PHILIPS TEA6324T

INTEGRATED CIRCUITS
DATA SHEET
TEA6324T
Sound control circuit
Preliminary specification
File under Integrated Circuits, IC01
1997 Mar 13
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
FEATURES
• Source selector for two stereo and one mono inputs
• Interface for noise reduction circuits
• Interface for external equalizer
• Volume and balance control
• Bass control with equalizer filters
GENERAL DESCRIPTION
• Treble control
The sound control circuit TEA6324T is an I2C-bus
controlled stereo preamplifier for car radio hi-fi sound
applications.
• Mute control at audio signal zero crossing
• Fast mute control via I2C-bus
• Fast mute control via pin
• I2C-bus control for all functions
• Power supply with internal power-on reset.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage
ICC
supply current
VCC = 8.5 V
Vo(rms)
maximum output voltage level
VCC = 8.5 V; THD ≤ 0.1%
−
2000
−
mV
Gv
voltage gain
−86
−
+20
dB
Gstep(vol)
step resolution (volume)
−
1
−
dB
Gbass
bass control
−18
−
+18
dB
Gtreble
treble control
−12
−
+12
dB
Gstep(treble)
step resolution (treble)
−
1.5
−
dB
(S+N)/N
signal-plus-noise to noise ratio
Vo = 2.0 V; Gv = 0 dB;
unweighted
−
105
−
dB
RR100
ripple rejection
Vr(rms) < 200 mV; f = 100 Hz;
Gv = 0 dB
−
75
−
dB
αcs
channel separation
250 Hz ≤ f ≤ 10 kHz; Gv = 0 dB
90
96
−
dB
7.5
8.5
9.5
V
−
26
−
mA
ORDERING INFORMATION
TYPE
NUMBER
TEA6324T
1997 Mar 13
PACKAGE
NAME
SO24
DESCRIPTION
plastic small outline package; 24 leads; body width 7.5 mm
2
VERSION
SOT137-1
1997 Mar 13
3
input
right
source
input
mono
source
input
left
source
GND
CKIN
5 × 220 nF
47 µF
13
14
10
11
12
15
2
23
Vref 16
POWER
SUPPLY
17
7
18
VOLUME I
RIGHT
+20 to −31 dB
VOLUME I
LEFT
+20 to −31 dB
CKVL 220 nF
SOURCE
SELECTOR
8
220 nF
BASS
RIGHT
±18 dB
20
5.6 nF
21
TREBLE
RIGHT
±12 dB
TREBLE
LEFT
±12 dB
4
5.6 nF
MUTE
FUNCTION
ZERO CROSS
DETECTOR
9
Cm
10 nF
22
1
24
3
MGK105
VOLUME II
0 to −55 dB
BALANCE
OUTPUT RIGHT
I2C-BUS
RECEIVER
VOLUME II
0 to −55 dB
BALANCE
OUTPUT LEFT
TEA6324T
SDA
SCL
MUTE
Sound control circuit
Fig.1 Block diagram.
3.4 kΩ
270 nF 270 nF
19
5
LOGIC
BASS
LEFT
±18 dB
6
270 nF 270 nF
handbook, full pagewidth
VCC
100 µF
CKVL
3.4 kΩ
Philips Semiconductors
Preliminary specification
TEA6324T
BLOCK DIAGRAM
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
PINNING
SYMBOL
PIN
DESCRIPTION
SDA
1
serial data input/output (I2C-bus)
GND
2
ground
OUTL
3
output left
TL
4
treble control capacitor left channel
or input from an external equalizer
B2L
5
bass control left channel or output to
an external equalizer
B1L
6
bass control, left channel
B1L 6
IVL
7
input volume I, left control part
IVL 7
18 IVR
QSL
8
output source selector, left channel
QSL 8
17 QSR
MUTE
9
mute control
IMO
10
input mono source
IBL
11
input B left source
IAL
12
input A left source
IAR
13
input A right source
IBR
14
input B right source
CAP
15
electronic filtering for supply
Vref
16
reference voltage (0.5VCC)
QSR
17
output source selector right channel
IVR
18
input volume I, right control part
B1R
19
bass control right channel
B2R
20
bass control right channel or output
to an external equalizer
TR
21
treble control capacitor right channel
or input from an external equalizer
OUTR
22
output right
VCC
23
supply voltage
SCL
24
serial clock input (I2C-bus)
1997 Mar 13
handbook, halfpage
SDA 1
24 SCL
GND 2
23 VCC
OUTL 3
22 OUTR
TL 4
21 TR
B2L 5
20 B2R
19 B1R
TEA6324T
MUTE 9
16 Vref
IMO 10
15 CAP
IBL 11
14 IBR
IAL 12
13 IAR
MGK104
Fig.2 Pin configuration.
4
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
3. Fast mute via I2C-bus either by general mute (GMU,
see Tables 2 and 8) or volume II block setting
(see Table 4).
FUNCTIONAL DESCRIPTION
The source selector selects one of 2 stereo inputs or the
mono input. The maximum input signal voltage is
Vi(rms) = 2 V. The outputs of the source selector and the
inputs of the following volume control parts are available at
pins 7 and 8 for the left channel and pins 17 and 18 for the
right channel. This offers the possibility of interfacing a
noise reduction system.
