PHILIPS 74HCT3G04DP

INTEGRATED CIRCUITS
DATA SHEET
74HC3G04; 74HCT3G04
Inverter
Product specification
Supersedes data of 2002 Jul 26
2003 Oct 30
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
FEATURES
DESCRIPTION
• Wide supply voltage range from 2.0 to 6.0 V
The 74HC3G/HCT3G04 is a high-speed Si-gate CMOS
device and is pin compatible with low power Schottky
TTL (LSTTL). Specified in compliance with JEDEC
standard no. 7.
• Symmetrical output impedance
• High noise immunity
• Low power dissipation
The 74HC3G/HCT3G04 provides three inverting buffers.
• Balanced propagation delays
• Very small 8 pins package
• Output capability: standard
• ESD protection:
HBM EIA/JESD22-A114-A exceeds 2000 V
MM EIA/JESD22-A115-A exceeds 200 V.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf ≤ 6.0 ns.
TYPICAL
SYMBOL
PARAMETER
CONDITIONS
UNIT
HC3G04
tPHL/tPLH
propagation delay nA to nY
CI
input capacitance
CPD
power dissipation capacitance per buffer
CL = 50 pF; VCC = 4.5 V 8
notes 1 and 2
10
ns
1.5
1.5
pF
9
9
pF
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi × N + ∑ (CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in Volts;
N = total switching outputs;
∑ (CL × VCC2 × fo) = sum of outputs.
2. For HC3G04 the condition is VI = GND to VCC.
For HCT3G04 the condition is VI = GND to VCC − 1.5 V.
FUNCTION TABLE
See note 1.
INPUT
OUTPUT
nA
nY
L
H
H
L
Note
1. H = HIGH voltage level;
L = LOW voltage level.
2003 Oct 30
2
HCT3G04
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
TEMPERATURE RANGE
PINS
PACKAGE
MATERIAL
CODE
MARKING
−40 to +125 °C
8
TSSOP8
plastic
SOT505-2
H04
74HC3G04DP
74HCT3G04DP
−40 to +125 °C
8
TSSOP8
plastic
SOT505-2
T04
74HC3G04DC
−40 to +125 °C
8
VSSOP8
plastic
SOT765-2
H04
74HCT3G04DC
−40 to +125 °C
8
VSSOP8
plastic
SOT765-2
T04
PINNING
PIN
SYMBOL
DESCRIPTION
1
1A
data input 1A
2
3Y
data output 3Y
3
2A
data input 2A
4
GND
ground (0 V)
5
2Y
data output 2Y
6
3A
data input 3A
7
1Y
data output 1Y
8
VCC
supply voltage
handbook, halfpage
handbook, halfpage
1A 1
8 VCC
3Y 2
7
1Y
04
2A
3
6
3A
GND
4
5
2Y
1
1A
1Y
7
3
2A
2Y
5
6
3A
3Y
2
MNA719
MNA720
Fig.1 Pin configuration.
2003 Oct 30
Fig.2 Logic symbol.
3
Philips Semiconductors
Product specification
Inverter
handbook, halfpage
74HC3G04; 74HCT3G04
1
1
7
3
1
5
handbook, halfpage
A
Y
MNA110
6
1
2
MNA721
Fig.3 IEC logic symbol.
2003 Oct 30
Fig.4 Logic diagram (one driver).
4
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
RECOMMENDED OPERATING CONDITIONS
74HC3G04
SYMBOL
PARAMETER
74HCT3G04
CONDITIONS
UNIT
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
VCC
supply voltage
2.0
5.0
6.0
4.5
5.0
5.5
V
VI
input voltage
0
−
VCC
0
−
VCC
V
VO
output voltage
0
−
VCC
0
−
VCC
V
Tamb
operating ambient
temperature
+25
+125
−40
+25
+125
°C
tr, tf
input rise and fall times
see DC and AC
−40
characteristics per
device
VCC = 2.0 V
−
−
1000
−
−
−
ns
VCC = 4.5 V
−
6.0
500
−
6.0
500
ns
VCC = 6.0 V
−
−
400
−
−
−
ns
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).
SYMBOL
PARAMETER
VCC
supply voltage
IIK
input diode current
CONDITIONS
VI < −0.5 V or VI > VCC + 0.5 V; note 1
MIN.
MAX.
UNIT
−0.5
+7.0
V
−
±20
mA
IOK
output diode current
VO < −0.5 V or VO > VCC + 0.5 V; note 1
−
±20
mA
IO
output source or sink current
−0.5 V < VO < VCC + 0.5 V; note 1
−
25
mA
ICC
VCC or GND current
note 1
−
50
mA
Tstg
storage temperature
−65
+150
°C
PD
power dissipation
Tamb = −40 to +125 °C; note 2
−
300
mW
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above 110 °C the value of PD derates linearly with 8 mW/K.
