ROHM QS5U21_06

QS5U21
Transistor
2.5V Drive Pch+SBD MOS FET
QS5U21
zStructure
Silicon P-channel MOS FET
Schottky Barrier DIODE
zExternal dimensions (Unit : mm)
TSMT5
1.0MAX
2.9
1.9
0.95 0.95
(5)
(4)
(2)
(3)
0.7
1.6
2.8
(1)
0~0.1
0.3~0.6
zFeatures
1) The QS5U21 combines Pch MOS FET with a
Schottky barrier diode in a TSMT5 package.
2) Low on-state resistance with fast switching.
3) Low voltage drive(2.5V)
4) Built-in schottky barrier diode has low forward voltage.
0.85
0.16
0.4
Each lead has same dimensions
Abbreviated symbol : U21
zApplications
Load switch, DC/DC conversion
zPackaging specifications
Package
Type
Code
Basic ordering unit
(pieces)
zEquivalent circuit
Taping
TR
(5)
(4)
3000
QS5U21
∗2
(1)ANODE
(2)SOURCE
(3)GATE
(4)DRAIN
(5)CATHODE
∗1
(1)
(2)
(3)
∗1 ESD PROTECTION DIODE
∗2 BODY DIODE
Rev.A
1/4
QS5U21
Transistor
zAbsolute maximum ratings (Ta=25°C)
<MOSFET>
Symbol
VDSS
VGSS
ID
IDP ∗1
IS
ISP ∗1
Tch
PD ∗3
Limits
−20
±12
±1.5
±6.0
−0.75
−3.0
150
0.9
Unit
V
V
A
A
A
A
°C
W / ELEMENT
<Di>
Repetitive peak reverse voltage
Reverse voltage
Forward current
Forward current surge peak
Junction temperature
Power dissipation
VRM
VR
IF
IFSM
Tj
PD
25
20
1.0
3.0
150
0.7
V
V
A
A
°C
W / ELEMENT
<MOSFET AND Di>
Total power dissipation
Range of Storage temperature
PD ∗3
Tstg
1.25
−55 to +150
W / TOTAL
°C
Parameter
Drain-source voltage
Gate-source voltage
Drain current
Source current
(Body diode)
Continuous
Pulsed
Continuous
Pulsed
Channel temperature
Power dissipation
∗2
∗3
∗1 Pw≤10µs, Duty cycle≤1% ∗2 60Hz•1cyc. ∗3 Mounted on a ceramic board
zElectrical characteristics (Ta=25°C)
< MOSFET >
Parameter
Gate-source leakage
Symbol
Gate threshold voltage
Static drain−source
on−state resistance
Typ.
Max.
Unit
Conditions
−
−
±10
µA
VGS=±12V/ VDS=0V
−20
−
−
V
ID=−1mA/ VGS=0V
IDSS
−
−
−1
µA
VDS=−20V/ VGS=0V
VGS(th)
−0.7
−
−2.0
V
VDS=−10V/ ID=−1mA
−
160
200
mΩ
ID=−1.5A, VGS=−4.5V
ID=−1.5A, VGS=−4V
IGSS
Drain-source breakdown voltage V(BR)DSS
Zero gate voltage drain current
Min.