The mute function is performed immediately if ZCM is
cleared (ZCM = 0). If the bit is set (ZCM = 1) the mute is
activated after changing the GMU bit. The actual mute
switching is delayed until the next zero crossing of the
audio frequency signal. Two comparators are built-in to
provide independent mute switches to control each of the
audio channels (left and right).
The volume control function is split into two sections:
volume I control block and volume II control block.
To avoid a large delay of mute switching when very low
frequencies are processed, the maximum delay time is
limited to typically 100 ms by an integrated timing circuit
and an external capacitor (Cm = 10 nF, see Fig.9). This
timing circuit is triggered by reception of a new data word
for the switch function which includes the GMU bit. After a
discharge and charge period of an external capacitor the
muting switch follows the GMU bit, only if no zero crossing
was detected during that time.
The control range of volume I is between +20 dB and
−31 dB in steps of 1 dB. The volume II control range is
between 0 dB and −55 dB in steps of 1 dB.
The recommended control range to be used is 86 dB
(+20 to −66 dB) although in theory, a range of 106 dB
(+20 to −86 dB) can be attained. The gain/attenuation
setting of the volume I control block is common for both
channels.
The volume I control block is followed by the bass control
block. The frequency response of the bass control (see
Fig.3) is provided for each channel by an external filter in
combination with internal resistors. The adjustable range
is between −18 and +18 dB in steps of 1.8 dB at 46 Hz.
The mute function can also be controlled externally (see
Fig.9). If the mute pin is switched to ground all outputs are
muted immediately (hardware mute). This mute request
overwrites all mute controls via the I2C-bus for the time the
pin is held LOW. The hardware mute position is not stored
in the TEA6324T.
The treble control block offers a control range between
−12 and +12 dB in steps of 1.5 dB at 15 kHz. The filter
characteristic is determined by a single capacitor of 5.6 nF
for each channel in combination with internal resistors
(see Fig.4).
Typically, the turn on/off can be used to avoid AF output.
This can be caused by the input signal from preceding
stages, which may produce output during a drop of VCC.
To avoid this, the mute must be set prior to a VCC drop and
can be achieved either by I2C-bus control, or by grounding
the MUTE pin.
The basic step width of treble control is 3 dB.
The intermediate steps are obtained by switching 1.5 dB
boost and 1.5 dB attenuation steps.
In cases where there is no mute in the application before
turn off, a supply voltage drop of more than 1 × VBE will
result in a mute during the voltage drop.
The bass and treble control functions can be switched off
via I2C-bus. In this event the internal signal flow is
disconnected. The connections B2L and B2R are outputs
and TL and TR are inputs for inserting an external
equalizer.
The power supply should include a VCC buffer capacitor,
which provides a discharging time constant. If the input
signal does not disappear after turn off the input will
become audible after a certain time. A 4.7 kΩ resistor
discharges the VCC buffer capacitor, because the internal
current of the IC does not discharge it completely.
The last section of the circuit is the volume II block.
The balance function uses the same control block. This is
achieved by 2 independently controllable attenuators, one
for each output. The control range of these attenuators is
55 dB in steps of 1 dB with an additional mute step.
The hardware mute function is ideal for use in Radio Data
System (RDS) applications. The zero crossing mute
avoids modulation plops. This feature is an advantage for
mute during changing presets and/or sources (e.g. traffic
announcement during cassette playback).
The circuit provides 3 mute modes:
1. Zero crossing mode mute via I2C-bus using
2 independent zero crossing detectors (ZCM,
see Tables 2 and 8 and Fig.15)