2003 Oct 30
5
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
DC CHARACTERISTICS
Type 74HC3G04
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = 25 °C
VIH
VIL
VOH
VOL
2.0
1.5
1.2
−
V
4.5
3.15
2.4
−
V
6.0
4.2
3.2
−
V
2.0
−
0.8
0.5
V
4.5
−
2.1
1.35
V
6.0
−
2.8
1.8
V
IO = −20 µA
2.0
1.9
2.0
−
V
IO = −20 µA
4.5
4.4
4.5
−
V
IO = −20 µA
6.0
5.9
6.0
−
V
IO = −4.0 mA
4.5
4.18
4.32
−
V
IO = −5.2 mA
6.0
5.68
5.81
−
V
IO = 20 µA
2.0
−
0
0.1
V
IO = 20 µA
4.5
−
0
0.1
V
IO = 20 µA
6.0
−
0
0.1
V
IO = 4.0 mA
4.5
−
0.15
0.26
V
HIGH-level input voltage
LOW-level input voltage
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
IO = 5.2 mA
6.0
−
0.16
0.26
V
ILI
input leakage current
VI = VCC or GND
6.0
−
−
±0.1
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
6.0
−
−
1.0
µA
2003 Oct 30
6
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = −40 to +85 °C
VIH
VIL
VOH
VOL
2.0
1.5
−
−
V
4.5
3.15
−
−
V
6.0
4.2
−
−
V
2.0
−
−
0.5
V
4.5
−
−
1.35
V
6.0
−
−
1.8
V
IO = −20 µA
2.0
1.9
−
−
V
IO = −20 µA
4.5
4.4
−
−
V
IO = −20 µA
6.0
5.9
−
−
V
IO = −4.0 mA
4.5
4.13
−
−
V
IO = −5.2 mA
6.0
5.63
−
−
V
IO = 20 µA
2.0
−
−
0.1
V
IO = 20 µA
4.5
−
−
0.1
V
HIGH-level input voltage
LOW-level input voltage
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
IO = 20 µA
6.0
−
−
0.1
V
IO = 4.0 mA
4.5
−
−
0.33
V
IO = 5.2 mA
6.0
−
−
0.33
V
ILI
input leakage current
VI = VCC or GND
6.0
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
6.0
−
−
10
µA
2003 Oct 30
7
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = −40 to +125 °C
VIH
VIL
VOH
VOL
2.0
1.5
−
−
V
4.5
3.15
−
−
V
6.0
4.2
−
−
V
2.0
−
−
0.5
V
4.5
−
−
1.35
V
6.0
−
−
1.8
V
IO = −20 µA
2.0
1.9
−
−
V
IO = −20 µA
4.5
4.4
−
−
V
IO = −20 µA
6.0
5.9
−
−
V
IO = −4.0 mA
4.5
3.7
−
−
V
IO = −5.2 mA
6.0
5.2
−
−
V
IO = 20 µA
2.0
−
−
0.1
V
IO = 20 µA
4.5
−
−
0.1
V
HIGH-level input voltage
LOW-level input voltage
HIGH-level output voltage
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
IO = 20 µA
6.0
−
−
0.1
V
IO = 4.0 mA
4.5
−
−
0.4
V
IO = 5.2 mA
6.0
−
−
0.4
V
ILI
input leakage current
VI = VCC or GND
6.0
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
6.0
−
−
20
µA
2003 Oct 30
8
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
Type 74HCT3G04
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = 25 °C
VIH
HIGH-level input voltage
4.5 to 5.5
2.0
1.6
−
V
VIL
LOW-level input voltage
4.5 to 5.5
−
1.2
0.8
V
VOH
HIGH-level output voltage
IO = −20 µA
4.5
4.4
4.5
−
V
IO = −4.0 mA
4.5
4.18
4.32
−
V
VOL
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
IO = 20 µA
4.5
−
0
0.1
V
IO = 4.0 mA
4.5
−
0.15
0.26
V
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±0.1
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
5.5
−
−
1.0
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0
4.5 to 5.5
−
−
300
µA
Tamb = −40 to +85 °C
VIH
HIGH-level input voltage
4.5 to 5.5
2.0
−
−
V
VIL
LOW-level input voltage
4.5 to 5.5
−
−
0.8
V
VOH
HIGH-level output voltage
IO = −20 µA
4.5
4.4
−
−
V
IO = −4.0 mA
4.5
4.13
−
−
V
4.5
−
−
0.1
V
VOL
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
IO = 20 µA
IO = 4.0 mA
4.5
−
−
0.33
V
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
5.5
−
−
10
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0
4.5 to 5.5
−
−
375
µA
2003 Oct 30
9
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 to +125 °C
VIH
HIGH-level input voltage
4.5 to 5.5
2.0
−
−
V
VIL
LOW-level input voltage
4.5 to 5.5
−
−
0.8
V
VOH
HIGH-level output voltage
IO = −20 µA
4.5
4.4
−
−
V
IO = −4.0 mA
4.5
3.7
−
−
V
IO = 20 µA
4.5
−
−
0.1
V
IO = 4.0 mA
4.5
−
−
0.4
V
VOL
LOW-level output voltage
VI = VIH or VIL
VI = VIH or VIL
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
IO = 0
5.5
−
−
20
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0
4.5 to 5.5
−
−
410
µA
2003 Oct 30
10
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
AC CHARACTERISTICS
Type 74HC3G04
GND = 0 V; tr = tf ≤ 6.0 ns; CL = 50 pF.
