INTEGRATED CIRCUITS DATA SHEET SAA2003 Stereo filter and codec Preliminary specification File under Integrated Circuits, IC01 Philips Semiconductors May 1994 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 FEATURES • Single-chip stereo filter and codec • Wide operating voltage range: 2.7 to 5.5 V • Low-power consumption: 98 mW; 3.0 V • Sleep mode for low power and low Electromagnetic Interference (EMI) GENERAL DESCRIPTION • Transparent serial audio data mode in sleep The SAA2003 performs the sub-band filtering and audio frame codec functions in the Precision Adaptive Sub-band Coding (PASC) system. It can be used as a stand-alone decoder for playback only applications, but requires the addition of an Adaptive Allocation and Scale Factor processor (SAA2013) in order to perform PASC encoding in a DCC record system. • IEC 958 digital output • Peak level detector for start of track detection or VU meter • Versatile fade processor; slow/fast fade, mute, 12 dB attenuation • Serial audio interface for I2S or EIAJ formats • Error concealment • Three-wire L3 bus microcontroller interface • Three sample rates: – 32 kHz – 44.1 kHz – 48 kHz • Internal or external clock source • Three programmable outputs • Small surface mounted package (SOT307). ORDERING INFORMATION EXTENDED TYPE NUMBER SAA2003H PACKAGE PINS PIN POSITION MATERIAL CODE 44 QFP(1) plastic SOT307 Note 1. When using reflow soldering it is recommended that the Dry Packing instructions in the “Quality Reference Pocketbook” are followed. The pocketbook can be ordered using the code 9398 510 34011. May 1994 2 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 BLOCK DIAGRAM X22OUT X24OUT CLK24 FS256 X22IN X24IN CLK22 X256 handbook, full pagewidth 6 5 10 9 4 11 37 VDD1 V DD2 VDD3 38 28 7 39 32 CLOCK GENERATOR TEST0 TEST1 IECOP MUTEDAC 31 19 20 30 FS128 6.15 MHz FS256 SBMCLK 29 ATTDAC DEEMDAC IEC 958 OUTPUT 25 SBWS WS 36 35 SCK SD1 SD2 34 33 24 BASEBAND SERIAL INTERFACE AND PEAK DETECTOR SUBBAND SERIAL INTERFACE SAA2003 23 22 26 STEREO SUBBAND FILTER PROCESSOR SBCL SBDA SBDIR SBEF PASC CODEC PROCESSOR 21 13 MICROCONTROLLER INTERFACE AND CONTROL FILTERED DATA INTERFACE URDA RESET 12 SLEEP 27 8 40 V SS1 V SS2 V SS3 43 2 3 FDCL FSYNC 44 1 FDAO FDWS 17 18 LTCNT0 FDAI May 1994 3 L3DATA LTCNT1 Fig.1 Block diagram. 14 15 16 41 L3MODE L3CLK 42 SYNCDAI FDIR MBD618 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 PINNING SYMBOL PIN DESCRIPTION TYPE FDAI 1 filtered data input from SAA2013 I FDCL 2 filtered data bit clock O FDWS 3 filtered data word select O CLK22 4 22.5792 MHz buffered clock output O X22OUT 5 22.5792 MHz crystal output O X22IN 6 22.5792 MHz crystal input I VDD2 7 supply voltage (clock oscillator) − VSS2 8 supply ground (clock oscillator) − X24OUT 9 24.576 MHz crystal output O X24IN 10 24.576 MHz crystal input I CLK24 11 24.576 MHz buffered clock output O SLEEP 12 sleep mode; device inactive I RESET 13 device reset I L3DATA 14 3-wire interface; serial data L3CLK 15 3-wire interface; bit clock I L3MODE 16 3-wire interface; mode control I LTCNT0 17 LT interface; control bit 0 I LTCNT1 18 LT interface; control bit 1 I TEST0 19 test mode select I TEST1 20 test mode select I URDA 21 unreliable data flag from drive processor I SBDIR 22 sub-band data direction I SBDA 23 sub-band serial data I/O SBCL 24 sub-band bit clock I/O SBWS 25 sub-band word select I/O SBEF 26 sub-band error flag from drive processor I I/O VSS1 27 digital supply ground − VDD1 28 digital supply voltage − IECOP 29 IEC 958 digital audio output O DEEMDAC 30 DAC control or