2. Fast mute via MUTE pin (see Fig.9)
1997 Mar 13
5
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCC
supply voltage
0
10
V
Vn
voltage at all pins relative to pin 2
0
VCC
V
Tamb
operating ambient temperature
−40
+85
°C
Tstg
storage temperature
−65
+150
°C
Ves
electrostatic handling
−
−
note 1
Note
1. Human body model: C = 100 pF; R = 1.5 kΩ; V ≥ 2 kV. Machine model: C = 200 pF; R = 0 Ω; V ≥ 500 V.
1997 Mar 13
6
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
CHARACTERISTICS
VCC = 8.5 V; RS = 600 Ω; RL = 10 kΩ; CL = 2.5 nF; AC coupled; f = 1 kHz; Tamb = 25 °C; gain control Gv = 0 dB; bass
linear; treble linear; balance in mid position; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage
7.5
8.5
9.5
V
ICC
supply current
−
26
33
mA
VDC
internal DC voltage at inputs and
outputs
3.83
4.25
4.68
V
Vref
internal reference voltage at pin 16
−
4.25
−
V
Gv(max)
maximum voltage gain
19
20
21
dB
Vo(rms)
output voltage level (RMS value) for
RS = 0 Ω; RL = ∞
Pmax at the power output stage
THD ≤ 0.1%; see Fig.10
−
2000
−
mV
start of clipping
THD = 1%
2300
−
−
mV
RL = 2 kΩ; CL = 10 nF;
THD = 1%
2000
−
−
mV
−
200
−
mV
60
−
−
Hz
low frequency (−3 dB)
30
−
−
Hz
high frequency (−1 dB)
20000 −
−
Hz
Vi(rms)
input sensitivity
Vo = 2000 mV; Gv = 20 dB
fro
roll-off frequency
CKIN = 220 nF;
CKVL = 220 nF; Zi = Zi(min)
low frequency (−1 dB)
CKIN = 470 nF;
CKVL = 100 nF; Zi = Zi(typ)
low frequency (−3 dB)
17
−
−
Hz
90
96
−
dB
Vi = 100 mV; Gv = 20 dB
−
0.1
−
%
αcs
channel separation
Vi = 2 V; frequency range
250 Hz to 10 kHz
THD
total harmonic distortion
frequency range
20 Hz to 12.5 kHz
RR
(S+N)/N
ripple rejection
signal-plus-noise to noise ratio
Vi = 1 V; Gv = 0 dB
−
0.05
0.15
%
Vi = 2 V; Gv = 0 dB
−
0.1
−
%
Vi = 2 V; Gv = −10 dB
−
0.1
−
%
f = 100 Hz
70
76
−
dB
f = 40 Hz to 12.5 kHz
−
66
−
dB
−
105
−
dB
Gv = 0 dB
−
95
−
dB
Gv = 12 dB
−
88
−
dB
Gv = 20 dB
−
81
−
dB
Vr(rms) < 200 mV
unweighted;
20 Hz to 20 kHz RMS;
Vo = 2.0 V; see Figs 5 and 6
CCIR468-2 weighted; quasi
peak; Vo = 2.0 V
1997 Mar 13
7
Philips Semiconductors
Preliminary specification
Sound control circuit
SYMBOL
TEA6324T
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Pno(rms)
noise output power (RMS value) only
contribution of TEA6324T; power
amplifier for 6 W
mute position; note 1
−
−
10
nW
αct
crosstalk between bus inputs and

V bus ( p – p )
signal outputs  20 log --------------------------V o ( rms ) 

note 2
−
110
−
dB
25
35
45
kΩ
Source selector
Zi
input impedance
αS
input isolation of one selected source
to any other input
f = 1 kHz
−
105
−
dB
f = 12.5 kHz
−
95
−
dB
Vi(rms)
maximum input voltage (RMS value)
THD < 0.5%; VCC = 8.5 V
−
2.15
−
V
THD < 0.5%; VCC = 7.5 V
−
1.8
−
V
Voffset
DC offset voltage at source selector
output by selection of any inputs
−
−
10
mV
Zo
output impedance
−
80
120
Ω
RL
output load resistance
10
−
−
kΩ
CL
output load capacity
0
−
2500
pF
Gv
voltage gain, source selector
−
0
−
dB
Control part (source selector disconnected; source resistance 600 Ω)
Zi
input impedance volume input
100
150
200
kΩ
Zo
output impedance
−
80
120
Ω
RL
output load resistance
2
−
−
kΩ
CL
output load capacity
0
−
10
nF
RDCL
DC load resistance at output to ground
4.7
−
−
kΩ
Vi(rms)
maximum input voltage (RMS value)
THD < 0.5%
−
2.15
−
V
Vn(o)
noise output voltage
CCIR468-2 weighted; quasi
peak
Gv = 20 dB
−
110
220
µV
Gv = 0 dB
−
33
50
µV
Gv = −66 dB
−
13
22
µV
mute position
−
10
−
µV
total continuous control range
−
106
−
dB
recommended control range
−
86
−
dB
CRtot
Gstep
step resolution
−
1
−
dB
step error between any adjoining step
−
−
0.5
dB
Gv = +20 to −50 dB
−
−
2
dB
∆Ga
attenuator set error
Gv = −51 to −66 dB
−
−
3
dB
∆Gt
gain tracking error
Gv = +20 to −50 dB
−
−
2
dB
αmute
mute attenuation
see Fig.9
100
110
−
dB
1997 Mar 13
8
Philips Semiconductors
Preliminary specification
Sound control circuit
SYMBOL
Voffset
TEA6324T
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
DC step offset between any adjoining
step
Gv = 0 to −66 dB
−
0.2
10
mV
Gv = 20 to 0 dB
−
2
15
mV
DC step offset between any step to
mute
Gv = 0 to −66 dB
−
−
10
mV
Volume I control
−
51
−
dB
Gv
voltage gain
−31
−
+20
dB
Gstep
step resolution
−
1
−
dB
CRtot(vol)1 continuous volume control range
Bass control
Gbass
Gstep
Voffset
bass control, maximum boost
f = 46 Hz
16
18
19
dB
maximum attenuation
f = 46 Hz
16
18
19
dB
step resolution (toggle switching)
f = 46 Hz
−
1.8
−
dB
step error between any adjoining step
f = 46 Hz
−
−
0.5
dB
−
−
25
mV
DC step offset in any bass position
Treble control
Gtreble
Gstep
Voffset
treble control, maximum boost
f = 15 kHz
11
12
13
dB
maximum attenuation
f = 15 kHz
11
12
13
dB
maximum boost
f > 15 kHz
−
−
15
dB
step resolution (toggle switching)
f = 15 kHz
−
1.5
−
dB
step error between any adjoining step
f = 15 kHz
−
−
0.5
dB
−
−
10
mV
53.5
55
56.5
dB
step resolution
−
1
2
dB
attenuation set error
−
−
1.5
dB
−
1.45
−
V
−
−
1.0
V
−300
−
−
µA
DC step offset in any treble position
Volume II and balance control
CRtot(vol)2 continuous attenuation of volume
control range
Gstep
Mute function (see Fig.9)
HARDWARE MUTE
Vsw
mute switch level (2 × VBE)
mute active
VswLOW
input level
Ii
input current
VswLOW = 1 V
mute passive: level internally defined
VswHIGH
saturation voltage
−
−
VCC
V
td(mute)
delay until mute passive
−
−
0.5
ms
ZERO CROSSING MUTE
Idch
discharge current
0.3
0.6
1.2
µA
Ich
charge current
−300
−150
−
µA
VswDEL
delay switch level (3 × VBE)
−
2.2
−
V
1997 Mar 13
9
Philips Semiconductors
Preliminary specification
Sound control circuit
SYMBOL
PARAMETER
td
delay time
V(w)
window for audio signal zero crossing
detection
TEA6324T
CONDITIONS
Cm = 10 nF
MIN.
