INTEGRATED CIRCUITS DATA SHEET TEA6300 TEA6300T Sound fader control circuit Product specification File under Integrated Circuits, IC01 May 1990 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit GENERAL DESCRIPTION The Sound Fader Control circuit (SOFAC) is an I2C-bus controlled preamplifier for car radios. Features • Source selector for three stereo inputs • Inputs and outputs for noise reduction circuits • Volume and balance control; control range of 86 dB in steps of 2 dB • Bass and treble control from + 15 dB (treble 12 dB) to −12 dB in steps of 3 dB • Fader control from 0 dB to −30 dB in steps of 2 dB • Fast muting • Low noise suitable for DOLBY* B and C NR (noise reduction) • Signal handling suitable for compact disc • I2C-bus control for all functions • ESD protected QUICK REFERENCE DATA SYMBOL PARAMETER MIN. TYP. MAX. UNIT VCC Supply voltage 7,0 8,5 13,2 V Vi(rms) Input sensitivity for full power at the output stage − 50 − mV Vi(rms) Input signal handling − 1,65 − V fr Frequency response 35 − 20 000 Hz αCS Channel separation; f = 250 Hz to 10 kHz 70 92 − dB THD Total harmonic distortion − 0,05 − % (S+N)/N Signal plus noise-to-noise ratio − 80 − dB Tamb Operating ambient temperature range −40 − + 85 °C * Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Francisco, California (U.S.A.). PACKAGE OUTLINES 28-lead dual in-line; plastic (SOT117); SOT117-1; 1996 August 15. 28-lead mini-pack; plastic (SO28; SOT136A); SOT136-1; 1996 August 15. May 1990 2 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... Philips Semiconductors Sound fader control circuit May 1990 3 Product specification TEA6300 TEA6300T Fig.1 Block diagram. Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit PINNING serial data input/output (I2C-bus) 1 SDA 2 GNDB ground for I2C-bus terminals 3 QLR output left rear 4 QLF output left front 5 TL treble control capacitor; left channel 6 BL1 bass control capacitor; left channel 7 BL0 bass control capacitor; left channel 8 INLA input left source A 9 i.c. internally connected 10 INLB input left source B 11 ELFI electronic filtering for supply 12 INLC input left source C 13 QSL output source selector left 14 INL input left control part 15 INR input right control part 16 QSR output source selector right 17 INRC input right source C 18 GND ground 19 INRB input right source B 20 Vref reference voltage (1/2 VCC) 21 INRA input right source A 22 BRO bass control capacitor; right channel 23 BR1 bass control capacitor; right channel 24 TR treble control capacitor; right channel 25 QRF output right front 26 QRR output right rear 27 VCC supply voltage 28 SCL serial clock input (I2 C-bus) May 1990 Fig.2 Pinning diagram. 4 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit FUNCTIONAL DESCRIPTION The source selector selects three stereo channels −RF part (AM/FM), recorder and compact disc. As the outputs of the source selector and the inputs of the main control part are available, additional circuits such as compander and equalizer systems may be inserted into the signal path. The AC signal setting is performed by resistor chains in combination with multi-input operational amplifiers. The advantage of this principle is the combination of low noise, low distortion and a high dynamic range for the circuit. The separate volume controls of the left and the right channel facilitate correct balance control. The range and balance control is software programmable. Because the TEA6300 has four outputs a low-level fader is included. The fader control is independent of the volume