QS6U24 Transistor 4V Drive Pch+SBD MOS FET QS6U24 zStructure Silicon P-channel MOS FET Schottky Barrier DIODE zExternal dimensions (Unit : mm) TSMT6 1.0MAX 2.9 1.9 0.95 0.95 zFeatures 1) The QS6U24 combines Pch MOS FET with a Schottky barrier diode in a TSMT6 package. 2) Low on-state resisternce with a fast switching. 3) Low voltage drive (4V). 4) Built-in schottky barrier diode has low forward voltage. zApplications Load switch, DC/DC conversion (5) (2) Type (3) 1pin mark 0.16 0.4 Each lead has same dimensions Abbreviated symbol : U24 zInner circuit (6) (5) ∗2 TR Basic ordering unit (pieces) 3000 QS6U24 ∗1 (1) ∗1 ESD protection diode ∗2 Body diode zAbsolute maximum ratings (Ta=25°C) Parameter Drain-source voltage Gate-source voltage Continuous Pulsed Continuous Pulsed Channel temperature Power dissipation (2) (3) (1)Anode (2)Source (3)Gate (4)Drain (5)N/C (6)Cathode ∗ A protection diode has been buitt in between the gate and the source to protect against static electricity when the product is in use. Use the protection circuit when rated voltages are exceeded. <MOSFET> Source current (Body diode) (4) Taping Code Drain current 0~0.1 0.3~0.6 (1) zPackaging specifications Package 0.7 (4) 1.6 2.8 (6) 0.85 Symbol VDSS VGSS ID IDP ∗1 IS ISP ∗1 Tch PD ∗3 Limits −30 ±20 ±1.0 ±2.0 −0.3 −1.2 150 0.9 Unit V V A A A A °C W/ELEMENT Symbol VRM VR IF IFSM ∗2 Tj PD ∗3 Limits 25 20 0.7 3.0 150 0.7 Unit V V A A °C W/ELEMENT Symbol PD ∗3 Tstg Limits 1.25 −55 to +150 Unit W/TOTAL °C <Di > Parameter Repetitive peak reverse voltage Reverse voltage Forward current Forward current surge peak Junction temperature Power dissipation <MOSFET AND Di > Parameter Total power dissipatino Range of strage temperature ∗1 Pw≤10µs, Duty cycle≤1% ∗2 60Hz•1cyc. ∗3 Mounted on a ceramic board Rev.B 1/4 QS6U24 Transistor zElectrical characteristics (Ta=25°C) <MOSFET> Parameter Symbol Min. IGSS − Gate-source leakage Drain-source breakdown voltage V(BR) DSS −30 IDSS − Zero gate voltage drain current VGS (th) −1.0 Gate threshold voltage − Static drain-source on-starte ∗ RDS (on) − resistance − Yfs ∗ 0.5 Forward transfer admittance Ciss − Input capacitance Coss − Output capacitance − Crss Reverse transfer capacitance td (on) ∗ − Turn-on delay time tr ∗ − Rise time td (off) ∗ − Turn-off delay time tf ∗ − Fall time Qg − Total gate charge Qgs − Gate-source charge Qgd − Gate-drain charge Typ. − − − − 300 500 600 − 90 25 16 9 7 18 7 1.7 0.6 0.4 Max. ±10 − −1 −2.5 400 700 800 − − − − − − − − − − − Unit µA V µA V mΩ mΩ mΩ S pF pF pF ns ns ns ns nC nC nC Conditions VGS=±20V, VDS=0V ID= −1mA, VGS=0V VDS= −30V, VGS=0V VDS= −10V, ID= −1mA ID= −1A, VGS= −10V ID= −0.5A, VGS= −4.5V ID= −0.5A, VGS= −4V VDS= −10V, ID= −0.5A VDS= −10V VGS=0V f=1MHz ID= −0.5A VDD −15V VGS= −4.5V RL=30Ω RG=10Ω VDD −15V VGS= −5V ID= −1.0A ∗ Pulsed <Body diode (source-drain)> Parameter Forward voltage Symbol Min. Typ. Max. Unit VSD − − −1.2 V Symbol Min. − − Typ. − − Max. 0.49 200 Unit V µA Conditions IS=−0.3A, VGS=0V <Di > Parameter Forward voltage drop Reverse current VF IR Conditions IF=0.7A VR=20V Rev.B 2/4 QS6U24 Transistor zElectrical characteristic curves Ta=125°C Ta=75°C Ta=25°C Ta=−25°C 0.1 0.01 1 1.5 2 2.5 3 3.5 4 4.5 5 GATE-SOURCE VOLTAGE : −VGS (V) 1000 100 0.1 VGS=−4V Pulsed Ta=125°C Ta=75°C Ta=25°C Ta=−25°C 1000 100 0.1 1 10 10 Fig.2 Static Drain-Source On-State Resistance vs. Drain Current (Ι) Fig.3 Static Drain-Source On-State Resistance vs. Drain Current (ΙΙ) 1200 10000 Ta=25°C Pulsed ID=−1.2A ID=−0.6A 1100 1000 900 800 700 600 500 400 300 200 0 2 4 6 8 10 12 14 16 Ta=25°C Pulsed VGS=−4.0V VGS=−4.5V VGS=−10V 1000 100 0.1 1 10 Fig.4 Static Drain-Source On-State Resistance vs. Drain Current (ΙΙΙ) Fig.5 Static Drain-Source On-State Resistance vs. Gate-Source Voltage Fig.6 Static Drain-Source On-State Resistance vs. Drain Current ( ) 1000 VGS=0V Pulsed Ta=125°C Ta=75°C Ta=25°C Ta=−25°C 0 1 DRAIN CURRENT : −ID (A) DRAIN CURRENT : −ID (A) 0.1 0.01 100 0.1 DRAIN CURRENT : −ID (A) GATE-SOURCE VOLTAGE : −VGS (V) 10 1 10 Ta=125°C Ta=75°C Ta=25°C Ta=−25°C DRAIN CURRENT : −ID (A) CAPACITANCE : C (pF) REVERCE DRAIN CURRENT : −IDR (A) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (mΩ) 10000 STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (mΩ) Fig.1 Typical Transfer Characteristics 1 VGS=−4.5V Pulsed 1000 0.5 1 1.5 2 1000 Ta=25°C f=1MHZ VGS=0V 100 SWITCHING TIME : t (ns) 0.001 Ta=125°C Ta=75°C Ta=25°C Ta=−25°C STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (mΩ) 1 10000 VGS=−10V Pulsed STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (mΩ) 10000 VDS=−10V Pulsed STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (mΩ) DRAIN CURRENT : −ID (A) 10 Ciss 10 0.01 Coss Crss 0.1 1 10 100 Ta=25°C VDD=−15V VGS=−10V RG=10Ω Pulsed 100 tf td(off) 10 td(on) tr 1 0.01 0.1 1 10 SOURCE-DRAIN VOLTAGE : −VSD (V) DRAIN-SOURCE VOLTAGE : −VDS (V) DRAIN CURRENT : −ID (A) Fig.7 Reverse Drain Current vs. Source-Drain Voltage Fig.8 Typical Capacitance vs. Drain-Source Voltage Fig.9 Switching Characteristics Rev.B 3/4 QS6U24 Transistor GATE-SOURCE VOLTAGE : VGS (V) 8 Ta=25°C VDD=−15V ID=−1.2A RG=10Ω Pulsed 7 6 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 TOTAL GATE CHARGE : Qg (nC) Fig.10 Dynamic Input Characteristics zMeasurement circuits Pulse Width VGS ID VDS VGS 10% 50% 90% RL D.U.T. 50% 10% 10% RG VDD VDS 90% td(on) tr ton Fig.11 Switching Time Measurement Circuit 90% td(off) tr toff Fig.12 Switching Waveforms VG VGS ID VDS RL IG(Const) D.U.T. Qg VGS Qgs RG Qgd VDD Charge Fig.13 Gate Charge Measurement Circuit Fig.14 Gate Charge Waveforms Rev.B 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1