PHILIPS MB2652BB

Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
• Latch-up protection exceeds 500mA per
FEATURES
• Independent registers for A and B buses
• Multiple VCC and GND pins minimize
power dissipation with high speed and high
output drive.
Jedec JC40.2 Std 17
• ESD protection exceeds 2000V per MIL
The MB2652 transceiver/register consists of
two sets of bus transceiver circuits with
3-State outputs, D-type flip-flops, and control
circuitry arranged for multiplexed
transmission of data directly from the input
bus or the internal registers. Data on the A or
B bus will be clocked into the registers as the
appropriate clock pin goes High. Output
Enable (nOEAB, (nOEBA) and Select (nSAB,
nSBA) pins are provided for bus
management.
STD 883 Method 3015 and 200V per
Machine Model
switching noise
• Live insertion/extraction permitted
• Power-up 3-State
• Power-up reset
• Multiplexed real-time and stored data
• Output capability: +64mA/–32mA
DESCRIPTION
The MB2652 high-performance BiCMOS
device combines low static and dynamic
QUICK REFERENCE DATA
SYMBOL
CONDITIONS
Tamb = 25°C; GND = 0V
PARAMETER
TYPICAL
UNIT
3.3
ns
tPLH
tPHL
Propagation delay nAx to nBx
CL = 50pF; VCC = 5V
CIN
Input capacitance
VI = 0V or VCC
4
pF
CI/O
I/O capacitance
VO = 0V or VCC; 3-State
7
pF
ICCZ
Total supply current
Outputs disabled; VCC = 5.5V
120
µA
ORDERING INFORMATION
PACKAGES
TEMPERATURE RANGE
ORDER CODE
DRAWING NUMBER
52-pin plastic Quad Flat Pack (QFP)
–40°C to +85°C
MB2652BB
1418B
PIN CONFIGURATION
LOGIC SYMBOL
52 51
1A2
1A3
50 49 48 47
46 45 44 43 42
Vcc
1B1
1B0
GND
1SBA
1CPBA
1OEBA
1OEAB
1CPAB
1SAB
1A0
1A1
Vcc
50
39 1B2
38 1B3
2
1A4
3
37 1B4
GND
4
36 1B5
1A5
5
35 1B6
1A6
6
1A7
7
2A0
8
32 2B1
2A1
9
31 2B2
MB2652
52–pin PQFP
1
2
3
5
6
7
1A0 1A1 1A2 1A3 1A4 1A5 1A6 1A7
41 40
1
51
48
1CPAB
49
1SAB
1OEAB
47
44
1SBA
1OEBA
46
45
1CPBA
1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7
34 1B7
42
41
39
38
37
36
35
34
8
9
10
11
12
13
15
16
33 2B0
2A0 2A1 2A2 2A3 2A4 2A5 2A6 2A7
2A2 10
30 GND
2A3 11
29 2B3
19
2CPAB
2A4 12
28 2B4
18
2SAB
2OEAB
20
27 2B5
23
2SBA
2OEBA
21
22
2CPBA
2A5 13
26
2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7
Vcc
2B6
2B7
2SBA
2CPBA
21 22 23 24 25
2OEBA
2OEAB
2CPAB
2SAB
17 18 19 20
GND
2A7
Vcc
2A6
14 15 16
33
August 23, 1993
1
32
31
29
28
27
25
24
853-1713 10585
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
LOGIC SYMBOL (IEEE/IEC)
46
EN1(BA)
21
EN1(BA)
47
EN2(AB)
20
EN2(AB)
45
44
48
23
G5
19
C6
49
G7
50
≥1
5
◊ 1
5 1
51
1
2
3
5
6
7
4D
7
≥1
1 7
2
6D
August 23, 1993
22
C4
42
C4
G5
C6
18
G7
8
≥1
5
◊ 1
5 1
7
≥1
1 7
2
6D
41
9
39
10
38
11
37
12
36
13
35
15
34
16
2
4D
33
32
31
29
28
27
25
24
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
LOGIC DIAGRAM
nOEBA
nOEAB
nCPBA