general purpose output O ATTDAC 31 DAC control or general purpose output O MUTEDAC 32 DAC control or general purpose output O SD2 33 serial audio data to DAC O SD1 34 serial audio data to/from DAIO and DAC I/O SCK 35 serial audio data bit clock I/O WS 36 serial audio data word select I/O X256 37 master audio clock from external source I FS256 38 master audio clock at 256 times sample frequency O VDD3 39 supply voltage (FS256) − VSS3 40 supply ground (FS256) − May 1994 4 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL SAA2003 PIN DESCRIPTION TYPE filtered data output to SAA2013 O FDAI 1 33 SD2 FDCL 2 32 MUTEDAC FDWS 3 31 ATTDAC CLK22 4 30 DEEMDAC X22OUT 5 X22IN 6 VDD2 7 27 VSS1 VSS2 8 26 SBEF X24OUT 9 25 SBWS 29 IECOP SAA2003 28 VDD1 5 SBDIR 22 URDA 21 TEST1 20 TEST0 19 LTCNT1 18 LTCNT0 17 L3CLK 15 L3MODE 16 L3DATA 14 23 SBDA SLEEP 12 24 SBCL CLK24 11 RESET 13 X24IN 10 Fig.2 Pin configuration. May 1994 34 SD1 44 35 SCK FDAO 36 WS O 37 X256 O sub-band 0 sample synchronization for SAA2013 38 FS256 settings synchronization for DAIO 43 39 VDD3 42 FSYNC 41 FDIR SYNCDAI 40 VSS3 O 42 SYNCDAI filter direction; encode or decode 43 FSYNC 41 44 FDAO FDIR MBD619 DAC TDA1305 analog output R baseband I 2S SFC3 SAA2003 STEREO FILTER CODEC sub-band I 2S L analog input ADC SAA7366 R filtered I2 S WRAMP TDA1381 WRITE AMP. DRP SAA2023 OR SAA3323 DRIVE PROCESSOR FIXED HEAD TAPE RDAMP TDA1380 READ AMP. 6 ADAS3 SAA2013 ADAPTIVE ALLOCATION IEC958 CAPSTAN DRIVE Philips Semiconductors speed control Stereo filter and codec L FUNCTIONAL DESCRIPTION May 1994 RAM 41464 BUFFER 64K x 4 DIGITAL AUDIO I/O TDA1315 MECHANICS DRIVERS search data analog CC L output AUDIO IN/OUT PASC PROCESSOR TAPE DRIVE PROCESSING detect switch SYSTEM MICROCONTROLLER SAA2003 Fig.3 DCC system block diagram. MBD620 Preliminary specification SYSTEM CONTROL handbook, full pagewidth analog CC R output Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 right (I and II) audio data for 12 samples from each of the 32 sub-bands, a total of 768 audio samples. For every PASC frame the SAA2013 calculates a bit allocation and scale factor table which is transferred to the SAA2003. All the samples in a frame are scaled in accordance with the scale factor calculated by the SAA2013. Once scaled the samples are re-quantized to reduce the number of bits to correspond with the allocation table calculated by the SAA2013. Synchronization, allocation and scale factor information is then added to provide a fully encoded PASC data signal. These frames of data are then sent to the drive processor IC (SAA2023 or SAA3323). PASC processor The PASC processor is a dedicated Digital Signal Processor (DSP) engine which efficiently codes digital audio data at a bit rate of 384 kbits/s without affecting the sound quality. This is achieved using an efficient adaptive data notation and by only encoding the information which can be heard by the human ear. The audio data is split into 32 equal sub-bands during encoding. For each of the sub-bands a masking threshold is calculated. The samples from each of the sub-bands are included in the PASC data with an accuracy that is determined by the available bit-pool and by the difference between the signal power and the masking threshold for that sub-band. DECODING (SEE FIG.5) In decoding mode the SAA2003 synchronizes and recovers frames of data from the drive processor. The recovered allocation data and the scale factors are used to correctly re-quantize and re-scale the PASC sub-band samples. The decoded sub-band samples, which are