control and an extra mute position is built in for the front, the rear or for all channels. The last function may be used for muting during preset selection. An extra pop suppression circuit is built in for pop-free switching on and off. As all switching and control functions are controllable via the two-wire I2C-bus, no external interface between the microcomputer and the TEA6300 is required. The on-chip power-on-reset sets the TEA6300 to the general mute mode. RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) SYMBOL PARAMETER MIN. MAX. UNIT VCC Supply voltage (pin 27-18) − 16 V Ptot Maximum power dissipation − 1 W Tstg Storage temperature range −55 +150 °C Tamb Operating ambient temperature range −40 + 85 °C May 1990 5 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit CHARACTERISTICS VCC = 8,5 V; RS = 600 Ω; RL = 10 kΩ; f = 1 kHz; Tamb = 25 °C; test circuit Fig.10; unless otherwise specified SYMBOL PARAMETER MIN. VCC Supply voltage 7,0 TYP. MAX. UNIT 8,5 13,2 V ICC Supply current − 26 − mA ICC Supply current at 8,5 V − − 33 mA ICC Supply current at 13,2 V − − 44 mA 0,45 0,5 0,55 VCC − 4,25 − V 19 20 21 dB DC voltage VDC inputs, outputs and reference Internal reference voltage (pin 20) VREF Vref = 0,5 VCC Maximum voltage gain Gv bass and treble linear, fader off Output voltage level Vo(rms) for Pmax at the output stage − 500 − mV Vo(rms) for start of clipping − 1000 − mV − 50 − mV 35 − 20 000 Hz 70 92 − dB Input sensitivity Vi(rms) at Vo = 500 mV Frequency response bass and treble linear; roll-off fr frequency −1 dB Channel separation Gv = 0 dB; bass and treble linear; αCS frequency range 250 Hz to 10 kHz Total harmonic distortion frequency range 20 Hz to 12,5 kHz THD Vi = 50 mV; Gv = 20 dB − 0,1 0,3 % THD Vi = 500 mV; Gv = 0 dB − 0,05 0,2 % THD Vi = 1,6 V; Gv = −10 dB − 0,2 0,5 % Ripple rejection Vr(rms) < 200 mV; Gv = 0 dB; bass and treble linear; RR100 at f = 100 Hz − 70 − dB RRrange at f = 40 Hz to 12,5 kHz − 60 − dB May 1990 6 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit SYMBOL PARAMETER MIN. TYP. MAX. UNIT Signal plus noise-to-noise ratio bass and treble linear; notes 1 and 2 CCIR 468-2 weighted; quasi peak (S + N)/N Vi = 50 mV; Vo = 46 mV; Po = 50 mW − 65 − dB (S + N)/N Vi = 500 mV; Vo = 45 mV; Po = 50 mW − 67 − dB (S + N)/N Vi = 50 mV; Vo = 200 mV; Po = 1 W 65 70 − dB (S + N)/N Vi = 500 mV; Vo = 200 mV; Po = 1 W 65 78 − dB (S + N)/N Vi = 50 mV; Vo = 500 mV; Po = 6 W − 70 − dB Vi = 500 mV; Vo = 500 mV; Po = 6 W − 85 − dB − − 10 nW − 110 − dB (S + N)/N Noise output power mute position, only contribution of Pno TEA6300; power amplifier for 25 W Crosstalk (20 log Vbus(p-p)/Vo(rms)) between bus inputs and signal outputs αB GV = 0 dB; bass and treble linear Source selector Zi Input impedance 20 30 40 kΩ Zo Output impedance − − 100 Ω RL Output load resistance 10 − − kΩ CL Output load capacity 0 − 200 pF − 80 − dB − 0 − dB − 1 − Input isolation not selected source; frequency range αS 40 Hz to 12,5 kHz Voltage gain Gv Vb int/Vref RL ≥ 10 kΩ Internal bias voltage ratio Maximum input voltage level (RMS value) Vi(rms) THD < 0,5% − 1,65 − V Vi(rms) THD < 0,5%; VCC = 7,5 V − 1,5 − V − − 0,1 % − 9 20 µV − − 10 mV Total harmonic distortion THD Vi = 500 mV; RL = 10 kΩ Noise output voltage Vno weighted CCIR 468-2, quasi peak DC offset voltage Vo May 1990 between any inputs 7 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit SYMBOL PARAMETER MIN. TYP. MAX. UNIT Control part Source selector disconnected, source resistance 600 Ω Zi Input impedance 35 50 Zo Output impedance − RL Output load resistance 5 CL Output load capacity 65 kΩ 100 150 Ω − − kΩ 0 − 2500 pF − 2,0 − V Maximum input voltage THD < 0,5%; Gv = −10 dB; Vi(rms) bass and treble linear Noise output voltage weighted acc CCIR 468-2, quasi-peak, bass and treble linear, fader off Vno Gv = 20 dB − 110 220 µV Vno Gv = 0 dB − 25 50 µV Vno Gv = −66 dB − 19 38 µV Vno mute position − 11 22 µV Continuous control range − 86 − dB Step resolution − 2 − dB − − 2 dB − − 3 dB − − 2 dB 72 90 − dB Gv = 0 to −66 dB − 0,2 10 mV Gv = 20 to 0 dB − 2 15 mV − − 10 mV − − 20 mV Volume control Gc Attenuator set error ∆Ga (Gv = + 20 to −50 dB) Attenuator set error ∆Ga (Gv = + 20 to −66 dB) Gain tracking error balance in mid position, ∆Gt αm bass and treble linear Mute attenuation DC step offset Between any adjoining step and any step to mute In any treble and fader position Gv = 0 to −66 dB In any bass position Gv = 0 to −66 dB May 1990 8 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit SYMBOL PARAMETER MIN. TYP. MAX. UNIT Bass control Bass control range Gb f = 40 Hz; maximum boost 14 15 16 dB Gb f = 40 Hz; maximum attenuation 11 12 13 dB Step resolution − 3 − dB Step error − − 0,5 dB Treble control Treble control range Gt f = 15 kHz; maximum boost 11 12 13 dB Gt f = 15 kHz; maximum attenuation 11 12 13 dB Gt f > 15 kHz; maximum boost − − 15 dB Step resolution − 3 − dB Step error − − 0,5 dB − 30 − dB Step resolution − 2 − dB Attenuator set error − − 1,5 dB Mute attenuation 74 84 − dB Fader control Continuous attenuation Gf αm fader control range Digital part Bus terminals Input voltage VIH HIGH 3 − 12 V VIL LOW −0,3 − + 1,5 V Input current IIH HIGH −10 − +10 µA IIL LOW −10 − +10 µA − − 0,4 V start of reset − − 2,5 V end of reset 5,2 6,0 6,8 V 4,2 5,0 5,8 V VOL Output voltage LOW; IL = 3 mA AC characteristics In accordance with the I2C-bus specification Power-on-Reset When RESET is active the GMU (general mute) bit is set and the I2C-bus receiver is in RESET position Increasing supply voltage VCC VCC VCC Decreasing supply voltage; start of reset Notes to the characteristics 1. The indicated values for output power assume a 6 W power amplifier with 20 dB gain, connected to the output of the May 1990 9 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit circuit. Signal-to-noise ratios exclude noise contribution of the power amplifier. 2. Signal-to-noise ratios on a CCIR 468-2 average meter reading are 4,5 dB better than on CCIR 468-2 quasi peak. I2C-BUS FORMAT S SLAVE ADDRESS S = A SUBADDRESS A DATA A P start condition SUBADDRESS = see Table 1 SLAVE ADDRESS = 1000 0000 DATA = see Table 1 A = acknowledge, generated by the slave P = STOP condition If more than 1 byte of DATA is transmitted, then auto-increment of the subaddress is performed. Table 1 I2C-bus; subaddress/data DATA FUNCTION SUBADDRESS D7 D6 D5 D4 D3 D2 D1 D0 volume left 00000000 X X VL5 VL4 VL3 VL2 VL1 VL0 volume right 00000001 X X VR5 VR4 VR3 VR2 VR1 VR0 bass 00000010 X X X X BA3 BA2 BA1 BA0 treble 00000011 X X X X TR3 TR2 TR1 TR0 fader 00000100 X X MFN FCH FA3 FA2 FA1 FA0 switch 00000101 GMU X X X X SCC SCB SCA Function of the bits: VL0 to VL5 volume control left VR0 to VR5 volume control right BA0 to BA3 bass control TR0 to TR3 treble control FA0 to FA3 fader control FCH select fader channel (front or rear) MFN mute control of the selected fader channel (front or rear) SCA to SCC source selector control GMU mute control (general mute) for the outputs QLF, QLR, QRF and QRR X May 1990 don't care bits (logic 1 during testing) 10 