nSBA
nCPAB
nSAB
1of 8 Channels
1D
C1
Q
nA0
nB0
1D
C1
Q
nA1
nB1
nA2
nB2
nA3
nB3
DETAIL A X 7
nA4
nB4
nA5
nB5
nA6
nB6
nA7
nB7
FUNCTION TABLE
INPUTS
H
L
X
↑
*
**
DATA I/O
OPERATING MODE
nOEAB
nOEBA
nCPAB
nCPBA
nSAB
nSBA
nAx
nBx
L
L
H
H
H or L
↑
H or L
↑
X
X
X
X
Input
Input
Isolation
Store A and B data
X
H
H
H
↑
↑
H or L
↑
X
**
X
X
Input
Unspecified
output*
Store A, Hold B
Store A in both registers
L
L
X
L
H or L
↑
↑
↑
X
X
X
**
Unspecified
output*
Input
Hold A, Store B
Store B in both registers
L
L
L
L
X
X
X
H or L
X
X
L
H
Output
Input
Real time B data to A bus
Stored B data to A bus
H
H
H
H
X
H or L
X
X
L
H
X
X
Input
Output
Real time A data to B bus
Store A data to B bus
H
L
H or L
H or L
H
H
Output
Output
Stored A data to B bus
Stored B data to A bus
=
=
=
=
High voltage level
Low voltage level
Don’t care
Low-to-High clock transition
The data output function may be enabled or disabled by various signals at the nOEBA and nOEAB inputs. Data input functions are
always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
If both Select controls (nSAB and nSBA) are Low, then clocks can occur simultaneously. If either Select control is High, the clocks must
be staggered in order to load both registers.
August 23, 1993
3
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
The following examples demonstrate the four
fundamental bus-management functions that
can be performed with the MB2652.The
REAL TIME BUS TRANSFER
BUS B TO BUS A
A
B
select pins determine whether data is stored
or transferred through the device in real
time.The output enable pins determine the
direction of the data flow.
REAL TIME BUS TRANSFER
BUS A TO BUS B
A
STORAGE FROM
A, B, OR A AND B
B
A
}
nOEAB nOEBA nCPAB nCPBA nSAB nSBA
H
H
X
X
L
X
nOEAB nOEBA nCPAB nCPBA nSAB nSBA
X
H
↑
X
X
X
L
L
TRANSFER STORED DATA
TO A OR B
A
B
}
nOEAB nOEBA nCPAB nCPBA nSAB nSBA
H
L
H|L
H|L
H
H
August 23, 1993
B
}
}
nOEAB nOEBA nCPAB nCPBA nSAB nSBA
L
L
X
X
X
L
MB2652
4
X
H
X
↑
↑
↑
X
X
X
X
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
ABSOLUTE MAXIMUM RATINGS1, 2
PARAMETER
SYMBOL
VCC
CONDITIONS
RATING
UNIT
–0.5 to +7.0
V
–18
mA
–1.2 to +7.0
V
VO < 0
–50
mA
DC supply voltage
IIK
DC input diode current
VI
DC input voltage3
IOK
DC output diode current
VI < 0
VOUT
DC output voltage3
output in Off or High state
–0.5 to +5.5
V
IOUT
DC output current
output in Low state
128
mA
Tstg
Storage temperature range
–65 to 150
°C
NOTES:
1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
VCC
PARAMETER
LIMITS
DC supply voltage
UNIT
MIN
MAX
4.5
5.5
V
0
VCC
V
VI
Input voltage
VIH
High-level input voltage
VIL
Low-level Input voltage
0.8
V
IOH
High-level output current
–32
mA
IOL
Low-level output current
64
mA
0
10
ns/V
–40
+85
°C
∆t/∆v
Input transition rise or fall rate