represented in 24-bits two’s complement notation, are reconstructed by the sub-band filters into a single complete digital audio signal. The stereo filter codec performs the splitting (encoding) and reconstruction (decoding), including the necessary formatting functions. During encoding, the adaptive allocation and scaling circuit calculates the required accuracy (bit allocation) and scale factors of the sub-band samples. ENCODING (SEE FIG.4) The incoming serial audio data is filtered into 32 sub-bands for left and right (I and II) channels using the stereo filter part of the SAA2003. A PASC frame is made up of left and handbook, full pagewidth from SAA2013 allocation information and scale factor indices ALLOCATION AND SCALE FACTOR INFORMATION TABLE SYNC AND CODING INFORMATION baseband samples SUB-BAND FILTER sub-band samples SCALING AND QUANTI ZATION FORMATTER PASC OUTPUT DATA quantified samples MLB764 Fig.4 Encoding mode. May 1994 7 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 handbook, full pagewidth sync/coding allocation scale factor PASC data input DE– FORMATTER quantified samples CONTROL SCALE FACTOR ARRAY AND ALLOCATION MULTIPLY DE-QUANTIZATION OUTPUT CONTROL sub-band samples SUB-BAND FILTER baseband samples MEA804 - 1 Fig.5 Decoding mode. Crystal oscillators The recommended crystal oscillator configuration is shown in Fig.6. The specified component values only apply to crystals with a low equivalent series resistance of <40 Ω. C2 33 pF C1 33 pF X22IN 22.5792 MHz X1 X22OUT R2 220 Ω C3 33 pF C4 33 pF 24.576 MHz X2 40 R1 1 MΩ X24IN 41 42 SAA2003 R4 1 MΩ X24OUT 43 R3 1 kΩ MBD621 Fig.6 Crystal oscillator components. System reset Reset must be active from system power-up for >1 ms. Reset must also be active for >1 ms after the falling edge of sleep as shown in Fig.7. May 1994 8 Philips Semiconductors Preliminary specification Stereo filter and codec handbook, full pagewidth SAA2003 MODE 1 MODE 2 MODE 3 t1 t2 MODE 4 t3 STANDBY RESET CLK24/CLK22 I/O's STATIC ACTIVE ACTIVE ACTIVE ACTIVE MBD622 Fig.7 Reset and sleep timing. Table 1 Reset and sleep timing modes (see Fig.7). MODE DESCRIPTION TIMING MIN. MAX. UNIT MODE1 standby stage 1; clocks still running t1 400 − ns MODE2 standby mode; clocks stopped t2 0 − ns MODE3 clocks running; reset active t3 1 − ms MODE4 normal operational mode − − − Sleep mode A HIGH input applied to the SLEEP pin halts all internally generated clock signals. If the transparent mode of the serial audio interface is set before entering sleep, the data at the X256 external clock input is sent to the FS256 output and the data at SD1 input is sent to the SD2 output. If transparent mode is not set, these two outputs are high impedance during sleep mode. The IECOP pin is set to high impedance during sleep mode, unless the transparent mode is selected and WS-SEL is set. May 1994 9 Philips Semiconductors Preliminary specification Stereo filter and codec Table 2 SAA2003 Transparent mode function in sleep. TRANSPARENT MODE(1) WS-SEL(2) FS256 1 X FS256 FS256 0 X high impedance SD2 1 X SD1 SD2 0 X high impedance IECOP 0 X high impedance IECOP 1 0 high impedance IECOP 1 1 WS PIN PIN FUNCTION Notes 1. Transparent mode is controlled by bit 3 of the serial audio data interface mode control register. 