ROHM QS6U24_1

QS6U24
Transistor
4V Drive Pch+SBD MOS FET
QS6U24
zStructure
Silicon P-channel MOS FET
Schottky Barrier DIODE
zExternal dimensions (Unit : mm)
TSMT6
1.0MAX
2.9
1.9
0.95 0.95
zFeatures
1) The QS6U24 combines Pch MOS FET with a
Schottky barrier diode in a TSMT6 package.
2) Low on-state resisternce with a fast switching.
3) Low voltage drive (4V).
4) Built-in schottky barrier diode has low forward voltage.
zApplications
Load switch, DC/DC conversion
(5)
(2)
Type
(3)
1pin mark
0.16
0.4
Each lead has same dimensions
Abbreviated symbol : U24
zInner circuit
(6)
(5)
∗2
TR
Basic ordering unit (pieces)
3000
QS6U24
∗1
(1)
∗1 ESD protection diode
∗2 Body diode
zAbsolute maximum ratings (Ta=25°C)
Parameter
Drain-source voltage
Gate-source voltage
Continuous
Pulsed
Continuous
Pulsed
Channel temperature
Power dissipation
(2)
(3)
(1)Anode
(2)Source
(3)Gate
(4)Drain
(5)N/C
(6)Cathode
∗ A protection diode has been buitt in between the gate and
the source to protect against static electricity when the product
is in use. Use the protection circuit when rated voltages are exceeded.
<MOSFET>
Source current
(Body diode)
(4)
Taping
Code
Drain current
0~0.1
0.3~0.6
(1)
zPackaging specifications
Package
0.7
(4)
1.6
2.8
(6)
0.85
Symbol
VDSS
VGSS
ID
IDP ∗1
IS
ISP ∗1
Tch
PD ∗3
Limits
−30
±20
±1.0
±2.0
−0.3
−1.2
150
0.9
Unit
V
V
A
A
A
A
°C
W/ELEMENT
Symbol
VRM
VR
IF
IFSM ∗2
Tj
PD ∗3
Limits
25
20
0.7
3.0
150
0.7
Unit
V
V
A
A
°C
W/ELEMENT
Symbol
PD ∗3
Tstg
Limits
1.25
−55 to +150
Unit
W/TOTAL
°C
<Di >
Parameter
Repetitive peak reverse voltage
Reverse voltage
Forward current
Forward current surge peak
Junction temperature
Power dissipation
<MOSFET AND Di >
Parameter
Total power dissipatino
Range of strage temperature
∗1 Pw≤10µs, Duty cycle≤1% ∗2 60Hz•1cyc. ∗3 Mounted on a ceramic board
Rev.B
1/4
QS6U24
Transistor
zElectrical characteristics (Ta=25°C)
<MOSFET>
Parameter
Symbol Min.
IGSS
−
Gate-source leakage
Drain-source breakdown voltage V(BR) DSS −30
IDSS
−
Zero gate voltage drain current
VGS (th) −1.0
Gate threshold voltage
−
Static drain-source on-starte
∗
RDS (on)
−
resistance
−
Yfs ∗ 0.5
Forward transfer admittance
Ciss
−
Input capacitance
Coss
−
Output capacitance
−
Crss
Reverse transfer capacitance
td (on) ∗
−
Turn-on delay time
tr ∗
−
Rise time
td (off) ∗
−
Turn-off delay time
tf ∗
−
Fall time
Qg
−
Total gate charge
Qgs
−
Gate-source charge
Qgd
−
Gate-drain charge
Typ.
−
−
−
−
300
500
600
−
90
25
16
9
7
18
7
1.7
0.6
0.4
Max.
±10
−
−1
−2.5
400
700
800
−
−
−
−
−
−
−
−
−
−
−
Unit
µA
V
µA
V
mΩ
mΩ
mΩ
S
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
Conditions
VGS=±20V, VDS=0V
ID= −1mA, VGS=0V
VDS= −30V, VGS=0V
VDS= −10V, ID= −1mA
ID= −1A, VGS= −10V
ID= −0.5A, VGS= −4.5V
ID= −0.5A, VGS= −4V
VDS= −10V, ID= −0.5A
VDS= −10V
VGS=0V
f=1MHz
ID= −0.5A
VDD −15V
VGS= −4.5V
RL=30Ω
RG=10Ω
VDD −15V
VGS= −5V
ID= −1.0A
∗ Pulsed
<Body diode (source-drain)>
Parameter
Forward voltage
Symbol
Min.
