPIO) PB[0] (GPIO) TESTTREE SCAN (Ext Pull-Low) I/O I/O I/O I/O I/O I/O I/O I/O I/O O I/O I/O I/O I/O I/O I/O I/O I/O I/O O I CLK Conf Other S-Port Interface Pin Description A6 B7 E5 C7 E6 A8 B9 A9 SD_CD RESET# WAKEUP TEST[2] TEST[1] TEST[0] XTALIN XTALOUT I I I I I I I O SD Data or GPIO SD Data or GPIO SD Data or GPIO SD Data or GPIO SD Data or GPIO SD Data or GPIO SD Data or GPIO SD Data or GPIO SD Clock or GPIO SD CMD or GPIO GPIOI GPIOI GPIOI GPIOI GPIOI GPIOI GPIOI GPIOI Test Mode Test Mode (Ext Pull-Low) SD CD RESET Wake Up Signal Test Cfg 2 Test Cfg 1 Test Cfg 0 Clock IN Clock OUT Power Pin Name F4, J9 E8 D5 B6 C8 D8 E4, G5, F7, F9 C9 B8 C3, D4, E3, F5, G3 PVDDQ UVDDQ SSVDDQ GVDDQ AVDDQ XVDDQ VDD Power Power Power Power Power Power Power Processor I/F VDD USBVDD SDIO VDD Misc I/O VDD Analog VDD Crystal VDD Core VDD UVSSQ AVSSQ VGND Power USB GND Power Analog GND Power Core GND Document Number: 001-57458 Rev. *H GVDDQ VGND GVDDQ VGND XVDDQ VGND Page 7 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 5. CYWB0321ABX-FDXI WLCSP Package Pin Assignments Pin Name U-Port Int P-Port Ball # PNAND I/O Pin Description SPI [2] Power Domain I/O J2 Ext pull low I SCK I Clock J4 CE# I SS# I CE# or SPI Slave Select G5 SDA I/O SDA I/O I2C data H2 SCL I/O SCL I/O I2C clock J1 WP# I Ext pull up I H3 A[3] (Ext pull low) I A[3] (Ext pull up) I A[3] F5 A[2] (Ext pull low) I A[2] (Ext pull low) I A[2] J3 RB# O Ext pull up I PNAND R/B# H4 CLE I Ext pull up I PNAND CLE PVDDQ VGND PNAND WP J6 I/O[7] I/O Ext pull up I IO7 H6 I/O[6] I/O Ext pull up I IO6 J7 I/O[5] I/O Ext pull up I IO5 J8 I/O[4] I/O Ext pull up I IO4 H7 I/O[3] I/O Ext pull up I IO3 G7 I/O[2] I/O Ext pull up I IO2 H8 I/O[1] I/O SDO O IO1 or SPI SDO H9 I/O[0] I/O SDI I IO0 or SPI SDI G8 ALE I Ext pull up I Address Valid F8 RE# I Ext pull up I Output Enable G9 WE# I Ext pull up I WE# A7 INT# O SINT# O INT Request D9 D+ I/O/Z USB D+ E9 D– I/O/Z USB D– D7 NC I/O/Z Left floating E7 NC I/O/Z Left floating GVDDQ VGND UVDDQ UVSSQ Note 2. Errata: When Arroyo is configured to use SPI for Processor-Port (P-Port) interface, transfers from U-Port to P-Port may intermittently fail after wakeup from STANDBY mode. Workaround for this problem is added in SDK version 1.0 or later. For more information, see the “Errata” on page 50 and “Errata” on page 51. Document Number: 001-57458 Rev. *H Page 8 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 5. CYWB0321ABX-FDXI WLCSP Package Pin Assignments (continued) Pin Name CLK Conf Other S-Port Ball # SDIO I/O Pin Description GPIO only Configuration I/O B2 SD_D[7] I/O PD[7] (GPIO) I/O SD Data or GPIO A2 SD_D[6] I/O PD[6] (GPIO) I/O SD Data or GPIO C3 SD_D[5] I/O PD[5] (GPIO) I/O SD Data or GPIO B3 SD_D[4] I/O PD[4] (GPIO) I/O SD Data or GPIO B4 SD_D[3] I/O PD[3] (GPIO) I/O SD Data or GPIO C4 SD_D[2] I/O PD[2] (GPIO) I/O SD Data or GPIO C5 SD_D[1] I/O PD[1] (GPIO) I/O SD Data or GPIO B5 SD_D[0] I/O PD[0] (GPIO) I/O SD Data or GPIO A3 SD_CLK O PC-7 (GPIO) I/O SD Clock D4 SD_CMD I/O PC-3 (GPIO) I/O SD CMD A1 SD_POW O PC-6 (GPIO) I/O SD POW A5 SD_WP I Unused E2 SD_RSV I/O PB[7] (GPIO) I/O D1 SD_RSV I/O PB[6] (GPIO) I/O I E3 SD_RSV I/O PB[5] (GPIO) I/O D2 SD_RSV I/O PB[4] (GPIO) I/O C1 SD_RSV I/O PB[3] (GPIO) I/O D3 SD_RSV I/O PB[2] (GPIO) I/O C2 SD_RSV I/O PB[1] (GPIO) I/O B1 SD_RSV I/O PB[0] (GPIO) I/O G2 SD_RSV I Unused F2 NC O PA-7 (GPIO) I/O G3 NC O PC-0 (GPIO) I/O O Connect to SSVDDQ with 10K pull up resister Left floating NC O N/C NC O N/C O F3 NC O PA-5 (GPIO) I/O G4 NC O PA-6 (GPIO) I/O G1 NC O PC-2 (GPIO) I/O B7 RESETOUT O RESETOUT O RESETOUT B6 PC-5 (GPIO[1]) I/O O PC-5 (GPIO[1]) I/O GPIO, SD2 CD4 A6 PC-4 (GPIO[0]) or SD_CD I/O I O PC-4 (GPIO[0]) I/O GPIO, SD1 CD C7 RESET# I D6 WAKEUP I A9 XTALSLC A8 TEST[2] TEST[1] TEST[0] B9 XTALIN Document Number: 001-57458 Rev. *H SSVDDQ VGND I E1 D8 SSVDDQ VGND SD WP, GPIO H1 F7 Power Domain RESET Wake Up Signal Clock Select I GVDDQ VGND Test Cfg 2 GVDDQ VGND Test Cfg 1 Test Cfg 0 I Clock IN VGND Page 9 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 5. CYWB0321ABX-FDXI WLCSP Package Pin Assignments (continued) Power Pin Name Pin Description H5, J9 PVDDQ Power Processor I/F VDD F1 SSVDDQ Power SDIO VDD E8 UVDDQ Power USB VDD A4 SSVDDQ Power SDIO VDD C6 GVDDQ Power Misc I/O VDD C8 AVDDQ Power Analog VDD E5, VDD F4, F6, F9 Power Core VDD C9 UVSSQ Power USB GND B8 AVSSQ Power Analog GND D5, VGND E4, E6, G6, J5 Document Number: 001-57458 Rev. *H Power Domain Power Core GND Page 10 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 3. CYWB0320ABX-FDXI WLCSP Ball Map - Top View A 1 2 3 4 5 6 7 8 9 SD_CMD SD_D[6] SD_CLK SD_D[2] SD_D[0] GPIO[0] INT# TEST[0] XTALOUT A B NAND_IO[1] NAND_IO[0] SD_D[5] SD_D[3] SD_D[1] GVDDQ RESET# AVSSQ XTALIN B C NAND_IO[4] NAND_IO[3] VGND SD_D[7] SD_D[4] DACK# TEST[2] AVDDQ UVSSQ C D NAND_IO[6] NAND_IO[5] NAND_IO[2] VGND SSVDDQ DRQ# NC XVDDQ D+ D E NAND_IO[7] A[7] VGND VDD WAKEUP TEST[1] NC UVDDQ D- E F SCAN A[5] DQ[15] PVDDQ VGND DQ[5] VDD OE# VDD F G TESTTREE A[4] VGND DQ[12] VDD DQ[8] DQ[2] ADV# WE# G H A[6] A[2] A[0] DQ[13] DQ[10] DQ[7] DQ[3] DQ[1] DQ[0] H J A[3] A[1] CE# DQ[14] DQ[11] DQ[9] DQ[6] DQ[4] PVDDQ J 1 2 3 4 5 6 7 8 9 POWER DOMAIN KEY UVDDQ UVSSQ GVDDQ SSVDDQ VDD/AVDDQ VGND/AVSSQ PVDDQ XVDDQ Document Number: 001-57458 Rev. *H Page 11 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 4. CYWB0321ABX-FDXI WLCSP Ball Map – Top View 1 2 3 4 5 6 7 8 9 A SD_POW SD_D[6] SD_CLK SSVDDQ SD_WP GPIO[0] INT# TEST[2] XTALSLC A B SD_RSV SD_D[7] SD_D[4] SD_D[3] SD_D[0] GPIO[1] RESETOUT