2. WS-SEL is controlled by bit 3 of the codec extended settings register. Serial audio interface The signals between the SAA2003 and the serial audio input/output are shown in Table 3. Table 3 Interface signals between SAA2003 and serial audio input/output. PIN INPUT/OUTPUT FUNCTION FREQUENCY WS bi-directional audio data word select fs SCK bi-directional audio data bit clock 64fs SD1 bi-directional serial audio data to/from DAIO and ADC − SD2 output audio serial data to DAC − FDIR output PASC mode encode/decode − IECOP output alternative serial data word select for SD2 − The word select (WS) line indicates the channel being transmitted (either left or right; I or II) and is equal in frequency to the sampling frequency (fs). Operating at a frequency of 64 × fs, the bit clock (SCK) dictates that each WS period contains 64 SD1 or SD2 data bits. Of these bits a maximum of 36 are used to transfer data (samples may have a length up to 18 bits). Samples are transferred most significant bit (MSB) first. Both WS and SD1/SD2 change state at the negative edge of SCK. The serial audio data is transferred between the SAA2003 and the input/output using either the standard I2S (default) as shown in Fig.8 or the EIAJ format as shown in Fig.9. May 1994 10 2 3 17 18 31 32 33 34 35 49 50 63 0 1 2 SCL left channel data SWS SD1/ SD2 MSB Philips Semiconductors 1 Stereo filter and codec May 1994 0 right channel data MSB LSB MSB LSB a. 11 0 1 2 3 12 13 14 15 16 17 18 19 28 29 30 31 0 1 2 SCL left channel data SWS SD1/ SD2 MSB right channel data LSB MSB LSB MSB MBD623 b. Preliminary specification Fig.8 Serial audio interface SD1/SD2; I2S data format. SAA2003 a. Master and slave modes; 18 bits. b. Slave mode only; 16 bits. 2 14 15 30 31 32 33 46 47 62 63 0 1 2 SCL left channel data SWS SD1/ SD2 MSB Philips Semiconductors 1 Stereo filter and codec May 1994 0 right channel data MSB LSB MSB MSB LSB MSB a. 12 0 1 2 16 17 30 31 32 33 48 49 62 63 0 1 2 SCL left channel data SWS SD1/ SD2 MSB MSB right channel data LSB MSB MSB LSB MSB MBD624 b. Preliminary specification Fig.9 Serial audio interface SD1; EIAJ data format. SAA2003 a. Master mode; 18 bits. b. Master mode (EIAJ); 16 bits. Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 SERIAL AUDIO INTERFACE DATA FORMATS IN ENCODING MODE In encoding mode, the serial audio data input for the PASC processor is taken from the SD1 pin. This data is scaled by the fade processor before being sent to the PASC processor. The output from the fade processor is sent in parallel to the SD2 output. Both I2S and EIAJ formats are supported. Table 4 Serial audio data interface formats in encoding mode. SD1 INPUT FORMAT MASTER/SLAVE I2S master I2 S slave I2 S master SD2 OUTPUT RESOLUTION FORMAT RESOLUTION 18 bit I2S 18 bit 18 bit I2S 18 bit 16 bit I2S 18 bit 16 bit I2 S slave 16 bit I2S EIAJ(1) master 18 bit I2S 18 bit 18 bit I2S 18 bit 16 bit I2S 18 bit 16 bit I2S 18 bit EIAJ(1) slave EIAJ(1) master EIAJ(1) slave Note 1. If SD1 is used in EIAJ mode, and the data from SD2 is required, the IECOP can be re-programmed to provide a suitable I2S WS signal for SD2. The IEC 958 output is not available in this mode. SERIAL AUDIO INTERFACE DATA FORMATS IN DECODING MODE In decoding mode, the output from the PASC processor, connected via the fade processor, is present at both SD1 and SD2. Both I2S and EIAJ formats are supported. Table 5 SD1/SD2 output decoding formats. FORMAT RESOLUTION(1) MASTER/SLAVE I2S master 18 bit I2S slave 18 bit I2S master 16 bit I2S slave 16 bit EIAJ master 18 bit EIAJ master 16 bit Note 1. The sub-band filter performs rounding to 16 or 18 bits according to the operating mode of the interface. SERIAL AUDIO INTERFACE MODE CONTROL The operating mode of the interface is programmed by the extended settings registers as shown in Table 6. May 1994 13 Philips Semiconductors