Typ.
Max.
Unit
VSD
−
−
−1.2
V
Symbol
Min.
−
−
Typ.
−
−
Max.
0.49
200
Unit
V
µA
Conditions
IS=−0.3A, VGS=0V
<Di >
Parameter
Forward voltage drop
Reverse current
VF
IR
Conditions
IF=0.7A
VR=20V
Rev.B
2/4
QS6U24
Transistor
zElectrical characteristic curves
Ta=125°C
Ta=75°C
Ta=25°C
Ta=−25°C
0.1
0.01
1
1.5
2
2.5
3
3.5
4
4.5
5
GATE-SOURCE VOLTAGE : −VGS (V)
1000
100
0.1
VGS=−4V
Pulsed
Ta=125°C
Ta=75°C
Ta=25°C
Ta=−25°C
1000
100
0.1
1
10
10
Fig.2 Static Drain-Source On-State
Resistance vs. Drain Current (Ι)
Fig.3 Static Drain-Source On-State
Resistance vs. Drain Current (ΙΙ)
1200
10000
Ta=25°C
Pulsed
ID=−1.2A
ID=−0.6A
1100
1000
900
800
700
600
500
400
300
200
0
2
4
6
8
10
12
14
16
Ta=25°C
Pulsed
VGS=−4.0V
VGS=−4.5V
VGS=−10V
1000
100
0.1
1
10
Fig.4 Static Drain-Source On-State
Resistance vs. Drain Current (ΙΙΙ)
Fig.5 Static Drain-Source On-State
Resistance vs. Gate-Source
Voltage
Fig.6 Static Drain-Source On-State
Resistance vs. Drain Current ( )
1000
VGS=0V
Pulsed
Ta=125°C
Ta=75°C
Ta=25°C
Ta=−25°C
0
1
DRAIN CURRENT : −ID (A)
DRAIN CURRENT : −ID (A)
0.1
0.01
100
0.1
DRAIN CURRENT : −ID (A)
GATE-SOURCE VOLTAGE : −VGS (V)
10
1
10
Ta=125°C
Ta=75°C
Ta=25°C
Ta=−25°C
DRAIN CURRENT : −ID (A)
CAPACITANCE : C (pF)
REVERCE DRAIN CURRENT : −IDR (A)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
10000
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
Fig.1 Typical Transfer Characteristics
1
VGS=−4.5V
Pulsed
1000
0.5
1
1.5
2
1000
Ta=25°C
f=1MHZ
VGS=0V
100
SWITCHING TIME : t (ns)
0.001
Ta=125°C
Ta=75°C
Ta=25°C
Ta=−25°C
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
1
10000
VGS=−10V
Pulsed
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
10000
VDS=−10V
Pulsed
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
DRAIN CURRENT : −ID (A)
10
Ciss
10
0.01
Coss
Crss
0.1
1
10
100
Ta=25°C
VDD=−15V
VGS=−10V
RG=10Ω
Pulsed
100
tf
td(off)
10
td(on)
tr
1
0.01
0.1
1
10
SOURCE-DRAIN VOLTAGE : −VSD (V)
DRAIN-SOURCE VOLTAGE : −VDS (V)
DRAIN CURRENT : −ID (A)
Fig.7 Reverse Drain Current vs.
Source-Drain Voltage
Fig.8 Typical Capacitance vs.
Drain-Source Voltage
Fig.9 Switching Characteristics
Rev.B
3/4
QS6U24
Transistor
GATE-SOURCE VOLTAGE : VGS (V)
8
Ta=25°C
VDD=−15V
ID=−1.2A
RG=10Ω
Pulsed
7
6
5
4
3
2
1
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
2
TOTAL GATE CHARGE : Qg (nC)
Fig.10 Dynamic Input
Characteristics
zMeasurement circuits
Pulse Width
VGS
ID
VDS
VGS
10%
50%
90%
RL
D.U.T.
50%
10%
10%
RG
VDD
VDS
90%
td(on)
tr
ton
Fig.11 Switching Time Measurement Circuit
90%
td(off)
tr
toff
Fig.12 Switching Waveforms
VG
VGS
ID
VDS
RL
IG(Const)
D.U.T.
Qg
VGS
Qgs
RG
Qgd
VDD
Charge
Fig.13 Gate Charge Measurement Circuit
Fig.14 Gate Charge Waveforms
Rev.B
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1