Tamb
Operating free-air temperature range
August 23, 1993
2.0
5
V
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
DC ELECTRICAL CHARACTERISTICS
LIMITS
SYMBOL
PARAMETER
TEST CONDITIONS
MIN
VIK
VOH
Input clamp voltage
High–level output voltage
Tamb = –40°C
to +85°C
Tamb = +25°C
VCC = 4.5V; IIK = –18mA
TYP
MAX
–0.9
–1.2
MIN
UNIT
MAX
–1.2
V
VCC = 4.5V; IOH = –3mA; VI = VIL or VIH
2.5
2.9
2.5
V
VCC = 5.0V; IOH = –3mA; VI = VIL or VIH
3.0
4.0
3.0
V
VCC = 4.5V; IOH = –32mA; VI = VIL or VIH
2.0
2.4
2.0
V
VOL
Low–level output voltage
VCC = 4.5V; IOL = 64mA; VI = VIL or VIH
0.42
0.55
0.55
V
VRST
Power-up output low
voltage3
VCC = 5.5V; IOL = 1mA; VI = GND or VCC
0.13
0.55
0.55
V
Input leakage
Control pins
VCC = 5.5V; VI = GND or 5.5V
±0.01
±1.0
±1.0
µA
current
Data pins
VCC = 5.5V; VI = GND or 5.5V
±5
±100
±100
µA
II
Power-off leakage current
VCC = 0V; VO or VI ≤ 4.5V
±5.0
±100
±100
µA
Power-up/down 3-State
output current4
VCC = 2.0V; VO = 0.5V; VI = GND or VCC;
VOE = VOE = Don’t care
±5.0
±50
±50
µA
IIH + IOZH
3–State output High current
VCC = 5.5V; VO = 2.7V; VI = VIL or VIH
5.0
50
50
µA
IIL + IOZL
3–State output Low current
VCC = 5.5V; VO = 0.5V; VI = VIL or VIH
–5.0
–50
–50
µA
ICEX
Output High leakage current
VCC = 5.5V; VO = 5.5V; VI = GND or Vcc
5.0
50
50
µA
Output current1
VCC = 5.5V; VO = 2.5V
–80
–180
–180
mA
VCC = 5.5V; Outputs High, VI = GND or VCC
120
250
250
µA
VCC = 5.5V; Outputs Low, VI = GND or VCC
38
60
60
mA
VCC = 5.5V; Outputs 3–State;
VI = GND or VCC
120
250
250
µA
VCC = 5.5V; one input at 3.4V,
other inputs at VCC or GND
0.5
1.5
1.5
mA
IOFF
IPU/PD
IO
ICCH
ICCL
Quiescent supply current
ICCZ
∆ICC
Additional supply current per
input pin2
–50
–50
NOTES:
1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4V.
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any VCC between 0V and 2.1V with a transition time of up to 10msec. From VCC = 2.1V to VCC = 5V ± 10% a
transition time of up to 100µsec is permitted.
August 23, 1993
6
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
AC CHARACTERISTICS
GND = 0V, tR = tF = 2.5ns, CL = 50pF, RL = 500Ω
LIMITS
SYMBOL
PARAMETER
Tamb = -40 to
+85oC
VCC = +5.0V ±0.5V
Tamb = +25oC
VCC = +5.0V
WAVEFORM
MAX
MIN
UNIT
MIN
TYP
fMAX
Maximum clock frequency
1
130
190
MAX
tPLH
tPHL
Propagation delay
nCPAB to nBx or nCPBA to nAx
1
2.1
2.7
3.9
4.4
5.3
5.7
2.1
2.7
5.8
6.3
ns
tPLH
tPHL
Propagation delay
nAx to nBx or nBx to nAx
2
1.4
1.4
3.2
3.3
4.3
4.7
1.4
1.4
4.8
5.3
ns
tPLH
tPHL
Propagation delay
nSAB to nBx or nSBA to nAx
3
1.3
2.1
3.6
3.8
5.0
5.3
1.3
2.1
5.6
5.8
ns
tPZH
tPZL
Output enable time
nOEBA to nAx
5
6
1.0
1.8
2.9
3.6
4.1
4.8
1.0
1.8
4.8
5.5
ns
tPHZ
tPLZ
Output disable time
nOEBA to nAx
5
6
1.0
1.6
3.8
3.2
5.0
4.5
1.0
1.6
5.5