Preliminary specification Stereo filter and codec Table 6 SAA2003 Extended settings register. A3 A2 A1 A0 D3 D2 D1 D0 MODE 0 0 1 0 X X X 0 16 bit operation; 16 bit rounding 0 0 1 0 X X X 1 18 bit operation; 18 bit rounding 0 0 1 0 X X 0 X I2S data format 0 0 1 0 X X 1 X EIAJ data format 0 0 1 0 X 0 X X peak detector input SD1 0 0 1 0 X 1 X X peak detector input SD2 0 0 1 0 0 X X X SD1/FS256 transparent mode disabled 0 0 1 0 1 X X X SD1/FS256 transparent mode enabled Filtered data interface The filtered data interface transfers the sub-band filtered data between the stereo filter codec and adaptive allocation and scaling parts of the DCC chip-set, and consists of the signals as shown in Table 7. Table 7 Filtered data interface signals. PIN INPUT/OUTPUT FUNCTION FREQUENCY FDCL output filtered data bit clock 64fs FDWS output filtered data word select fs FDAO output filtered data serial output − FDAI input filtered data serial input − FDIR output decode/encode control − FSYNC output filtered data sync signal; band zero − FILTERED DATA INTERFACE FORMAT The filtered data is transferred over the interface in accordance with the formats illustrated in Figs 10 and 11. handbook, full pagewidth channel right left 32 bits FDWS FDCL 1 7 bits FDAI/ FDAO bit : 2 3 MSB 2 2 2 1 2 0 0 2 0 1 0 0 2 3 LSB MSB Fig.10 Transfer of filtered data; SAA2003/SAA2013. May 1994 14 2 2 2 1 2 0 MLB765 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 32 bits SBWS SBCL 1 15 bits 1 SBDA 0 0 0 1 MSB bit : 0 2 0 3 1 0 1 1 1 2 1 3 1 4 1 5 LSB 1 1 6 7 MSB 1 8 1 9 2 0 2 1 2 2 SBEF byte 0 byte 1 byte 2 MEA649 - 2 Fig.11 Transfer of sub-band PASC data. Sub-band serial PASC interface The sub-band serial interface carries the PASC serial data stream between the stereo filter codec and the drive processor part of the DCC chip-set, and consists of the signals as shown in Table 8. Table 8 Sub-band serial PASC interface signals. PIN INPUT/OUTPUT FUNCTION FREQUENCY SBDIR input sub-band data direction control − SBDA input/output sub-band serial data − 1SBCL input/output sub-band bit clock 768 kHz SBWS input/output sub-band word select 12 kHz SBEF input sub-band data error flag − URDA input unreliable data flag − The SAA2003 generates SBWS and SBCL in both decode and encoding modes. In decode both signals can be set to inputs (slave mode) by bit 0 of the extended settings register. The filtered data interface timing is always derived from the 24.576 MHz clock, regardless of the audio sampling frequency. Table 9 Extended settings register. A3 A2 A1 A0 D3 D2 D1 D0 MODE 0 0 0 1 X X X 0 slave mode (default) 0 0 0 1 X X X 1 master mode Stereo and 2-channel mono encoding modes are available. Stereo, joint stereo and 2-channel mono decoding modes are available. In decoding and encoding, 48 kHz, 44.1 kHz and 32 kHz sample frequencies can be used. May 1994 15 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 The SYNCDAI signal is used to synchronize the digital audio input/output interface. SUB-BAND SERIAL PASC INTERFACE DATA FORMAT The PASC data is transferred over the interface described above using the format shown in Fig.11. Each period of SBWS spans 64 periods of the bit clock, SBCL, of which 32 SBCL periods are used to transfer PASC data. Audio peak level detector The peak level detector continuously encodes the maximum amplitude of the audio data samples for each audio channel until it is reset by the action of reading out the peak level data. The peak level data can be read by the SAA2013, and subsequently by the system microcontroller, or