TYP.
MAX.
UNIT
−
100
−
ms
−
30
40
mV
−
V23 − 0.7 −
Muting at power supply drop
VCCdrop
supply drop for mute active
V
Power-on reset when reset is active the GMU-bit (general mute) is set and the I2C-bus receiver is in reset
position
VCC
increasing supply voltage start of reset
−
−
2.5
V
end of reset
5.2
6.5
7.2
V
decreasing supply voltage start of
reset
4.2
5.5
6.2
V
Digital part (I2C-bus pins); note 3
VIH
HIGH-level input voltage
3
−
9.5
V
VIL
LOW-level input voltage
−0.3
−
+1.5
V
IIH
HIGH-level input current
−10
−
+10
µA
IIL
LOW-level input current
−10
−
+10
µA
VOL
LOW-level output voltage
−
−
0.4
V
IL = 3 mA
Notes to the characteristics
1. The indicated values for output power assume a 6 W power amplifier at 4 Ω with 20 dB gain and a fixed attenuator
of 12 dB in front of it. Signal-to-noise ratios exclude noise contribution of the power amplifier.
2. The transmission contains: total initialization with MAD and subaddress for volume and 8 data words, see also
definition of characteristics, clock frequency = 50 kHz, repetition burst rate = 400 Hz, maximum bus signal
amplitude = 5 V (p-p).
3. The AC characteristics are in accordance with the I2C-bus specification. This specification, “The I2C-bus and how to
use it”, can be ordered using the code 9398 393 40011.
1997 Mar 13
10
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
I2C-BUS PROTOCOL
I2C-bus format
S(1)
SLAVE ADDRESS(2)
A(3)
SUBADDRESS(4)
A(3)
DATA(5)
A(3)
P(6)
Notes
1. S = START condition.
2. SLAVE ADDRESS (MAD) = 0101 0000.
3. A = acknowledge, generated by the slave.
4. SUBADDRESS (SAD), see Table 1.
5. DATA, see Table 1.
6. P = STOP condition.
Table 1
Second byte after MAD
MSB
FUNCTION
LSB
BIT
7
6
5
4
3
2(1)
1(1)
0(1)
Volume
V
0
0
0
0
0
0
0
0
Output right
OUTR
0
0
0
0
0
0
0
1
Output left
OUTL
0
0
0
0
0
0
1
0
No function
−
0
0
0
0
0
0
1
1
No function
−
0
0
0
0
0
1
0
0
Bass
BA
0
0
0
0
0
1
0
1
Treble
TR
0
0
0
0
0
1
1
0
Switch
S
0
0
0
0
0
1
1
1
Note
1. Significant subaddress.
1997 Mar 13
11
Philips Semiconductors
Preliminary specification
Sound control circuit
Table 2
TEA6324T
Definition of third byte after MAD and SAD
MSB
FUNCTION
LSB
BIT
7
6
5
4
3
2
1
0
ZCM(1)
1
V5(2)
V4(2)
V3(2)
V2(2)
V1(2)
V0(2)
Volume
V
Output right
OUTR
X(3)
X(3)
OUTR5(4) OUTR4(4) OUTR3(4) OUTR2(4) OUTR1(4) OUTR0(4)
Output left
OUTL
X(3)
X(3)
OUTL5(5)
OUTL4(5)
OUTL3(5)
OUTL2(5)
OUTL1(5)
OUTL0(5)
No function
−
X(3)
X(3)
X(3)
X(3)
X(3)
X(3)
X(3)
X(3)
No function
−
X(3)
X(3)
X(3)
X(3)
X(3)
X(3)
X(3)
X(3)
Bass
BA
X(3)
X(3)
X(3)
BA4(6)
BA3(6)
BA2(6)
BA1(6)
BA0(6)
Treble
TR
X(3)
X(3)
X(3)
TR4(7)
TR3(7)
TR2(7)
TR1(7)
TR0(7)
Switch
S
GMU(8)
X(3)
X(3)
X(3)
X(3)
SC2(9)
SC1(9)
SC0(9)