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
WAVEFORMS
TYP.
MAX.
UNIT
VCC (V)
Tamb = 25 °C
tPHL/tPLH
tTHL/tTLH
propagation delay nA to nY see Figs 5 and 6
output transition time
see Figs 5 and 6
2.0
−
22
75
ns
4.5
−
8
15
ns
6.0
−
6
13
ns
2.0
−
18
75
ns
4.5
−
6
15
ns
6.0
−
5
13
ns
2.0
−
−
90
ns
4.5
−
−
18
ns
6.0
−
−
16
ns
2.0
−
−
95
ns
4.5
−
−
19
ns
6.0
−
−
16
ns
2.0
−
−
110
ns
4.5
−
−
22
ns
6.0
−
−
20
ns
2.0
−
−
125
ns
4.5
−
−
25
ns
6.0
−
−
20
ns
Tamb = −40 to +85 °C
tPHL/tPLH
tTHL/tTLH
propagation delay nA to nY see Figs 5 and 6
output transition time
see Figs 5 and 6
Tamb = −40 to +125 °C
tPHL/tPLH
tTHL/tTLH
2003 Oct 30
propagation delay nA to nY see Figs 5 and 6
output transition time
see Figs 5 and 6
11
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
Type 74HCT3G04
GND = 0 V; tr = tf ≤ 6.0 ns; CL = 50 pF.
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
WAVEFORMS
TYP.
MAX.
UNIT
VCC (V)
Tamb = 25 °C
tPHL/tPLH
propagation delay nA to nY see Figs 5 and 6
4.5
−
10
18
ns
tTHL/tTLH
output transition time
see Figs 5 and 6
4.5
−
6
15
ns
tPHL/tPLH
propagation delay nA to nY see Figs 5 and 6
4.5
−
−
23
ns
tTHL/tTLH
output transition time
see Figs 5 and 6
4.5
−
−
19
ns
tPHL/tPLH
propagation delay nA to nY see Figs 5 and 6
4.5
−
−
29
ns
tTHL/tTLH
output transition time
4.5
−
−
22
ns
Tamb = −40 to +85 °C
Tamb = −40 to +125 °C
see Figs 5 and 6
AC WAVEFORMS
VI
handbook, halfpage
nA input
VM
VM
GND
t PHL
t PLH
VOH
nY output
90%
VM
VM
10%
VOL
t THL
t TLH
MNA722
For HC3G: VM = 50%; VI = GND to VCC.
For HCT3G: VM = 1.3 V; VI = GND to 3.0 V.
Fig.5 The input (nA) to output (nY) propagation delays and the output transition times.
2003 Oct 30
12
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
S1
handbook, full pagewidth
VCC
PULSE
GENERATOR
RL =
VI
VCC
open
GND
1 kΩ
VO
D.U.T.
CL =
50 pF
RT
MNA742
TEST
S1
tPLH/tPHL
open
tPLZ/tPZL
VCC
tPHZ/tPZH
GND
Definitions for test circuit:
CL = load capacitance including jig and probe capacitance.
RT = termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.6 Load circuitry for switching times.
2003 Oct 30
13
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
PACKAGE OUTLINES
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm
D
E
A
SOT505-2
X
c
HE
y
v M A
Z
5
8
A
A2
(A3)
A1
pin 1 index
θ
Lp
L
1
4
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(1)
e
HE
L
Lp
v
w
y
Z(1)
θ
mm
1.1
0.15
0.00
0.95
0.75
0.25
0.38
0.22
0.18
0.08
3.1
2.9
3.1
2.9
0.65
4.1
3.9
0.5
0.47
0.33
0.2
0.13
0.1
0.70
0.35
8°
0°
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
OUTLINE
VERSION
SOT505-2
2003 Oct 30
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-01-16
---
14
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm
D
E
SOT765-1
A
X
c
y
HE
v M A
Z
5
8
Q
A
A2
A1
pin 1 index
(A3)
θ
Lp
1
4
e
L
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(2)
e
HE
L
Lp
Q
v
w
y
Z(1)
θ
mm
1
0.15
0.00
0.85
0.60
0.12
0.27
0.17
0.23
0.08
2.1
1.9
2.4
2.2
0.5
3.2
3.0
0.4
0.40
0.15
0.21
0.19
0.2
0.13
0.1
0.4
0.1
8°
0°
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT765-1
2003 Oct 30
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-06-07
MO-187
15
Philips Semiconductors
Product specification
Inverter
74HC3G04; 74HCT3G04
DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2003 Oct 30
16
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA75
© Koninklijke Philips Electronics N.V. 2003
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
613508/02/pp17
Date of release: 2003
Oct 30
Document order number:
9397 750 10568