AVSSQ XTALIN B C SD_RSV SD_RSV SD_D[5] SD_D[2] SD_D[1] GVDDQ RESET# AVDDQ UVSSQ C D SD_RSV SD_RSV SD_RSV SD_CMD VGND WAKEUP NC TEST[0] D+ D E NC SD_RSV SD_RSV VGND VDD VGND NC UVDDQ D- E F SSVDDQ NC NC VDD A[2] VDD TEST[1] RE# VDD F G NC SD_RSV NC NC SDA VGND IO[2] ALE WE# G H NC SCL A[3] CLE PVDDQ IO[6] IO[3] IO[1] IO[0] H J WP# Pull-Low R/B# CE# VGND IO[7] IO[5] IO[4] PVDDQ J 1 2 3 4 5 6 7 8 9 POWER DOMAIN KEY UVDDQ UVSSQ GVDDQ SSVDDQ VDD/AVDDQ VGND/AVSSQ PVDDQ Document Number: 001-57458 Rev. *H Page 12 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Absolute Maximum Ratings Operating Conditions Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. TA (Ambient Temperature Under Bias) Industrial .................................................... –40 °C to +85 °C Storage Temperature ............................... –65 °C to +150 °C VDD, AVDDQ Supply Voltage .........................1.7 V to 1.9 V Ambient Temperature with Power Supplied (Industrial) ....................... –40 °C to +85 °C UVDDQ Supply Voltage ...................................3.0 V to 3.6 V Supply Voltage to Ground Potential VDD, AVDDQ ..............................................–0.5 V to +2.0 V GVDDQ, PVDDQ, SSVDDQ, UVDDQ, and XVDDQ ..................................–0.5 V to +4.0 V PVDDQ, GVDDQ, SSVDDQ Supply Voltage .................................................1.7 V to 3.6 V XVDDQ (Crystal I/O) Supply Voltage ..............3.0 V to 3.6 V XVDDQ (Ext. Clock I/O) Supply Voltage .........1.7 V to 1.9 V DC Input Voltage to Any Input Pin .................1.89 V to 3.6 V (Depends on I/O supply voltage. Inputs are not overvoltage tolerant.) DC Voltage applied to Outputs in High Z State .................. –0.5 V to VDDQ + 0.5 V Static Discharge Voltage (ESD) from JESD22-A114 ...................................... > 2000 V Latch up current ..................................................... > 200 mA Maximum Output Short Circuit Current for all I/O Configurations. (Vout = 0 V) .................... –100 mA Document Number: 001-57458 Rev. *H Page 13 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI DC Characteristics Table 6. DC Specifications for All Voltage Supplies Parameter Description Conditions Min Typ Max Unit VDD Core Voltage Supply 1.7 1.8 1.9 V AVDDQ Analog Voltage Supply 1.7 1.8 1.9 V XVDDQ Crystal Voltage Supply 3.0 3.3 3.6 V XVDDQ Clock Voltage Supply 1.7 1.8 1.9 V PVDDQ [3] GVDDQ [3] Processor Interface I/O 1.7 1.8, 2.5, 3.3 3.6 V Miscellaneous I/O Voltage Supply 1.7 1.8, 2.5, 3.3 3.6 V 1.7 1.8, 2.5, 3.3 3.6 V SSVDDQ [3, 4] S-Port SD I/O Voltage Supply UVDDQ [5] 3.0 3.3 3.6 V VIH1[6] USB Voltage Supply Input HIGH Voltage 1 All ports except USB, 2.0 V < VCC < 3.6 V 0.625 × VCC – VCC + 0.3 V VIH2[6] Input HIGH Voltage 2 All ports except USB, 1.7 V < VCC < 2.0 V VCC – 0.4 – VCC + 0.3 VIL Input LOW Voltage –0.3 – 0.25 × VCC V 0.9 × VCC – – V – 0.1 × VCC V VOH Output HIGH Voltage IOH(MAX) = –0.1 mA VOL Output LOW Voltage IOL(MIN) = 0.1 mA IIX Input Leakage Current All I/O signals held at VDDQ –1 – 1 A IOZ Output Leakage Current All I/O signals held at VDDQ –1 – 1 A ICC Core WLCSP package, outputs tristated Operating Current of Core Voltage Supply (VDD) and Analog Voltage Supply (AVDDQ) – – 115 mA ICC Crystal Operating Current of Crystal Voltage Supply (XVDDQ) [7] WLCSP package – – N/A ICC USB Operating Current of USB Voltage Supply (UVDDQ) [7] Operating and terminated for high speed mode – – 25 ISB1 Total Standby Current of Arroyo 1. *VDDQ = 3.3 V nominal 25 °C when Device is in Suspend Mode (3.0–3.6 V) 85 °C 2. Outputs and Bidirs high or floating[7] 3. XTALOUT floating 4. D+ floating, D– grounded 5. Device in suspend mode TBD TBD TBD TBD TBD TBD mA Notes 3. Interfaces with a voltage range are adjustable with respect to the I/O voltage and supports multiple I/O voltages. 4. The SSVDDQ I/O voltage can be dynamically changed (for example, from high range to low range) as long as the supply voltage undershoot does not surpass the lower minimum voltage limit. SSVDDQ and SNVDDQ levels for SD modes: 2.0 V3.6 V, MMC modes: 1.7 V3.6 V. 5. When U-Port is in a disabled state, UVDDQ can go down to 2.4 V, provided UVDDQ is still the highest supply voltage level. 6. VCC = pertinent VDDQ value. 7. The Outputs and Bidirs that are forced low in standby mode can increase I/O supply standby current beyond specified value. Active Current Conditions: -UVDDQ: USB transmitting 50% of the time, receiving 50% of the time. -PVDDQ/SNVDDQ/SSVDDQ/GVDDQ: Active current depends on I/O activity, bus load and supply level. Document Number: 001-57458 Rev. *H Page 14 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 6. DC Specifications for All Voltage Supplies (continued) Parameter ISB2 Description Conditions Total Standby Current of Arroyo 1. *VDDQ = 3.3 V Nominal 25 °C when Device is in Standby Mode (3.0–3.6 V) 85 °C 2. Outputs and Bidirs High or Floating [7] Min Typ Max Unit – – 52 A – – 450 A – – 28 A – – 139 A Typ Max Unit – 9 pF 3. XTALOUT Floating 4. D+ Floating, D– Grounded ISB3 Total Standby Current of Arroyo when Device is in Core Power Down Mode 1. Outputs and Bidirs High 25 °C or Floating [7] 85 °C 2. XTALOUT Floating 3. D+ Floating, D– Grounded 4. Core Powered Down Table 7. Capacitance Parameter CIN COUT Description Input Pin Capacitance, Except D+/D– Conditions TA = 25 °C, f = 1 MHz, VCC = VCCIO Input Pin Capacitance, D+/D– – 15 Output Pin Capacitance – 10 Document Number: 001-57458 Rev. *H pF Page 15 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI AC Timing Parameters P Port Interface PCRAM Non Multiplexing Asynchronous Mode Table 8. Asynchronous Mode Timing Parameters Parameter Description Min Max Unit Read Timing Parameters Interface Bandwidth (MBPS) – 66.7 MBps tAA Address to Data Valid – 30 ns tOH Data Output Hold from Address Change 3 – ns tEA Chip Enable to Data Valid – 30 ns tAADV ADV# to Data Valid Access Time – 30 ns tAVS Address Valid to ADV# HIGH 5 – ns tAVH ADV# HIGH to Address Hold 2 [8] – ns tCVS CE# Low Setup Time to ADV# HIGH 5 – ns tVPH ADV# HIGH Time 15 [9] – ns tVP ADV# Pulse Width LOW 7.5 – ns tOE OE# LOW to Data Valid – 22.5 ns tOLZ OE# LOW to Low Z 3 – ns tOHZ OE# HIGH to High Z 0 22.5 ns tLZ CE# LOW to Low Z 3 – ns tHZ CE# HIGH to High Z – 22.5 ns Write Timing Parameters tCW CE# LOW to Write End 30 – ns tAW Address Valid to Write End 30 – ns tAS Address Setup to Write Start 0 – ns tADVS ADV# Setup to Write Start 0 – ns tWP WE# Pulse Width 22 – ns tWPH WE# HIGH Time 10 – ns tCPH CE# HIGH Time 10 – ns tAVS Address Valid to ADV# HIGH 5 – ns tAVH ADV# HIGH to Address Hold 2 [8] – ns tCVS CE# LOW Setup Time to ADV# HIGH 5 – ns tVPH ADV# HIGH Time 15 [9] – ns tVP ADV# Pulse Width LOW 7.5 – ns tVS ADV# LOW to End of Write 30 – ns tDW Data Setup to Write End 18 – ns tDH Data Hold from Write End 0 – ns tWHZ Write to DQ High Z Output – 22.5 ns tOW End of Write to Low Z Output 3 – ns Notes 8. In applications where back-to-back accesses are not performed on different endpoint addresses, the minimum tAVH spec. can be relaxed to 0 ns. 9. In applications where access cycle time is at least 60 ns, tVPH can be relaxed to 12 ns. Document Number: 001-57458 Rev. *H Page 16 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 5. Non Multiplexing Asynchronous Pseudo CRAM mode Single Read Timing Parameters A Valid Address tAA tVPH tAVH tAVS tOH ADV# tVP tHZ tAADV tCVS CE# tEA tOE OE# tOHZ R/W# tOLZ tLZ DQ High-Z Valid Output Figure 6. Non Multiplexing Asynchronous Pseudo CRAM Mode Back to Back Read Timing Parameters A Valid Address Valid Address tAA tVPH tAVS tAVH ADV# tHZ tVP CE# tAADV tEA OE# tOHZ WE# DQ High-Z Valid Output Valid Output tLZ Document Number: 001-57458 Rev. *H Page 17 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 7. Non Multiplexing Asynchronous Pseudo CRAM mode Back to Back Write Timing Parameters A Valid Address tAVS tVPH ADV# Valid Address tAVH tVP tCPH tVS CE# tCW OE# tAW tWPH tWP WE# tAS DQ_IN tOW tDH tDW tADVS High-Z tLZ Valid Input tWHZ Valid Input DQ_OUT Figure 8. Non Multiplexing Asynchronous Pseudo CRAM Mode Read to Write Timing Parameters Valid Address A Valid Address tAA tVPH tAVS tAVS tVPH tAVH Valid Address tAVH tVP ADV# tVP CE# tVS tAADV tEA tOE OE# tOHZ tAW tWP WE# tAS DQ_IN DQ_OUT High-Z tOLZ High-Z tLZ Document Number: 001-57458 Rev. *H tWHZ tDW tDH Valid Input tOW Valid Input Valid Output Page 18 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 9. Non Multiplexing Asynchronous Pseudo CRAM Mode Write to Read Timing Parameters A Valid Address tAVS Valid Address tAA tAVH tAVS tVP tAVH ADV# tVP tVS CE# tAADV tOE OE# tAW tWP WE# tAS DQ_IN tWHZ DQ_OUT Document Number: 001-57458 Rev. *H tDW tDH Valid Input tOLZ Valid Output Page 19 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Address Data Multiplexing Asynchronous Mode Table 9. Address Data Multiplexing Asynchronous Mode Timing Parameters Parameter Description Min Max Unit Interface Bandwidth – 50 MBps Read Timing Parameters tAA Address to Data Valid – 30 ns tEA Chip Enable Access Time – 30 ns tAADV ADV# to Data Valid Access Time – 30 ns tAVS Address Valid to ADV# HIGH 5 – ns tAVH ADV# HIGH to Address Hold 2 – ns tCVS CE# LOW Setup Time to ADV# HIGH 5 – ns tVPH ADV# HIGH Time 15 – ns tVP ADV# Pulse Width LOW 7.5 – ns tAVDOE ADV# HIGH to OE# LOW 0 – ns tOE OE# LOW to Data Valid – 22.5 ns tOLZ OE# LOW to Low Z 3 – ns tOHZ OE# HIGH to High Z – 22.5 ns tLZ CE# LOW to Low Z 3 – ns tHZ CE# HIGH to High Z – 22.5 ns Write Timing Parameters tCW CE# LOW to Write End 30 – ns tAW Address Valid to Write End 30 – ns tAVDWE ADV# HIGH to Write Start 0 – ns tWP WE# Pulse Width 22 – ns tAVS Address Valid to ADV# HIGH 5 – ns tAVH ADV# HIGH to Address Hold 2 – ns tCVS CE# LOW Setup Time to ADV# HIGH 5 – ns tVPH ADV# HIGH Time 15 – ns tVP ADV# Pulse Width LOW 7.5 – ns tVS ADV# LOW to End of Write 30 – ns tDS Data Setup to Write End 18 – ns tDH Data Hold from Write End 0 – ns Document Number: 001-57458 Rev. *H Page 20 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 10. Address Data Multiplexing Asynchronous Single Read Timing Parameters tAA tAVH tAVS A<7:0>/ DQ<15:0> High-Z Valid Address tVPH tAADV tVP ADV# tHZ tCVS tLZ tEA CE# tOHZ tAVDOE tOLZ OE# WE# High-Z Valid Data tOE Logic High Figure 11. Address Data Multiplexing Asynchronous Single Write Timing Parameters tAW tAVS A<7:0>/ DQ<15:0> tAVH tDS Valid Address tVPH Valid Input tDH High-Z tVS tVP ADV# tCVS CE# tCW tAVDWE WE# Document Number: 001-57458 Rev. *H tWP Page 21 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Asynchronous SRAM Mode Timing Parameters Table 10. Asynchronous SRAM Mode Timing Parameters Parameter Description Interface Bandwidth (MBps) Min Max Unit – 66.7 MBps Read Timing Parameters tRC Read Cycle Time 30 – ns tAA Address to Data Valid – 30 ns tOH Data Output Hold from Address Change 3 – ns tEA Chip Enable to Data Valid – 30 ns tOE OE# LOW to Data Valid – 22.5 ns tOLZ OE# LOW to Low Z 3 – ns tOHZ OE# HIGH to High Z 0 22.5 ns tLZ CE# LOW to Low Z 3 – ns tHZ CE# HIGH to High Z – 22.5 ns Write Timing Parameters tWC Write