Notes
1. Zero crossing mode.
2. Volume control.
3. Don’t care bits (logic 1 during testing).
4. Output right.
5. Output left.
6. Bass control.
7. Treble control.
8. Mute control for all outputs (general mute).
9. Source selector control.
1997 Mar 13
12
Philips Semiconductors
Preliminary specification
Sound control circuit
Table 3
TEA6324T
Volume I setting
DATA
Gv
(dB)
V5
V4
V3
V2
V1
V0
+20
1
1
1
1
1
1
+19
1
1
1
1
1
0
+18
1
1
1
1
0
1
+17
1
1
1
1
0
0
+16
1
1
1
0
1
1
+15
1
1
1
0
1
0
+14
1
1
1
0
0
1
+13
1
1
1
0
0
0
+12
1
1
0
1
1
1
+11
1
1
0
1
1
0
+10
1
1
0
1
0
1
+9
1
1
0
1
0
0
+8
1
1
0
0
1
1
+7
1
1
0
0
1
0
+6
1
1
0
0
0
1
+5
1
1
0
0
0
0
+4
1
0
1
1
1
1
+3
1
0
1
1
1
0
+2
1
0
1
1
0
1
+1
1
0
1
1
0
0
0
1
0
1
0
1
1
−1
1
0
1
0
1
0
−2
1
0
1
0
0
1
−3
1
0
1
0
0
0
−4
1
0
0
1
1
1
−5
1
0
0
1
1
0
−6
1
0
0
1
0
1
−7
1
0
0
1
0
0
−8
1
0
0
0
1
1
−9
1
0
0
0
1
0
−10
1
0
0
0
0
1
−11
1
0
0
0
0
0
−12
0
1
1
1
1
1
−13
0
1
1
1
1
0
−14
0
1
1
1
0
1
−15
0
1
1
1
0
0
−16
0
1
1
0
1
1
−17
0
1
1
0
1
0
1997 Mar 13
13
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
DATA
Gv
(dB)
V5
V4
V3
V2
V1
V0
−18
0
1
1
0
0
1
−19
0
1
1
0
0
0
−20
0
1
0
1
1
1
−21
0
1
0
1
1
0
−22
0
1
0
1
0
1
−23
0
1
0
1
0
0
−24
0
1
0
0
1
1
−25
0
1
0
0
1
0
−26
0
1
0
0
0
1
−27
0
1
0
0
0
0
−28
0
0
1
1
1
1
−29
0
0
1
1
1
0
−30
0
0
1
1
0
1
−31
0
0
1
1
0
0
Repetition of steps in a range from −28 dB to −31 dB
−28
0
0
1
0
1
1
−29
0
0
1
0
1
0
−30
0
0
1
0
0
1
−31
0
0
1
0
0
0
−28
0
0
0
1
1
1
−29
0
0
0
1
1
0
−30
0
0
0
1
0
1
−31
0
0
0
1
0
0
−28
0
0
0
0
1
1
−29
0
0
0
0
1
0
−30
0
0
0
0
0
1
−31
0
0
0
0
0
0
1997 Mar 13
14
Philips Semiconductors
Preliminary specification
Sound control circuit
Table 4
TEA6324T
Volume II setting; note 1
DATA
Gv
(dB)
OUTL5
OUTL4
OUTL3
OUTL2
OUTL1
OUTL0
OUTR5
OUTR4
OUTR3
OUTR2
OUTR1
OUTR0
0
1
1
1
1
1
1
−1
1
1
1
1
1
0
−2
1
1
1
1
0
1
−3
1
1
1
1
0
0
−4
1
1
1
0
1
1
−5
1
1
1
0
1
0
−6
1
1
1
0
0
1
−7
1
1
1
0
0
0
−8
1
1
0
1
1
1
−9
1
1
0
1
1
0
−10
1
1
0
1
0
1
−11
1
1
0
1
0
0
−12
1
1
0
0
1
1
−13
1
1
0
0
1
0
−14
1
1
0
0
0
1
−15
1
1
0
0
0
0
−16
1
0
1
1
1
1
−17
1
0
1
1
1
0
−18
1
0
1
1
0
1
−19
1
0
1
1
0
0
−20
1
0
1
0
1
1
−21
1
0
1
0
1
0
−22
1
0
1
0
0
1
−23
1
0
1
0
0
0
−24
1
0
0
1
1
1
−25
1
0
0
1
1
0
−26
1
0
0
1
0
1
−27
1
0
0
1
0
0
−28
1
0
0
0
1
1
−29
1
0
0
0
1
0
−30
1
0
0
0
0
1
−31
1
0
0
0
0
0
−32
0
1
1
1
1
1
−33
0
1
1
1
1
0
−34
0
1
1
1
0
1
−35
0
1
1
1
0
0
−36
0
1
1
0
1
1
1997 Mar 13
15
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
DATA
Gv
(dB)