RDS(on)∗
∗
−
180
240
mΩ
−
260
340
mΩ
ID=−0.75A, VGS=−2.5V
VDS=−10V, ID=−0.75A
Forward transfer admittance
Yfs
1.0
−
−
S
Input capacitance
Ciss
−
325
−
pF
VDS=−10V
Output capacitance
Coss
−
60
−
pF
VGS=0V
Reverse transfer capacitance
Crss
−
40
−
pF
f=1MHz
Turn− on delay time
td(on) ∗
−
10
−
ns
tr ∗
td(off) ∗
−
10
−
ns
−
35
−
ns
∗
−
ns
ID=−0.75A
VDD −15
VGS =−4.5V
RL=20Ω
RG=10Ω
Rise Time
Turn− off delay time
10
−
Total gate charge
Qg
−
4.2
−
nC
VDD
Gate−source charge
Qgs
−
1.0
−
nC
VGS =−4.5V
Gate−drain charge
Qgd
−
1.1
−
nC
ID=−1.5A
VSD
−
−
−1.2
V
IS=−0.75A/ VGS=0V
Foward voltage drop
VF
−
−
0.45
V
IF=1.0A
Reverse current
IR
−
−
200
µA
VR=20V
Fall time
tf
−15V
∗Pulsed
<Body diode (source−drain)>
Forward voltage
< Di >
Rev.A
2/4
QS5U21
Transistor
1000
VDS=−10V
Pulsed
Ta=125°C
75°C
25°C
−20°C
0.01
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
100
10
0.1
1
Fig.2 Static Drain−Source On−State
Resistance vs.Drain Current
Static Drain−Source On−State Resistance
RDS(on)[mΩ]
Static Drain−Source On−State Resistance
RDS(on)[mΩ]
Ta=125°C
75°C
25°C
−20°C
10
0.1
1
10
1
ID=−0.75A
−1.5A
300
250
100
200
150
100
50
0
2
4
6
8
10
10000
VGS=0V
Pulsed
Ta=125°C
75°C
25°C
−20°C
0.1
Ta=25 C
Pulsed
VGS=−2.5V
−4.0V
−4.5V
10
0.1
12
1
Fig.6 Static Drain−Source On−State
Resistance vs.Drain Current
Ta=25 C
f=1MHZ
VGS=0V
1000
1000
Ciss
100
Ta=25 C
VDD=−15V
VGS=−4.5V
RG=10Ω
Pulsed
100
td(off)
10
0.5
1.0
1.5
2.0
10
0.01
0.1
1
10
tf
td(on)
tr
Coss
Crss
0.01
0
10
Drain Current : −ID[A]
Fig.5 Static Drain−Source On−State
Resistance vs.Gate−Source Voltage
Capacitance : C [pF]
Reverse Drain Current : −IDR[A]
10
1000
Gate−Source Voltage : −VGS[V]
Fig.4 Static Drain−Source On−State
Resistance vs.Drain−Current
10
Fig.3 Static Drain−Source On−State
Resistance vs.Drain Current
Ta=25 C
Pulsed
350
0
Drain Current : −ID[A]
1
Drain Current : −ID[A]
400
VGS=−2.5V
Pulsed
Ta=125°C
75°C
25°C
−20°C
10
0.1
10
Drain Current : −ID[A]
Fig.1 Typical Transfer Characteristics
100
100
Ta=125°C
75°C
25°C
−20°C
Gate−Source Voltage : VGS[V]
1000
VGS=−4V
Pulsed
Static Drain-Source On−State Resistance
RDS(on)[mΩ]
0.1
1000
VGS=−4.5V
Pulsed
Switching Time : t [ns]
Drain Current : −ID (A)
1
Static Drain−Source On−State Resistance
RDS(on)[mΩ]
10
0.001
Static Drain−Source On−State Resistance
RDS(on)[mΩ]
zElectrical characteristic curves
100
1
0.01
0.1
1
Source−Drain Voltage : −VSD[V]
Drain−Source Voltage : −VDS[V]
Drain Current : −ID[A]
Fig.7 Reverse Drain Current
vs. Source-Drain Current
Fig.8 Typical Capactitance
vs.Drain−Source Voltage
Fig.9 Switching Characteristics
Rev.A
10
3/4
QS5U21
Transistor
6
Forward Current : IF [mA]
7
Gate-Source Voltage: -VGS [V]
1000
Ta=25 C
VDD=−15V
ID=−2.5A
RG=10Ω
Pulsed
5
4
3
2
100
Ta=125°C
75°C
25°C
−20°C
100
125°C
10
Reverse Current : IR[A]
8
10
75°C
1
0.1
25°C
0.01
1
−20°C
0.001
1
0
0.1
0
1
2
3
4
5
0.0001
0
6
0.1
0.2
0.3
0.4
0.5
0.6
0
10
Forward Voltage :VF [V]
20
30
40
Reverse Voltage : VR[V]
Total Gate Charge : Qg[nC]
Fig.10 Dynamic Input Characteristics
Fig.11 Forward Temperature Characteristics
Fig.12 Reverse Temperature Characteristics
zMeasurement circuits
Pulse Width
VGS
10%
50%
50%
90%
10%
10%
VGS
ID
D.U.T.
RG
VDS
90%
90%
VDS
RL
VDD
td(on)
tr
Fig.13 Switching Time Measurement Circuit
tf
td(off)
ton
toff
Fig.14 Switching Waveforms
VG
Qg
VGS
VGS
ID
VDS
Qgs
IG(Const)
RG
D.U.T.
Qgd
RL
VDD
Charge
Fig.15 Gate Charge Measurement Circuit
Fig.16 Gate Charge Waveforms
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1