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Table 2 Bass setting Table 3 GV DB DATA Treble setting GV BA3 BA2 BA1 BA0 +15 1 1 1 1 +15 1 1 1 +15 1 1 0 DB DATA TR3 TR2 TR1 TR0 +12 1 1 1 1 0 +12 1 1 1 0 1 +12 1 1 0 1 +12 1 1 0 0 +15 1 1 0 0 +12 1 0 1 1 +12 1 0 1 1 + 9 1 0 1 0 + 9 1 0 1 0 + 6 1 0 0 1 + 6 1 0 0 1 + 3 1 0 0 0 + 3 1 0 0 0 0 0 1 1 1 0 0 1 1 1 − 3 0 1 1 0 − 3 0 1 1 0 − 6 0 1 0 1 − 6 0 1 0 1 − 9 0 1 0 0 − 9 0 1 0 0 −12 0 0 1 1 −12 0 0 1 1 −12 0 0 1 0 −12 0 0 1 0 −12 0 0 0 1 −12 0 0 0 1 −12 0 0 0 0 −12 0 0 0 0 May 1990 11 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Table 4 Volume setting LEFT GV DB DATA GV VL5 VL4 VL3 VL2 VL1 VL0 20 1 1 1 1 1 1 18 1 1 1 1 1 16 1 1 1 1 0 14 1 1 1 1 12 1 1 1 10 1 1 1 8 1 1 1 DB DATA VL5 VL4 VL3 VL2 VL1 VL0 −30 1 0 0 1 1 0 0 −32 1 0 0 1 0 1 1 −34 1 0 0 1 0 0 0 0 −36 1 0 0 0 1 1 0 1 1 −38 1 0 0 0 1 0 0 1 0 −40 1 0 0 0 0 1 0 0 1 −42 1 0 0 0 0 0 6 1 1 1 0 0 0 −44 0 1 1 1 1 1 4 1 1 0 1 1 1 −46 0 1 1 1 1 0 2 1 1 0 1 1 0 −48 0 1 1 1 0 1 0 1 1 0 1 0 1 −50 0 1 1 1 0 0 − 2 1 1 0 1 0 0 −52 0 1 1 0 1 1 − 4 1 1 0 0 1 1 −54 0 1 1 0 1 0 − 6 1 1 0 0 1 0 −56 0 1 1 0 0 1 − 8 1 1 0 0 0 1 −58 0 1 1 0 0 0 −10 1 1 0 0 0 0 −60 0 1 0 1 1 1 −12 1 0 1 1 1 1 −62 0 1 0 1 1 0 −14 1 0 1 1 1 0 −64 0 1 0 1 0 1 −16 1 0 1 1 0 1 −66 0 1 0 1 0 0 −18 1 0 1 1 0 0 mute left 0 1 0 0 1 1 −20 1 0 1 0 1 1 mute left 0 1 0 0 1 0 −22 1 0 1 0 1 0 . . −24 1 0 1 0 0 1 . . −26 1 0 1 0 0 0 . . −28 1 0 0 1 1 1 mute left 0 0 0 May 1990 12 0 0 0 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Table 5 Volume setting RIGHT GV DB DATA GV VR5 VR4 VR3 VR2 VR1 VR0 20 1 1 1 1 1 1 18 1 1 1 1 1 16 1 1 1 1 0 14 1 1 1 1 12 1 1 1 10 1 1 1 8 1 1 6 1 4 1 2 DB DATA VR5 VR4 VR3 VR2 VR1 VR0 −30 1 0 0 1 1 0 0 −32 1 0 0 1 0 1 1 −34 1 0 0 1 0 0 0 0 −36 1 0 0 0 1 1 0 1 1 −38 1 0 0 0 1 0 0 1 0 −40 1 0 0 0 0 1 1 0 0 1 −42 1 0 0 0 0 0 1 1 0 0 0 −44 0 1 1 1 1 1 1 0 1 1 1 −46 0 1 1 1 1 0 1 1 0 1 1 0 −48 0 1 1 1 0 1 0 1 1 0 1 0 1 −50 0 1 1 1 0 0 − 2 1 1 0 1 0 0 −52 0 1 1 0 1 1 − 4 1 1 0 0 1 1 −54 0 1 1 0 1 0 − 6 1 1 0 0 1 0 −56 0 1 1 0 0 1 − 8 1 1 0 0 0 1 −58 0 1 1 0 0 0 −10 1 1 0 0 0 0 −60 0 1 0 1 1 1 −12 1 0 1 1 1 1 −62 0 1 0 1 1 0 −14 1 0 1 1 1 0 −64 0 1 0 1 0 1 −16 1 0 1 1 0 1 −66 0 1 0 1 0 0 −18 1 0 1 1 0 0 mute right 0 1 0 0 1 1 −20 1 0 1 0 1 1 mute right 0 1 0 0 1 0 −22 1 0 1 0 1 0 . . −24 1 0 1 0 0 1 . . −26 1 0 1 0 0 0 . . −28 1 0 0 1 1 1 mute right 0 0 0 May 1990 13 0 0 0 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Table 6 Fader function SETTING DATA SETTING FRONT REAR DB DB DATA FRONT REAR MFN FCH FA3 FA2 FA1 FA0 DB DB MFN FCH FA3 fader off 0 0 1 1 0 0 0 1 FA2 FA1 FA0 fader off 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 fader front fader rear − 2 0 1 1 1 1 1 0 0 −2 1 0 1 1 1 0 − 4 0 1 1 1 1 0 1 0 −4 1 0 1 1 0 1 − 6 0 1 1 1 1 0 0 0 −6 1 0 1 1 0 0 − 8 0 1 1 1 0 1 1 0 −8 1 0 1 0 1 1 −10 0 1 1 1 0 1 0 0 −10 1 0 1 0 1 0 −12 0 1 1 1 0 0 1 0 −12 1 0 1 0 0 1 −14 0 1 1 1 0 0 0 0 −14 1 0 1 0 0 0 −16 0 1 1 0 1 1 1 0 −16 1 0 0 1 1 1 −18 0 1 1 0 1 1 0 0 −18 1 0 0 1 1 0 −20 0 1 1 0 1 0 1 0 −20 1 0 0 1 0 1 −22 0 1 1 0 1 0 0 0 −22 1 0 0 1 0 0 −24 0 1 1 0 0 1 1 0 −24 1 0 0 0 1 1 −26 0 1 1 0 0 1 0 0 −26 1 0 0 0 1 0 −28 0 1 1 0 0 0 1 0 −28 1 0 0 0 0 1 −30 0 1 1 0 0 0 0 0 −30 1 0 0 0 0 0 1 0 0 −80 0 0 1 1 0 0 0 0 mute front mute rear −80 0 . . . . . . . . . . . . . . . . . . −80 0 0 −80 Table 7 0 0 1 1 1 0 1 0 0 0 Selected inputs Table 8 DATA 0 0 1 0 Mute control MUTE DATA CONTROL GMU SELECTED INPUTS REMARKS SCC SCB SCA data not allowed 1 1 1 data not allowed 1 1 0 data not allowed 1 0 1 INLC, INRC 1 0 0 data not allowed 0 