OUTL5
OUTL4
OUTL3
OUTL2
OUTL1
OUTL0
OUTR5
OUTR4
OUTR3
OUTR2
OUTR1
OUTR0
−37
0
1
1
0
1
0
−38
0
1
1
0
0
1
−39
0
1
1
0
0
0
−40
0
1
0
1
1
1
−41
0
1
0
1
1
0
−42
0
1
0
1
0
1
−43
0
1
0
1
0
0
−44
0
1
0
0
1
1
−45
0
1
0
0
1
0
−46
0
1
0
0
0
1
−47
0
1
0
0
0
0
−48
0
0
1
1
1
1
−49
0
0
1
1
1
0
−50
0
0
1
1
0
1
−51
0
0
1
1
0
0
−52
0
0
1
0
1
1
−53
0
0
1
0
1
0
−54
0
0
1
0
0
1
−55
0
0
1
0
0
0
Mute
0
0
0
1
1
1
Mute
0
0
0
1
1
0
Mute
0
0
0
1
0
1
Mute
0
0
0
1
0
0
Mute
0
0
0
0
1
1
Mute
0
0
0
0
1
0
Mute
0
0
0
0
0
1
Mute
0
0
0
0
0
0
Note
1. For a particular range the data is always the same, only the subaddress changes.
1997 Mar 13
16
Philips Semiconductors
Preliminary specification
Sound control circuit
Table 5
TEA6324T
Bass setting
DATA
Gbass
(dB)
BA4
BA3
BA2
BA1
BA0
+18.0
1
1
1
1
1
+16.2
1
1
1
1
0
+18.0
1
1
1
0
1
+16.2
1
1
1
0
0
+18.0
1
1
0
1
1
+16.2
1
1
0
1
0
+14.4
1
1
0
0
1
+12.6
1
1
0
0
0
+10.8
1
0
1
1
1
+9.0
1
0
1
1
0
+7.2
1
0
1
0
1
+5.4
1
0
1
0
0
+3.6
1
0
0
1
1
+1.8
1
0
0
1
0
0(1)
1
0
0
0
1
0(2)
1
0
0
0
0
−1.8
0
1
1
1
1
−3.6
0
1
1
1
0
−5.4
0
1
1
0
1
−7.2
0
1
1
0
0
−9.0
0
1
0
1
1
−10.8
0
1
0
1
0
−12.6
0
1
0
0
1
−14.4
0
1
0
0
0
−16.2
0
0
1
1
1
−18.0
0
0
1
1
0
−16.2
0
0
1
0
1
−18.0
0
0
1
0
0
Note 3
0
0
0
1
1
Note 3
0
0
0
1
0
Note 3
0
0
0
0
1
Notes 3 and 4
0
0
0
0
0
Notes
1. Recommended data word for step 0 dB.
2. Result of 1.8 dB boost and 1.8 dB attenuation.
3. The last four bass control data words mute the bass response.
4. The last bass control and treble control data words (00000) enable the external equalizer connection.
1997 Mar 13
17
Philips Semiconductors
Preliminary specification
Sound control circuit
Table 6
TEA6324T
Treble setting
DATA
Gtreble
(dB)
TR4
TR3
TR2
TR1
TR0
+12.0
1
1
1
1
1
+10.5
1
1
1
1
0
+12.0
1
1
1
0
1
+10.5
1
1
1
0
0
+12.0
1
1
0
1
1
+10.5
1
1
0
1
0
+12.0
1
1
0
0
1
+10.5
1
1
0
0
0
+9.0
1
0
1
1
1
+7.5
1
0
1
1
0
+6.0
1
0
1
0
1
+4.5
1
0
1
0
0
+3.0
1
0
0
1
1
+1.5
1
0
0
1
0
0(1)
1
0
0
0
1
0(2)
1
0
0
0
0
−1.5
0
1
1
1
1
−3.0
0
1
1
1
0
−4.5
0
1
1
0
1
−6.0
0
1
1
0
0
−7.5
0
1
0
1
1
−9.0
0
1
0
1
0
−10.5
0
1
0
0
1
−12.0
0
1
0
0
0
Note 3
0
0
1
1
1
Note 3
0
0
1
1
0
Note 3
0
0
1
0
1
Note 3
0
0
1
0
0
Note 3
0
0
0
1
1
Note 3
0
0
0
1
0
Note 3
0
0
0
0
1
Notes 3 and 4
0
0
0
0
0
Notes
1. Recommended data word for step 0 dB.
2. Result of 1.5 dB boost and 1.5 dB attenuation.
3. The last eight treble control data words select treble output.
4. The last treble control and bass control data words (00000) enable the external equalizer connection.
1997 Mar 13
18
Philips Semiconductors
Preliminary specification
Sound control circuit
Table 7
TEA6324T
Selected input
Table 8
Mute mode
DATA
DATA
FUNCTION
FUNCTION
GMU
ZCM
Direct mute off
0
0
Mute off delayed until the next zero
crossing
0
1
1
0
0
Direct mute
1
0
X(1)
X(1)
Mute delayed until the next zero
crossing
1
1
SC2
SC1
SC0
Stereo inputs IAL and IAR
1
1
1
Stereo inputs IBL and IBR
1
1
0
No function
1
0
No function
1
Mono input IMO
0
Note
1. X = don’t care bits (logic 1 during testing).
1997 Mar 13
19
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
MED840
20
handbook, full pagewidth
Gbass
(dB)
10
0
−10
−20
10
10 2
10 3
f (Hz)
10 4
Fig.3 Bass control.