Cycle Time 30 – ns tCW CE# LOW to Write End 30 – ns tAW Address Valid to WE# End 30 – ns tAS Address Setup to WE# or CE# Start 0 – ns tAH Address Hold Time from WE# or CE# End for PCRAM to SRAM Changes (Astoria is default in PCRAM mode after RESET. This timing is the requirement for the first time to access the P-Port Interface Configuration Register to change the Astoria to PSRAM mode) 2 – ns Address Hold Time from WE# or CE# End for PSRAM Mode 0 – tWP WE# Pulse Width 22 – ns tWPH WE# HIGH Time 10 – ns tCPH CE# HIGH Time 10 – ns tDS Data Setup to Write End 18 – ns tDH Data Hold from Write End 0 – ns tWHZ Write to DQ High Z Output – 22.5 ns tOW End of Write to Low Z Output tDPW DRQ# Pulse Width Document Number: 001-57458 Rev. *H 3 – ns 110 – ns Page 22 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 12. Non Multiplexing Asynchronous SRAM Read Timing Parameters [10] Endpoint Read – Address Transition Controlled Timing (OE# is asserted ) tRC ADDRESS tAA tOH DATA OUT PREVIOUS DATA VALID DATA VALID OE# Controlled Timing ADDRESS tRC CE# tEA tHZ OE# tOHZ tOE tOLZ DATA OUT HIGH IMPEDANCE tLZ DATA VALID HIGH IMPEDANCE Note 10. Errata: When Arroyo is configured to use SRAM for P-port interface, OE should be asserted simultaneously with CE. If this is not possible, OE should be asserted prior to CE. Otherwise, data can be dropped when external processor reads the Arroyo through SRAM interface. For more information, see the “Errata” on page 50 and “Errata” on page 51. Document Number: 001-57458 Rev. *H Page 23 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 13. Non Multiplexing Asynchronous SRAM Write Timing (WE# and CE# Controlled) Write Cycle 1 WE# Controlled, OE# High During Write tWC ADDRESS tCW CE# tAW WE# tAH tWP tAS tWPH OE# tDS DATA I/O tDH VALID DATA VALID DATA tWHZ Write Cycle 2 CE# Controlled , OE# High During W rite tWC ADDRESS tAS tCW tCPH CE# tAW tAH tWP WE# OE# tDS DATA I/O VALID DATA tDH VALID DATA tWHZ Document Number: 001-57458 Rev. *H Page 24 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 14. Non Multiplexing Asynchronous SRAM Write Timing (WE# Controlled, OE# LOW) Write Cycle 3 WE# Controlled. OE# Low tWC tCW CE# tAW tAH tAS tWP WE# tDS DATA I/O tDH VALID DATA tOW tWHZ Pseudo NAND (PNAND) Mode Table 11. PNAND Mode Parameters Parameter Description Min Max Unit Non LNA Mode Register Write 100 – ns Non LNA Mode EP Write 100 – ns LNA Mode tADL Address to Data Loading Time 450 – ns tALH ALE Hold Time 5 – ns tALS ALE Setup Time 15 – ns tAR ALE to RE# Delay 10 – ns tBERS Block Erase Time tCEA CE# Access Time – 35 ns tCH CE# Hold Time 5 – ns tCHZ CE# HIGH to O/P HI-Z – 40 ns tCLH CLE Hold Time 5 – ns tCLR CLE to RE# Time 10 – ns tCLS CLE Setup Time 15 – ns tCS CE# Setup Time 20 – ns tDH Data Hold Time 5 – ns tDS Data Setup Time 15 – ns tOH Data Output Hold Time 15 – ns Document Number: 001-57458 Rev. *H MCU/S-Port NAND dependent Page 25 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 11. PNAND Mode Parameters (continued) Parameter Description Program Time for LNA Mode tPROG tR Min Max Depends on MCU/S-Port/NAND Unit ns Program Time for Register Write in Non LNA Mode 130 – ns Program Time for EP Write in Non LNA Mode 130 – ns Busy Duration during Non LNA Register Read using Page Read 130 – ns Busy Duration during Non LNA EP Read using Page Read 130 – ns Busy Duration during LNA Page Read (SBD/SLD) Depends on MCU/S-Port/NAND ns Read Cycle Time (VFBGA Package) 30 – Read Cycle Time (WLCSP Package) 33 – RE# for Register Access Time – 30 ns RE# for EP Access Time – 30 ns tREH RE# HIGH Hold Time 10 – ns tRHW RE# HIGH to WE LOW 40 – ns tRHZ RE# HIGH to Output HI-Z – 40 ns tRP RE# Pulse Width 15 – ns tRR Ready to RE LOW 20 – ns tRC tREA Depends on MCU/S-Port/NAND ns tRST Device Reset Time tWB WE# HIGH to Busy – 100 Write Cycle Time (VFBGA Package) 30 – Write Cycle Time (WLCSP Package) 33 – WE# HIGH Hold Time 10 – ns WE# HIGH to RE LOW in Non LNA Mode 30 – ns WE# HIGH to RE LOW in LNA Mode 450 – ns WE# Pulse Width 15 – ns tWC tWH tWHR tWP Document Number: 001-57458 Rev. *H ns ns ns Page 26 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 15. PNAND Mode Command Latch Cycle CLE CE# tCLS tCLH tCS tCH tWP WE# tALH tALS ALE tDS tDH Command I/Ox Figure 16. PNAND Mode Address Latch Cycle CLE tCLS tCS CE# tWC tWC tWP WE# tWC tWP tWH tALS tWC tWP tWH tALS tWP tWH tWH tALS tALS tALS tALH ALE tALH tDS I/Ox Document Number: 001-57458 Rev. *H tDH Col.Add1 tALH tDS tDH Col.Add2 tALH tALH tDS tDH tDS tDH Row.Add1 Row.Add2 tDS tDH Row.Add3 Page 27 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 17. PNAND Mode Input Data Latch Cycle tCLH CLE tCH CE# tWC ALE tALS tWP WE# tWP tWP tWH tDS I/Ox tDH tDS DIN 0 tDH DIN 1 tDS tDH DIN final Figure 18. PNAND Mode Serial Access Cycle After Read tCEA tCHZ CE# tOH tREH tREA tREA tREA RE# tRHZ tRHZ tOH Dout I/Ox tRR Dout Dout tRC R/B# Document Number: 001-57458 Rev. *H Page 28 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 19. PNAND Mode Status Read Cycle tCLR CLE tCLH tCLS tCS CE# tWP WE# tCHZ tCEA tOH tWHR RE# tRHZ tDS I/Ox tDH tIR tREA 70h tOH Status Output Figure 20. PNAND LBD Read Operation tCLR CLE CE# tWC WE# tWB tAR ALE tR tRR tRP tRC tRHZ RE# Column Address I/Ox 00h Col Add1 Col Add2 R/B# Document Number: 001-57458 Rev. *H Row Address Row Add1 Row Add2 Row Add3 Dout N 30h Dout N+1 Dout M Busy Page 29 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 21. PNAND SBD Read Operation CLE CE# tWC WE# tWB tAR ALE tR tRR tRP tRC tRHZ RE# Column Address 00h, 01h, Col Add1 or *50h I/Ox Row Address Row Add2 Row Add1 Row Add3 R/B# Dout N Dout N+1 Dout M Busy * For the Command 50h, A[3:0] in Col Add1 are valid address and A [7:4] are Don’t care Document Number: 001-57458 Rev. *H Page 30 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 22. PNAND Mode LBD Random Data Operation (CASDO) CLE tCLR CE# WE# tRHW tWB tWHR tAR ALE tR tRP tRC tREA RE# tRR I/Ox 00h Col Add1 Col Add2 Row Add1 Column Address Row Row Add2 Add3 Row Address 30h Dout N+1 Dout N 05h Col Add1 Col Add2 E0h Dout M Dout M+1 Column Address Busy R/B# Figure 23. PNAND Mode Register Read Using CASDO in 8-Bit Mode CLE tCLR CE# tCH WE# tWHR ALE tREA RE# 05h I/Ox R/B# Col Col Add1 Add2 Column Address E0h DOUT1 *DOUT2 * This timing diagram shows the 8-bit register read. For 16-bit register read, DOUT2 is not available Document Number: 001-57458 Rev. *H Page 31 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 24. PNAND Mode LBD Read Operation (With CE# Don’t Care) CLE CE# WE# tWB ALE tR RE# I/Ox 00h Col Add1 Col Add2 Column Address Row Add1 R ow Add2 Row Add3 Dout N Dout N+1 30h Dout M Row Address Busy R/B# CE# tCEA tREA RE# I/Ox Document Number: 001-57458 Rev. *H Dout Page 32 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 25. PNAND Mode SBD Read Operation (With CE# Don’t Care) CLE CE# WE# tWB ALE tR RE# I/Ox 00h Col Add1 Column Address Row Add1 Row Add2 Row Add3 D out N Dout N+1 Dout M Row Address Busy R/B# CE# tCEA tREA RE# I/Ox Document Number: 001-57458 Rev. *H Dout Page 33 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 26. PNAND Mode LBD Page Program Operation CLE CE# tWC WE# tADL tWB tWHR tPROG ALE RE# Col Col Row Row Row Din Din 10 Add1 Add2 Add1 Add2 Add3 N h M 1 up to m Byte Program Serial Data Input Column Row Address Address Serial Input Command Command I/Ox 80h R/B# M = 2112byte in 8-bit interface M = 1056 in 16-bit interface 70h I/O0 Read Status Command I/O0=0 Successful Program I/O0=1 Error in Program Note: tADL is the time from WE rising edge of final address cycle to the WE rising edge of first data cycle Document Number: 001-57458 Rev. *H Page 34 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 27. PNAND Mode SBD Page Program Operation CLE CE# tWC WE# tADL tWB tPROG ALE RE# Column Address Col Row Row Row I/Ox 80h Add1 Add1 Add2 Add3 Row Address Serial Data Input Command R/B# Document Number: 001-57458 Rev. *H Din N 1 up to m Byte Serial Input Din M 10h Program Command M = 528 byte in 8-bit interface M = 264 byte in 16-bit interface 70h I/O0 Read Status Command I/O0=0 Successful Program I/O0=1 Error in Program Page 35 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 28. PNAND Mode LBD Page Program Operation with Random Data Input (CASDI) CLE CE# tWC WE# tADL tWB tPROG tWHR ALE RE# Col Col Row Row Row Add1 Add2 Add1 Add2 Add3 Serial Data Input Column Row Address Address Command I/Ox 80h Din M Din N 85h Col Col Add1 Add2 Serial Input R/B# Din J Column Address Din K Serial Input 10h 70h Program Command Read Status Command I/O0 Random Data Input Command *Random Programming (CASDI) to endpoint is only supported during logical NAND emulation (LNA mode) of LBD device. Partial page programming is not supported Figure 29. PNAND Mode Register Write Using CASDI in 8-Bit Mode CLE CE# tWC WE# tADL ALE RE# I/Ox Col Col Add1 Add2 DIN1 *DIN2 Serial Input Random Data Input Command 85h R/B# * This timing diagram shows the 8-bit register write. For 16-bit register write, DIN2 should not be available Document Number: 001-57458 Rev. *H Page 36 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 30. PNAND Mode LBD Page Program Operation (With CE# Don’t Care) CLE CE# tWC WE# tADL tWB tPROG tWHR ALE RE# 1 up to M Byte Serial Input Col Col Row Row Row Add1 Add2 Add1 Add2 Add3 Serial Data Input Column Row Address Address Command I/Ox 80h Din N Din M 10h 70h Program Command M = 2112 byte in 8-bit interface M = 1056 byte in 16-bit interface Note: tADL is the time from WE rising edge of final address cycle to the WE rising edge of first data cycle Read Status Command I/O0=0 Successful Program I/O0=1 Error in Program R/B# CE# I/O0 tCS tCH tWP WE# Document Number: 001-57458 Rev. *H Page 37 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 31. PNAND Mode SBD Page Program Operation (With CE# Don’t Care) CLE CE# tWC WE# tADL tWB tPROG ALE RE# Column Address Col Row Row Row I/Ox 80h Add1 Add1 Add2 Add3 Row Address Serial Data Input Command R/B# Din N 1 up to m Byte Serial Input Din M 10h 70h Program Command M = 528 byte in 8-bit interface M = 264 byte in 16-bit interface CE# I/O0 Read Status Command I/O0=0 Successful Program I/O0=1 Error in Program tCS tCH tWP WE# Document Number: 001-57458 Rev. *H Page 38 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 32. PNAND Mode Block Erase Operation CLE CE# tWC WE# tWB ALE tBERS RE# I/Ox R/B# 60h Row Row Row Add1 Add2 Add3 Row Address D0h 70h Busy Erase Command Auto Block Erase Setup Command I/O 0 Read Status I/O0=0 Successful Erase Command I/O0=1 Error in Erase Figure 33. PNAND Mode Multi-Blocks (up to 4) Erase CLE CE# tWC WE# tWB tBERS ALE RE# 2nd and 3 rd Block Erase st I/Ox 60h 1 Block Erase Row Row Row Add1 Add2 Add3 D0h 60h 4 th Block Erase Row Row Row Add1 Add2 Add3 R/B# Auto Block Erase Setup Command D0h 70h I/O 0 Row Address Row Address Erase Command Auto Block Erase Setup Command Erase Command Busy Read Status Command I/O 0= 0 Successful Erase I/O0=1 Error in Erase Note: The multi-block erase can support up to 4 blocks erase Document Number: 001-57458 Rev. *H Page 39 