1 1 INLB, INRB 0 1 0 INLA, INRA 0 0 1 data not allowed 0 0 0 May 1990 active 1 outputs QLF, QLR QRF and QRR are muted passive 14 0 no general mute Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Fig.3 Bass control without T-pass filter. Fig.4 Bass control with T-pass filter. Pin numbers in parentheses refer to the bass control, right channel. Fig.5 T-pass filter. May 1990 15 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Fig.6 Treble control. Fig.7 Output noise voltage (CCIR 468-2 weighted: quasi peak). May 1990 16 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Fig.8 Signal-to-noise ratio (CCIT 468-2 weighted; quasi peak) with a 6 W power amplifier (gain 20 dB) without noise contribution of the power amplifier (see Fig.9). Fig.9 Recommended level diagram; Vi min = 50 mV, Vo = 500 mV for Pmax. May 1990 17 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit APPLICATION INFORMATION Fig.10 Test and application circuit. May 1990 18 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit PACKAGE OUTLINES seating plane handbook, full pagewidthdual in-line package; 28 leads (600 mil) DIP28: plastic SOT117-1 ME D A2 L A A1 c e Z w M b1 (e 1) b MH 15 28 pin 1 index E 1 14 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 min. A2 max. b b1 c D (1) E (1) e e1 L ME MH w Z (1) max. mm 5.1 0.51 4.0 1.7 1.3 0.53 0.38 0.32 0.23 36.0 35.0 14.1 13.7 2.54 15.24 3.9 3.4 15.80 15.24 17.15 15.90 0.25 1.7 inches 0.20 0.020 0.16 0.066 0.051 0.020 0.014 0.013 0.009 1.41 1.34 0.56 0.54 0.10 0.60 0.15 0.13 0.62 0.60 0.68 0.63 0.01 0.067 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT117-1 051G05 MO-015AH May 1990 EIAJ EUROPEAN PROJECTION ISSUE DATE 92-11-17 95-01-14 19 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit SO28: plastic small outline package; 28 leads; body width 7.5 mm SOT136-1 D E A X c y HE v M A Z 15 28 Q A2 A (A 3) A1 pin 1 index θ Lp L 1 14 e bp 0 detail X w M 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y mm 2.65 0.30 0.10 2.45 2.25 0.25 0.49 0.36 0.32 0.23 18.1 17.7 7.6 7.4 1.27 10.65 10.00 1.4 1.1 0.4 1.1 1.0 0.25 0.25 0.1 0.10 0.012 0.096 0.004 0.089 0.01 0.019 0.013 0.014 0.009 0.71 0.69 0.30 0.29 0.419 0.043 0.050 0.055 0.394 0.016 inches 0.043 0.039 0.01 0.01 Z (1) 0.9 0.4 0.035 0.004 0.016 θ Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT136-1 075E06 MS-013AE May 1990 EIAJ EUROPEAN PROJECTION ISSUE DATE 95-01-24 97-05-22 20 o 8 0o Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. SOLDERING Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. WAVE SOLDERING This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). Wave soldering techniques can be used for all SO packages if the following conditions are observed: • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. DIP SOLDERING BY DIPPING OR BY WAVE • The longitudinal axis of the package footprint must be parallel to the solder flow. The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. • The package footprint must incorporate solder thieves at the downstream end. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. REPAIRING SOLDERED JOINTS A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds. REPAIRING SOLDERED JOINTS Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. SO REFLOW SOLDERING Reflow soldering techniques are suitable for all SO packages. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. May 1990 21 Philips Semiconductors Product specification TEA6300 TEA6300T Sound fader control circuit DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. May 1990 22