5.1
ns
tPZH
tPZL
Output enable time
nOEAB to nBx
5
6
1.2
2.7
3.7
4.5
5.0
5.8
1.2
2.7
5.6
6.3
ns
tPHZ
tPLZ
Output disable time
nOEAB to nBx
5
6
1.0
1.2
3.4
3.1
4.7
4.2
1.0
1.2
5.3
4.9
ns
130
MHz
AC SETUP REQUIREMENTS
GND = 0V, tR = tF = 2.5ns, CL = 50pF, RL = 500Ω
LIMITS
SYMBOL
PARAMETER
+25oC
Tamb =
VCC = +5.0V
WAVEFORM
Tamb = -40 to +85oC
VCC = +5.0V ±0.5V
MIN
TYP
MIN
UNIT
ts(H)
ts(L)
Setup time
nAx to nCPBA, nBx to nCPAB
4
2.0
1.5
0.8
-0.1
2.0
1.5
ns
th(H)
th(L)
Hold time
nAx to nCPBA, nBx to nCPAB
4
1.5
1.0
0.1
-0.7
1.5
1.0
ns
tw(H)
tw(L)
Pulse width, High or Low
nCPAB or nCPBA
1
4.5
3.0
2.5
2.0
4.5
3.0
ns
August 23, 1993
7
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
AC WAVEFORMS
VM = 1.5V, VIN = GND to 3.0V
1/fMAX
nAx or nBx
nCPBA or
nCPAB
VM
VM
VM
VM
VM
tPLH
tw(H)
tw(L)
nBx or nAx
tPLH
tPHL
nAx or nBx
VM
VM
VM
VM
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
VM
nAx or nBx
VM
tPHL
VM
ts(H)
tPLH
nAx or nBx
VM
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
Waveform 2. Propagation Delay, nAx to
nBx or nBx to nAx
Waveform 1. Propagation Delay, Clock Input to Output,
Clock Pulse Width, and Maximum Clock Frequency
nSBA or
nSAB
tPHL
VM
Waveform 3. Propagation Delay, SBA to
nAx or SAB to nBx
VM
tw(L)
th(L)
VM
Waveform 4. Data Setup and Hold Times
nOEBA
nOEBA
VM
VM
VM
VM
nOEAB
nOEAB
tPZH
nAx or nBx
tPHZ
VM
tPZL
VOH –0.3V
tPLZ
VM
nAx or nBx
0V
Waveform 5. 3-State Output Enable Time to High Level
and Output Disable Time from High Level
VOL +0.3V
0V
Waveform 6. 3-State Output Enable Time to Low Level
and Output Disable Time from Low Level
NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance.
PIN DESCRIPTION
PIN NUMBER
SYMBOL
48, 45, 19, 22
1CPAB, 1CPBA, 2CPAB, 2CPBA
Clock input A to B / Clock input B to A
49, 44, 18, 23
1SAB, 1SBA, 2SAB, 2SBA
Select input A to B / Select input B to A
50, 51, 1, 2, 3, 5, 6, 7, 8, 9,
10, 11, 12, 13, 15, 16
1A0 – 1A7,
2A0 – 2A7
Data inputs/outputs (A side)
42, 41, 39, 38, 37, 36, 35, 34,
33, 32, 31, 29, 28, 27, 25, 24
1B0 – 1B7,
2B0 – 2B7
Data inputs/outputs (B side)
47, 46, 20, 21
1OEAB, 1OEBA,
2OEAB, 2OEBA
4, 17, 30, 43
GND
Ground (0V)
14, 26, 40, 52
VCC
Positive supply voltage
August 23, 1993
VM
ts(L)
th(H)
nCPBA or
nCPAB
VM
VM
NAME AND FUNCTION
Output enable inputs
8
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
TEST CIRCUIT AND WAVEFORMS
VCC
7.0V
PULSE
GENERATOR
VIN
tW
90%
VOUT
VM
NEGATIVE
PULSE
10%
0V
tTHL (tF)
CL
tTLH (tR)
tTLH (tR)
RL
tTHL (tF)
90%
POSITIVE
PULSE
Test Circuit for 3-State Outputs
AMP (V)
90%
VM
VM
10%
10%
tW
SWITCH POSITION
TEST
SWITCH
tPLZ
closed
tPZL
closed
All other
open
0V
VM = 1.5V
Input Pulse Definition
INPUT PULSE REQUIREMENTS
DEFINITIONS
FAMILY
RL = Load resistor; see AC CHARACTERISTICS for value.