MED424
15
handbook, full pagewidth
Gtreble
(dB)
10
5
0
−5
−10
−15
10 2
10 3
10 4
Fig.4 Treble control.
1997 Mar 13
20
f (Hz)
10 5
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
MED426
100
handbook, full pagewidth
S/N
(dB)
(1)
90
(2)
(3)
80
70
60
50
10 −4
10 −3
10 −2
10 −1
Po (W)
1
10
(1) Vi = 2.0 V.
(2) Vi = 0.5 V.
(3) Vi = 0.2 V.
Fig.5 Signal-to-noise ratio; noise weighted: CCIR468-2, quasi peak.
MED427
110
handbook, full pagewidth
S/N
(dB)
(1)
100
(2)
90
(3)
80
70
60
10 −4
10 −3
10 −2
10 −1
(1) Unweighted RMS.
(2) CCIR468-2 RMS.
(3) CCIR468-2 quasi peak.
Fig.6 Signal-to-noise ratio; Vi = 2 V; Pmax = 6 W.
1997 Mar 13
21
1
Po (W)
10
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
MHA594
200
handbook, full pagewidth
noise
(µV)
150
100
50
0
−70
−50
−30
−10
10
gain (dB)
30
Stereo/mono inputs.
Fig.7 Noise output voltage; CCIR468-2, quasi peak.
MED429
−60
handbook, full pagewidth
(dB)
−80
−100
−120
−140
20
50
10 2
200
500
10 3
Fig.8 Muting.
1997 Mar 13
22
2 x 10 3
5 x 10 3
10 4
2 x 10 4
f (Hz)
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
MUTE (pin 9)
handbook, full pagewidth
hardware mute switch
Ich = −150 µA
TEA6324T
U
(V)
Idch = 0.6 µA
Cm = 10 nF
I
(µA)
td(mute) = 0.5 ms delay until
mute passive
VCC
8.5
0
delay switch(1)
2.2
level
−150
mute switch(2) 1.45
level
MHA595
100 ms
zero crossing
mute start
end of delay
t (ms)
hard mute
on
hard mute
off
(1) Typically 2.2 V; referenced to 3 × VBE.
(2) Typically 1.5 V; referenced to 2 × VBE.
Fig.9 Mute function diagram.
1997 Mar 13
23
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
In cases where at the maximum volume position the 20 dB gain is not needed, it is recommended that the maximum
boost gain should be used. This coupled with increased attenuation in the last section (volume II), results in a lower noise
and offset voltage.
POWER STAGE
handbook, halfpage
TEA6324T
G = 20 dB
Vi(min) = 200 mV
Vo = 2 V for P(max)
P(max) = 100 W at 4 Ω
MHA596
a.
POWER STAGE
handbook, halfpage
TEA6324T
G = 26 dB
Vi(min) = 200 mV
Vo = 1 V for P(max)
P(max) = 100 W at 4 Ω
MHA597
b.
a. Gain volume I = 20 dB (Gv(max)); gain volume II = 0 dB; control range = 55 dB.
b. Gain volume I = 20 dB (Gv(max)); gain volume II = −6 dB global setting; control range now 49 dB, previously 55 dB.
Fig.10 Level diagram.
1997 Mar 13
24
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
VP
handbook, full pagewidth
VCC
8.5 V
4.7 kΩ
+8.5 V to
oscilloscope
470 µF
23
13
3
11
14 TEA6324T
10
22
12
2
15 16
inputs
5 × 220 nF
47
µF
5 × 600 Ω
outputs to
oscilloscope
2 × 4.7 µF
100
µF
2 × 10 kΩ
MHA598
Fig.11 Turn-on/off power supply circuit diagram.
MED433
10
handbook, full pagewidth
(V)
8
(1)
6
4
(2)
2
0
0
1
2
3
(1) VCC.
(2) VO.
Fig.12 Turn-on/off behaviour.
1997 Mar 13
25
4
t (s)
5
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
3.4 kΩ
220 nF
handbook, full pagewidth
100 µF
8
270 nF
7
270 nF
5.6
nF
6
5
10
nF
4
9
16
VCC = 8.5 V
24
SCL
1
SDA
23
0.1 µF
10 kΩ
TEA6324T
2
1000
µF
47 µF
VP
4.7 µF
output right
output left
15
0.2 V
(RMS)
VO
600 Ω
220 nF
input A and B
left and right
and input mono
17
18 19
20
21
MHA599
5.6 nF
220 nF
270 nF
270 nF
3.4 kΩ
Fig.13 Test circuit for power supply ripple rejection (RR).
3.4 kΩ
handbook, full pagewidth
100 µF
220 nF
270 nF
8
6
7
270 nF
5.6
nF
5
10
nF
4
9
16
VCC = 8.5 V
470
µF
23
TEA6324T
0.1 µF
24
SCL
1
SDA
2
47 µF
VP
15
Vi
600 Ω
220 nF
220 nF
4.7 µF
output right
output left
input A and B
right and left
VO
input A and B
left and right
and input mono
17
18 19
20
21
MHA600
5.6 nF
220 nF
270 nF
270 nF
3.4 kΩ
Fig.14 Test circuit for channel separation (αcs).