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 34. PNAND Mode Read ID Operation CLE CE# WE# tAR ALE RE# tREA I/Ox 90h Read ID Command 00h Byte 0 Byte 1 Address 1cycle Byte 2 Byte 3 Byte 4 Byte 5 Can up to six bytes Byte 0 – Byte 5 are the values of registers of PNAD_RD_ID0 to PNAND_RD_ID5. Figure 35. PNAND Mode Read ID2 Operation CLE CE# WE# tAR ALE RE# tREA I/Ox 91h Read ID Command Document Number: 001-57458 Rev. *H 00h Ext_ID Address 1cycle Page 40 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 36. PNAND Mode Reset Operation CLE CE# tWB WE# tRST R/B# FFh I/Ox Table 12. SPI Mode Parameters Parameter Description fOP Operating frequency tCYC Cycle time Min Max Units 0 26 MHz 38.5 – ns tLead Enable lead time 19.23 – ns tLag Enable lag time 19.23 – ns tSCKH Clock high time 17.33 – ns tSCKL Clock low time 17.33 – ns tSU Data setup time (inputs) – 7 ns tH Data hold time (inputs) – 7 ns tV Data valid time, after enable edge – 18 ns tHO Data hold time, after enable edge 0 – ns Document Number: 001-57458 Rev. *H Page 41 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 37. SPI Timing Diagram SS# tCYC tLag tSCKL SCK tSCKH tLead MISO (MSB) BIT-7 OUT tSU tH tV (MSB) BIT-7 IN MOSI (LSB) BIT-7 OUT BIT-6 OUT tHO BIT-6 IN Note tHO (LSB) BIT-0 IN Note: Not defined but normal MSB of character just received Table 13. PI2C Interface Standard Mode Parameters Parameter Description Min Max Units 0 82 kHz Bus Free Time (between stop and start conditions) 4.7 – µs tHD:STA Hold Time After (Repeated) Start Condition. After this period the first clock is generated 4.0 – µs F Operating Frequency tBUF tSU:STA Repeated Start Condition Setup Time 4.7 – µs tSU:STO Stop Condition Setup Time 4.0 – µs tHD:DAT Data Hold Time 0 – ns tSU:DAT Data Setup Time 250 tTIMEOUT Detect Clock Low Timeout tLOW Clock Low Period 4.7 – µs tHIGH Clock High Period 4.0 – µs tLOW:SEXT Cumulative Clock Low Extend Time (slave device) tr Rise Time – 1000 ns tf Fall Time – 300 ns Document Number: 001-57458 Rev. *H – NA ns ms NA ms Page 42 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 14. PI2C Interface Fast Mode Parameters Parameter Description Min Max Units F Operating Frequency 0 312 kHz tBUF Bus Free Time (between stop and start condition) 1.3 – µs tHD:STA Hold Time after (Repeated) Start Condition. After this period the first clock is generated 0.6 – µs tSU:STA Repeated Start Condition Setup Time 0.6 – µs tSU:STO Stop Condition Setup Time 0.6 – µs tHD:DAT Data Hold Time 0 0.9 ns tSU:DAT Data Setup Time 100 – ns tTIMEOUT Detect Clock Low Timeout tLOW Clock Low Period 1.3 tHIGH Clock High Period 0.6 tLOW:SEXT Cumulative Clock Low Extend Time (slave device) tr Rise Time – 300 ns tf Fall Time – 300 ns NA ms – – NA µs µs ms Figure 38. PI2C Timing Diagram tf 70% SDA 50% 30% tr SCL tBUF tHIGH 70% tSU;DAT 50% tLOW tHD;STA 50% 30% tHD;DAT tSU;STA S Other P-Port Timings DRQ# Min Pulse Width (tDPW): The minimum duration that DRQ# is deasserted following a DRQ acknowledgement (clear of DMAVAL) is 110 ns in Async mode or five P-Port clock (CLK) cycles in Sync mode. Same Register Write-to-Read Holdoff (tWRHO): A read of a particular register must wait for a holdoff period following a write operation to that same register address to ensure that valid updated data is read. In Async mode, this holdoff time is 150 ns. In Sync mode, this holdoff time is seven P-Port clock (CLK) cycles. tHD;STA tSU;STO Sr P S before the update is reflected in a subsequent read operation. This holdoff time is identical to the tWRHO. S Port Interface AC Timing Parameters SD/MMC/MMC+ Timing Parameters For all conditions, SD/MMC data is driven and sampled on the rising edge of SD_CLK. Note that CE-ATA electrical and timing parameters are equivalent to MMC. Register Update-to-Read Holdoff (tURHO): Same status registers are updated as side effect from accesses to other registers. For example, clearing the DMAVAL field automatically clears the associated endpoint buffer bit within the DRQ status register. A holdoff time must elapse from the first register access Document Number: 001-57458 Rev. *H Page 43 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Figure 39. SD/MMC+ Timing Waveform — All Modes tSDCLKH tSDCLK SD_CLK tSDCLKL SD_CMD/ SD_D0-D3 tSDOS tSDCKLZ tSDOH tSDCKHZ Output SD_CMD/ SD_D0-D3 Input tSDIS tSDIH Table 15. Common Timing Parameters for SD/MMC+ – During Identification Mode Parameter Description Min Max Units 0 400 kHz Clock Period 2.5 – µs Clock High Time 1.0 – µs Clock Low Time 1.0 – µs Min Max Units 5 48 MHz 20.8 200 ns 40 60 % SDFREQ SD_CLK Interface Clock Frequency tSDCLK tSDCLKH tSDCLKL Table 16. Common Timing Parameters for SD/MMC+ – During Data Transfer Mode Parameter Description SDFREQ SD_CLK Interface Clock Frequency tSDCLK Clock Period tSDCLKOD Clock Duty Cycle tSCLKR Clock Rise Time – 3 ns tSCLKF Clock Fall Time – 3 ns Min Max Units Table 17. Timing Parameters for SD – All Modes Parameter Description tSDIS Input Setup Time 4 – ns tSDIH Input Hold Time 2.5 – ns tSDOS Output Setup Time 7 – ns tSDOH Output Hold Time 6 – ns tSDCKHZ Clock to Data High Z – 18 ns tSDCKLZ Clock to Data Low Z 3 – ns Document Number: 001-57458 Rev. *H Page 44 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 18. Timing Parameters for MMC+ – All Modes Parameter Description Min Max Units tSDIS Input Setup Time 4 – ns tSDIH Input Hold Time 4 – ns tSDOS Output Setup Time 6 – ns tSDOH Output Hold Time 6 – ns tSDCKHZ Clock to Data High Z – 18 ns tSDCKLZ Clock to Data Low Z 3 – ns Reset and Standby Timing Parameters