CL = Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
MB
RT = Termination resistance should be equal to ZOUT of
pulse generators.
August 23, 1993
AMP (V)
VM
10%
RL
D.U.T
RT
90%
9
Amplitude
Rep. Rate
tW
tR
tF
3.0V
1MHz
500ns
2.5ns
2.5ns
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
tPLH vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nCPAB to nBx or nCPBA to nAx
Adjustment of tPLH for
Load Capacitance and # of Outputs Switching
nCPAB to nBx or nCPBA to nAx
5
7
4
6
MAX
3
16 switching
8 switching
2
1 switching
Offset in ns
ns
5
4.5VCC
5.5VCC
4
3
1
MIN
0
2
–1
1
–2
–55
–35
–15
5
25
45
65
85
105
0
125
50
oC
150
200
pF
tPHL vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nCPAB to nBx or nCPBA to nAx
Adjustment of tPHL for
Load Capacitance and # of Outputs Switching
nCPAB to nBx or nCPBA to nAx
5
7
MAX
4
6
5
4.5VCC
5.5VCC
Offset in ns
ns
100
4
MIN
3
3
16 switching
8 switching
2
1 switching
1
0
2
–1
1
–2
–55
–35
–15
5
25
45
65
85
105
0
125
50
°C
100
150
200
pF
tPLH vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nAx to nBx or nBx to nAx
Adjustment of tPLH for
Load Capacitance and # of Outputs Switching
nAx to nBx or nBx to nAx
5
6
4
5
MAX
16 switching
8 switching
3
Offset in ns
ns
4
4.5VCC
5.5VCC
3
2
MIN
1
0
1
–1
0
–55
1 switching
2
–2
–35
–15
5
25
45
65
85
105
0
125
°C
August 23, 1993
50
100
pF
10
150
200
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
tPHL vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nAx to nBx or nBx to nAx
Adjustment of tPHL for
Load Capacitance and # of Outputs Switching
nAx to nBx or nBx to nAx
5
6
MAX
4
5
16 switching
8 switching
3
Offset in ns
ns
4
4.5VCC
5.5VCC
3
2
1 switching
2
1
0
MIN
1
–1
0
–2
–55
–35
–15
5
25
45
65
85
105
0
125
50
°C
100
150
200
pF
tPLH vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nSAB to nBx or nSBA to nAx
Adjustment of tPLH for
Load Capacitance and # of Outputs Switching
nSAB to nBx or nSBA to nAx
7
4
6
3
MAX
16 switching
8 switching
5
Offset in ns
2
4
ns
4.5VCC
5.5VCC
3
2
1 switching
1
0
MIN
–1
1
0
–2
–55
–35
–15
5
25
45
65
85
105
125
0
50
°C
100
150
200
pF
tPHL vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nSAB to nBx or nSBA to nAx
Adjustment of tPHL for
Load Capacitance and # of Outputs Switching
nSAB to nBx or nSBA to nAx
5
7
4
6
16 switching
8 switching
MAX
3
4
4.5VCC
3
5.5VCC
Offset in ns
ns
5
1
0
MIN
2
–1
1
–55
1 switching
2
–2
–35
–15
5
25
45
65
85
105
0
125
°C
August 23, 1993
50
100
pF
11
150
200
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
tPZH vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEBA to nAx
Adjustment of tPZH for
Load Capacitance and # of Outputs Switching
nOEBA to nAx
6
5
4
5
16 switching
8 switching
MAX
3
4.5VCC
3
1 switching
Offset in ns
ns
4
5.5VCC
2
2
1
0
MIN
1
–1
0
–55
–2
–35
–15
5
25
45
65
85
105
125
0
50
°C
100
150
200
pF
tPZL vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEBA to nAx
Adjustment of tPZL for
Load Capacitance and # of Outputs Switching
nOEBA to nAx
5
7
4
6
MAX
16 switching
8 switching
3
4
4.5VCC
5.5VCC
3
1 switching
Offset in ns
ns
5
2
1
0
MIN
2
–1
1
–2
–55
–35
–15
5
25