by the microcontroller directly when SAA2013 is not used. The 32 data bits transferred in one period of SBWS make up a complete sub-band slot, as defined in the DCC standard. The first 16 data bits (0, 1, 2, .., 15) are transferred while SBWS is LOW, and the second 16 data bits (16, 17, 18, .., 31) are transferred while SBWS is HIGH. The peak level data is read via the L3 interface in status read mode. The first 16 bits of status read transfer the status bits of SAA2003. The following 32 bits contain the peak level data. The peak level detector is reset when the 32 bits of peak level data are read. SBEF and URDA are generated by the drive processor during decode. The presence of the URDA flag causes the stereo filter codec to mute the audio output data, and lose audio frame synchronization. The direction of SBDA is controlled by the SBDIR input, which is connected to the drive processor. In encode, the peak level detector can be used to monitor the data on either SD1 (pre-fade processor) or SD2 (post fade processor). In slave EIAJ input modes the peak detection is only possible on output SD2. In decode mode, SD1 must be selected for peak detector input data. SYNCDAI signal SYNCDAI is a pulse of fixed duration which is generated by the SAA2003 when any of the following conditions occur: • Change of bit rate • Change of sampling frequency • Change from encode to decode and vice-versa • Change of FS256 clock source • Change of I2S bus master • Reset. handbook, full pagewidth L3MODE L3CLK L3DATA 8 15 0 7 16 17 30 31 32 33 46 47 MBD625 Fig.12 Peak level data format during status read. May 1994 16 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 Audio fade processor The fade processor is controlled by the system microcontroller. It achieves level control, or fading, by multiplying the audio samples with a 17 bit accuracy fade coefficient, which is selected by an 8-bit fade counter. The fade coefficients range from 0 to 1.0 according to a 1⁄4 cosine function. The attenuation for a particular fade count (FC) is given as follows: π × FC Attenuation (dB) = – 20 log cos ------------------ ( dB ) where: 0 ≤ FC ≤ 255. 510 In encode mode, audio samples are taken from input SD1 and scaled before sub-band filter processing, and sent to output SD2. In decode mode, audio samples are scaled following reconstruction by the sub-band filter, and sent to outputs SD1 and SD2. Table 10 Fade processor operating modes. MODE FUNCTION Fade rate controls rate of automatic increments and decrements Step down increases attenuation by one increment Step up reduces attenuation by one increment Full scale sets gain to unity, incrementing from current level automatically Mute sets gain to zero, decrementing from current level automatically −12 dB sets gain to −12 dB, decrementing or incrementing from current level automatically FADE PROCESSOR MODE CONTROL The operating mode of the fade processor is controlled by two extended registers Table 11 Fade processor mode control. A3 A2 A1 A0 D3 D2 D1 D0 MODE 0 0 1 1 P3 P2 P1 P0 0 1 0 0 0 0 0 1 set fade rate step down 0 1 0 0 0 0 1 0 step up 0 1 0 0 0 1 X 0 full scale slow 0 1 0 0 0 1 X 1 full scale fast 0 1 0 0 1 0 X 0 mute slow 0 1 0 0 1 0 X 1 mute fast 0 1 0 0 1 1 X 0 −12 dB slow 0 1 0 0 1 1 X 1 −12 dB fast 0 1 0 0 0 0 0 0 no action FADE RATE OPTION The fade rate can be set to either fast or slow modes. In fast mode the attenuation changes rate at one step per audio sample. In slow mode the rate of change of level is controlled by the fade rate bits P3 to P0. In slow mode, the