The Arroyo reset mechanism is described in this section. The standby mode is also described. Minimum RESET# pulse width (tRPW): 5 ms when a crystal is used as clock or 1 ms when an external clock is used. Minimum WAKEUP pulse width (tWPW): 5 ms. Sleep Time (tSLP): The maximum time from deassertion of WAKEUP to when Arroyo enters low power state (sleep mode) is 1 ms. Minimum HIGH on RESET# and WAKEUP (tRH, tWH): The WAKEUP and RESET# pins must be held HIGH for a minimum of 5 ms. Wakeup Time (tWU): The minimum time from assertion of WAKEUP pin (or initial power on with WAKEUP HIGH) to when any register operation is conducted is 1 ms if an external clock is present, or 5 ms if a crystal is used. The CY_AN_MEM_PWR_MAGT_STAT.WAKEUP field can only be polled after wakeup time following reset deassertion or WAKEUP assertion. Reset Recovery Time (tRR): A minimum 1 ms reset recovery time must be allowed before Arroyo registers can be accessed for read or write. Figure 40. Reset and Standby Timing Diagram Core Power-Down VDD (core) VDDQ (I/O) XTALIN up & stable before WAKEUP asserted XTALIN tWPW tWH WAKEUP Mandatory Reset Pulse RESET# RESETOUT Standby Mode Hard Reset Firmware Init Complete Mandatory Reset Pulse tRH Firmware Init Complete Firmware Init Complete High-Z tRPW tSLP CY_AN_MEM_PMU_UPDATE.UVALID bit is set to ‘0’ Document Number: 001-57458 Rev. *H CY_AN_MEM_PMU_UPDATE.UVALID bit is set to ‘1’ CY_AN_MEM_PMU_UPDATE.UVALID bit is set to ‘0’ Page 45 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Table 19. Reset and Standby Timing Parameters Parameter Description Conditions Min Max Units tSLP Sleep Time tWU Wakeup Time from Standby Mode 5 – ms tWH WAKEUP High Time 5 – ms tWPW WAKEUP Pulse Width 5 – ms tRH RESET# High Time 5 – ms tRPW RESET# Pulse Width Clock on XTALIN 1 – ms Crystal on XTALIN-XTALOUT 5 – ms 1 – ms tRP RESET# Recovery Time Clock on XTALIN Crystal on XTALIN-XTALOUT – 1 ms 1 – ms Figure 41. AC Test Loads and Waveforms (Except SD and MMC, SD and MMC are comply with the SD/MMC specification) Document Number: 001-57458 Rev. *H Page 46 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Ordering Information For ordering information, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products. Table 20. Device Ordering Information Ordering Code Package Type Clock Input Frequencies (MHz) Status CYWB0320ABX-FDXIT 81-pin WLCSP (Pb-free) 26 Production Release CYWB0321ABX-FDXIT 81-pin WLCSP (Pb-free) 19.2, 26 Sample Ordering Code Definitions CY WB 03 XX ABX - FD X I T T = Tape and Reel Temperature Range: I = Industrial Pb-free Package Type: FD = 81-pin WLCSP Pin Count Part Number: XX = 20 or 21 Family Code Technology Code: WB = West Bridge Company ID: CY = Cypress Document Number: 001-57458 Rev. *H Page 47 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Package Diagram Figure 42. Astoria 81-pin WLCSP (3.91 × 3.91 × 0.55 mm) FN81B Package Outline, 001-45618 BOTTOM VIEW TOP VIEW 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1 A A B B C C D D E E F F G G H H J J SIDE VIEW 001-45618 *C Document Number: 001-57458 Rev. *H Page 48 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Acronyms Document Conventions Acronym Description Units of Measure CE Chip Enable ESD Electrostatic Discharge °C degree Celsius I/O Input/Output mA milliampere LSB Least Significant Bit MHz megahertz MSB Most Significant Bit µA microampere OE Output Enable µF microfarad RE Read Enable µs microsecond SPI Serial Peripheral Interface µW microwatt USB Universal Serial Bus ms millisecond WE Write Enable mV millivolt WLCSP Wafer Level Chip Scale Package mW milliwatt ns nanosecond Document Number: 001-57458 Rev. *H Symbol Unit of Measure ppm parts per million pF picofarad V volt W watt Page 49 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Errata This section describes the errata for West Bridge Arroyo USB and Mass Storage Peripheral Controller, CYWB0320ABX-FDXI. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions. Part Numbers Affected Part Number Package Type Operating Range CYWB0320ABX-FDXI 81-pin WLCSP Industrial Arroyo Qualification Status Product Status: In Production Arroyo Errata Summary The following table defines the errata applicability to available Arroyo family devices. An “X” indicates that the erratum pertains to the selected device. Items CYWB0320ABX-FDXI Revision Fix Status 1. P-Port SRAM mode fails if OE and CE are not asserted simultaneously. [X] A – 1. P-Port SRAM mode fails if OE and CE are not asserted simultaneously ■ Problem Definition When Arroyo is configured to use SRAM for P-port interface, OE should be asserted simultaneously with CE. If this is not possible, OE should be asserted prior to CE. ■ Parameters Affected Data can be dropped when external processor reads the Arroyo through SRAM interface. ■ Trigger Condition(S) When Arroyo P-port is configured in SRAM mode and if OE and CE don’t happen at the same time. ■ Scope of Impact NIL ■ Workaround The workaround available at this time include asserting OE and CE at the same time and asserting OE prior to CE. ■ Fix Status NIL. Document Number: 001-57458 Rev. *H Page 50 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Errata This section describes the errata for West Bridge Arroyo USB and Mass Storage Peripheral Controller, CYWB0321ABX-FDXI. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions. Part Numbers Affected Part Number Package Type Operating Range CYWB0321ABX-FDXI 81-pin WLCSP Industrial Arroyo Qualification Status Product Status: In Production Arroyo Errata Summary The following table defines the errata applicability to available Arroyo family devices. An “X” indicates that the erratum pertains to the selected device. Items CYWB0321ABX-FDXI Revision Fix Status [X] A Fixed in SDK in version 1.0 or later 1. P-Port PSPI mode fails U-Port to P-Port transfer after wake up from STANDBY mode. 1. P-Port PSPI mode fails U-Port to P-Port transfer after wake up from STANDBY mode ■ Problem Definition When Arroyo is configured to use SPI for Processor-Port (P-Port) interface, transfers from U-Port to P-Port may intermittently fail after wakeup from STANDBY mode. ■ Parameters Affected Intermittent failure in U-Port to P-Port transfer after wakeup from STANDBY. ■ Trigger Condition(S) The condition occurs when Arroyo is configured for PSPI mode and wakes up from STANDBY mode. ■ Scope of Impact When Arroyo is configured to use SPI for Processor-Port (P-Port) interface, transfers from U-Port to P-Port may intermittently fail after wakeup from STANDBY mode. ■ Workaround SDK version 1.0 or later provides the software workaround for this issue. The workaround requires using version 1.0 or later of the SDK for the system software development. The workaround fixes the intermittent failure as described in Problem Definition. However, the workaround cause wakeup time (from STANDBY mode) to increase. This duration increase depends upon the system configuration as listed in the following table: Arroyo System Configuration Additional Wakeup Time (from STANDBY mode) Using external crystal 5 ms Using external oscillator 1 ms Firmware image is loaded from EEPROM (through I2C™) > 250 ms depending on the firmware image size and the I2C frequency This errata only affects Arroyo when the P-Port is configured for SPI mode. ■ Fix Status Fixed in SDK version 1.0 or later. Document Number: 001-57458 Rev. *H Page 51 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Document History Page Document Title: CYWB0320ABX-FDXI/CYWB0321ABX-FDXI, West Bridge®: Arroyo USB and Mass Storage Peripheral Controller Document Number: 001-57458 Revision ECN Orig. of Change Submission Date ** 2846580 SHIN / AESA 01/12/2010 New data sheet. *A 2902575 STVC 03/31/2010 Updated Pin Assignments (Updated Table 4). Updated AC Timing Parameters (Added PCRAM Non Multiplexing Asynchronous Mode subsection). Changed status from Advance to Final. Updated links in Sales, Solutions, and Legal Information. *B 3207801 ANOP 03/28/2011 Updated Pin Assignments (In Table 4, changed R/B# from ‘I’ to ‘O’ in the ‘I/O' column corresponding to ‘PNAND’, changed ‘A7 or SDA’ to ‘A6 or SDA’ in the ‘Pin Description’ column corresponding to Ball H1, changed ‘A6 or SCL’ to ‘A5 or SCL’ in the ‘Pin Description’ column corresponding to Ball F2, changed SD_CLK from ‘I/O’ to ‘O’ in the ‘I/O' column corresponding to 'S-Port Interface’.). *C 3499405 RSKV 01/17/2012 Updated title to read as “CYWB0320ABX-FDXI/CYWB0321ABX-FDXI, West Bridge®: Arroyo USB and Mass Storage Peripheral Controller”. Updated Features. Updated Functional Overview (Updated the subsection Processor Interface (P-Port) (description), updated the subsection Clocking (description, updated Table 1 and added Table 2). Updated Pin Assignments (Updated Table 4 and added Table 5, updated caption of Figure 3 and added Figure 4). Updated AC Timing Parameters (Added Table 12 and Figure 37). Added Ordering Information. Replaced Arroyo-II with Arroyo across the document. Updated to new template. *D 3539329 RSKV 03/01/2012 Removed the tag “Company Confidential” from the header. Revised package diagram spec. Moving to external web. *E 3878676 RSKV 01/21/2013 No technical updates. Completing Sunset Review. *F 3978102 RSKV 04/22/2013 Added Acronyms and Units of Measure. Added Errata. Added Errata. *G 4072903 RSKV 07/22/2013 Added Errata footnotes (Note 1, 2, 10). Description of Change Updated Pin Assignments: Added Note 1 and referred the same note in “SRAM Interface” column in Table 4. Added Note 2 and referred the same note in “SPI” column in Table 5. Updated AC Timing Parameters: Updated P Port Interface: Updated Asynchronous SRAM Mode Timing Parameters: Added Note 10 and referred the same note in Figure 12. Updated to new template. Document Number: 001-57458 Rev. *H Page 52 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Document History Page (continued) Document Title: CYWB0320ABX-FDXI/CYWB0321ABX-FDXI, West Bridge®: Arroyo USB and Mass Storage Peripheral Controller Document Number: 001-57458 Revision ECN Orig. of Change Submission Date Description of Change *H 4583918 GAYA 12/01/2014 Updated Features: Replaced “Supports I2C Boot and Processor Boot” with “Supports USB Boot, I2C Boot and Processor Boot”. Updated Ordering Information: Updated part numbers. Included a column “Status” and added details in that column. Completing Sunset Review. Document Number: 001-57458 Rev. *H Page 53 of 54 CYWB0320ABX-FDXI CYWB0321ABX-FDXI Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Automotive Clocks & Buffers Interface Lighting & Power Control cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/memory cypress.com/go/psoc psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/go/support cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless © Cypress Semiconductor Corporation, 2010-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-57458 Rev. *H Revised December 1, 2014 Page 54 of 54 West Bridge is the registered trademark and Astoria, Antioch, and SLIM are trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.