45
65
85
105
0
125
50
°C
100
150
tPHZ vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEBA to nAx
Adjustment of tPHZ for
Load Capacitance and # of Outputs Switching
nOEBA to nAx
7
10
6
16 switching
8 switching
1 switching
8
MAX
6
Offset in ns
5
ns
4
4.5VCC
3
5.5VCC
2
4
2
0
1
–2
MIN
0
–55
200
pF
–4
–35
–15
5
25
45
65
85
105
125
0
°C
August 23, 1993
50
100
pF
12
150
200
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
tPLZ vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEBA to nAx
Adjustment of tPLZ for
Load Capacitance and # of Outputs Switching
nOEBA to nAx
6
6
16 switching
8 switching
1 switching
5
MAX
5
4
3
4.5VCC
5.5VCC
2
MIN
3
Offset in ns
ns
4
2
1
0
1
–1
0
–2
–55
–35
–15
5
25
45
65
85
105
125
0
50
°C
100
150
200
pF
tPZH vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEAB to nBx
Adjustment of tPZH for
Load Capacitance and # of Outputs Switching
nOEAB to nBx
7
5
6
4
MAX
5
16 switching
8 switching
3
ns
Offset in ns
4.5VCC
5.5VCC
4
3
1 switching
2
1
2
0
MIN
1
–1
0
–2
–55
–35
–15
5
25
45
65
85
105
125
0
50
°C
100
150
200
pF
tPZL vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEAB to nBx
Adjustment of tPZL for
Load Capacitance and # of Outputs Switching
nOEAB to nBx
8
5
7
4
16 switching
MAX
5
3
MIN
ns
4
4.5VCC
5.5VCC
1 switching
2
1
0
2
–1
1
–55
8 switching
3
Offset in ns
6
–2
–35
–15
5
25
45
65
85
105
125
0
°C
August 23, 1993
50
100
pF
13
150
200
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
tPHZ vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEAB to nBx
Adjustment of tPHZ for
Load Capacitance and # of Outputs Switching
nOEAB to nBx
10
6
MAX
16 switching,
8 switching,
1 switching,
8
5
6
Offset in ns
4
ns
4.5VCC
3
5.5VCC
2
4
2
0
MIN
1
–2
0
–55
–4
–35
–15
5
25
45
65
85
105
0
125
50
°C
150
200
pF
tPLZ vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
nOEAB to nBx
Adjustment of tPLZ for
Load Capacitance and # of Outputs Switching
nOEAB to nBx
6
6
5
MAX
Offset in ns
4
ns
100
4.5VCC
5.5VCC
3
2
5
16 switching
8 switching
4
1 switching
3
2
1
MIN
0
1
–1
0
–55
–2
–35
–15
5
25
45
65
85
105
125
0
50
°C
150
200
pF
tTLH vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
4
100
Adjustment of tTLH for
Load Capacitance and # of Outputs Switching
9
16 switching
8 switching
1 switching
7
3
2
Offset in ns
ns
5
4.5VCC
5.5VCC
1
3
1
0
–1
0
–55
–3
–35
–15
5
25
45
65
85
105
0
125
°C
August 23, 1993
50
100
pF
14
150
200
Philips Semiconductors Products
Product specification
Dual octal transceiver/registers,
non-inverting (3-State)
MB2652
tTHL vs Temperature (Tamb)
CL = 50pF, 1 Output Switching
4
Adjustment of tTHL for
Load Capacitance and # of Outputs Switching
5
2
Offset in ns
ns
3
4.5VCC
5.5VCC
4
16 switching
8 switching
3
1 switching
2
1
0
1
–1
0
–2
–55
–35
–15
5
25
45
65
85
105
0
125
50
°C
200
VOHP and VOLV vs Load Capacitance
VCC = 5V, VIN = 0 to 3V
6
3.5
5
125°C
25°C
–55°C
3.0
125°C
25°C
–55°C
4
3
Volts
2.5
Volts
150
pF
VOHV and VOLP vs Load Capacitance
VCC = 5V, VIN = 0 to 3V
4.0
100
2.0
1.5
2
1
0
125°C
25°C
–55°C
1.0
0.5
125°C
25°C
–55°C
–1
–2
0
–3
0
50
100
150
0
200
pF
August 23, 1993
50
100
pF
15
150
200