1997 Mar 13
26
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
Selection of input signals by using the zero crossing
mute mode
After a fixed delay time at t2, the microcontroller sends the
bits for input switching and mute inactive.
The zero cross mute mode provides for a selection of input
sources (A and B) for both left and right channels.
The following example (see Fig.15), shows a typical
selection for the left input source signals IAL and IBL.
The initial selection of these channels produces a
modulation click. The click is determined by the difference
of the signal values at the time of switching.
The output signal remains muted until the next signal zero
crossing of input B (IBL) occurs, and then follows that
signal up to 3 V.
With a delay time of 40 ms (t2 − t1), the external capacitor
Cm = 3.3 nF. This results with the zero cross function
operating at the lowest frequency of 40 Hz determined by
the Cm capacitor.
At t1 the maximum possible difference between signals is
7 V (p-p) (see Fig.15) and gives a large click. Using the
cross detector no modulation click is audible.
With the selection enabled at t1, the microcontroller sets
the zero cross bit (ZCM = 1) and then the mute bit
(GMU = 1) via the I2C-bus. The output signal follows the
input A signal from −4 V, until the next zero crossing
occurs and then activates mute.
handbook, full pagewidth
MED436
V
4
(1)
3
2
1
0
−1
(2)
t1
t
t2
(3)
−2
−3
−4
(1) Input A (IAL).
(2) Output.
(3) Input B (IBL).
Fig.15 Zero cross function; only one channel shown.
1997 Mar 13
27
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
INTERNAL PIN CONFIGURATIONS
Values shown in Figs 16 to 27 are typical DC values; VCC = 8.5 V.
3
+
4.25 V
1
5V
1.8 kΩ
80 Ω
MBE911
MBE912
Fig.16 Pin 1: SDA (I2C-bus data).
Fig.17 Pins 3 and 22: output signals.
5
+
4.25 V
4
4.25 V
80 Ω
+
2.4 kΩ
MHA601
MHA602
Fig.19 Pins 5 and 20: bass control capacitor
outputs.
Fig.18 Pins 4 and 21: treble control capacitors.
1997 Mar 13
28
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
6
7
4.25 V
3.52
kΩ
4.25 V
+
+
150 kΩ
4.25 V
MHA604
MHA603
Fig.20 Pins 6 and 19: bass control capacitor
inputs.
Fig.21 Pins 7 and 18: input volume 1, control part.
8
+
+
4.25 V
9
8.5 V
1.3 kΩ
80 Ω
constant
2.2 V
maximum
200 µA
0.6 µA
constant
4.5 kΩ
MHA605
MHA606
Fig.22 Pins 8 and 17: output source selector.
1997 Mar 13
Fig.23 Pin 9: mute control.
29
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
+
4.7 kΩ
300 Ω
8.5 V
15
10
4.25 V
+
+
5 kΩ
3.4
kΩ
4.25 V
16
35 kΩ
3.4
kΩ
4.25 V
MHA607
MHA608
Fig.25 Pin 15: filtering for supply; pin 16: reference
voltage.
Fig.24 Pins 10 to 14: inputs.
23
apply +8.5 V
to this pin
24
5V
1.8 kΩ
MHA610
MHA609
Fig.27 Pin 24: SCL (I2C-bus clock).
Fig.26 Pin 23: supply voltage.
1997 Mar 13
30
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
PACKAGE OUTLINE
SO24: plastic small outline package; 24 leads; body width 7.5 mm
SOT137-1
D
E
A
X
c
HE
y
v M A
Z
13
24
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
12
e
detail X
w M
bp
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
mm
2.65
0.30
0.10
2.45
2.25
0.25
0.49
0.36
0.32
0.23
15.6
15.2
7.6
7.4
1.27
10.65
10.00
1.4
1.1
0.4
1.1
1.0
0.25
0.25
0.1
0.9
0.4
0.012 0.096
0.004 0.089
0.01
0.019 0.013
0.014 0.009
0.61
0.60
0.30
0.29
0.050
0.42
0.39
0.055
0.043
0.016
0.043
0.039
0.01
0.01
0.004
0.035
0.016
inches
0.10
Z
(1)
θ
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT137-1
075E05
MS-013AD
1997 Mar 13
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
92-11-17
95-01-24
31
o
8
0o
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
SOLDERING
Wave soldering
Introduction
Wave soldering techniques can be used for all SO
packages if the following conditions are observed:
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
• The package footprint must incorporate solder thieves at
the downstream end.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Reflow soldering
Reflow soldering techniques are suitable for all SO
packages.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
1997 Mar 13
32
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
1997 Mar 13
33
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
NOTES
1997 Mar 13
34
Philips Semiconductors
Preliminary specification
Sound control circuit
TEA6324T
NOTES
1997 Mar 13
35
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1997
SCA53
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
547027/1200/01/pp36
Date of release: 1997 Mar 13
Document order number:
9397 750 01599