fade counter is stepped up or down according to a clock derived from the WS pin. May 1994 17 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 Table 12 Fade rate in slow and fast modes. TIME PER STEP (ms) MODE P3 P2 P1 32 kHz − Fast − TIME FOR 256 STEPS (ms) P0 − − 31.2 µs 44.1 kHz 22.7 µs 48 kHz 20.8 µs 32 kHz 8.0 44.1 kHz 48 kHz 5.8 5.3 Slow 0 0 0 0 1.0 0.997 1.0 256 255 256 Slow 0 0 0 1 2.0 1.994 2.0 512 511 512 Slow 0 0 1 1 4.0 3.988 4.0 1024 1021 1024 Slow 0 1 1 1 8.0 7.980 8.0 2048 2043 2048 Slow 1 1 1 1 16.0 15.96 16.0 4096 4087 4096 IEC 958 output The IECOP pin provides an output signal in accordance with the IEC 958/SPDIF digital audio interface format. The function of the IECOP pin is programmed by bit 3 of the codec extended settings register; see Table 13. Table 13 IECOP pin control. A3 A2 A1 A0 D3 D2 D1 D0 IECOP FUNCTION 0 0 0 1 0 X X X IEC 958 (default) 0 0 0 1 1 X X X I2S word select for SD2 The IECOP output will only function when the SAA2003 is in decode mode. The IECOP cannot be used when SAA2013 is present in the system, unless the SAA2013 is in sleep mode. The IECOP output is disabled and set to high impedance by a reset. L3 bus The L3 bus is a three-wire clock synchronous data bus common to all ICs in the DCC chip-set. It consists of the L3MODE, L3CLK and L3DATA connections. The bus has two operating modes: • Addressing mode; selects the IC for communication and sets type of transfer. • Data mode; is used to send and receive data and control settings. The L3MODE and L3CLK lines are driven by the system microcontroller and L3DATA is a bi-directional line. LTCNT0 and LTCNT1 must be left unconnected when L3 mode is used. For normal use in L3 mode, LTCNT0 and LTCNT1 are held HIGH by internal pull-up resistors. The SAA2003 responds to serial addresses as shown in Table 14. Table 14 SAA2003 serial addresses. D0(1) D1(1) D2 D3 D4 D5 D6 D7 X X 0 0 0 1 0 0 Note 1. D0 and D1 are interpreted as LTCNT0 and LTCNT1 respectively. These two signals control the operation of the interface as given in Table 15. May 1994 18 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 Table 15 Interface modes. D0/LTCNT0 D1/LTCNT1 MODE 0 0 extended setting from microcontroller to SAA2003 1 0 allocation and scale factor information from SAA2013 to SAA2003 0 1 codec internal settings from microcontroller to SAA2003 1 1 codec status from SAA2003 to microcontroller and SAA2013 including peak level data Table 16 Register address settings. REGISTER(1) A3 A2 A1 A0 0 0 0 0 codec external settings 0 0 0 1 codec interface mode control 0 0 1 0 serial audio interface mode control 0 0 1 1 fade counter rate control 0 1 0 0 fade counter control Note 1. These registers are write only, accessed using the protocol shown in Fig.13. andbook, full pagewidth L3MODE L3CLK L3DATA D0 D1 D2 D3 A0 A1 A2 A3 MBD626 Fig.13 Extended settings protocol. Operation in LT mode LT interface mode can be selected by writing an extended settings word to the interface mode control register as shown in Table 17. Table 17 Interface mode control register. A3 A2 A1 A0 D3 D2 D1 D0 MODE 0 0 0 1 X X 1 X L3 mode (default) 0 0 0 1 X X 0 X LT mode In LT mode the LTCNT0 and LTCNT1 pins are used, and the L3MODE pin becomes LTEN enable line. L3CLK becomes LTCLK, and L3DATA becomes LTDATA. May 1994 19 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 Table 18 Summary of address registers. ADDRESS REGISTER BIT REGISTER 0 external settings register 1 codec extended settings 2 DESCRIPTION EXPLANATION serial audio mode control 0 mute DAC 1 attenuate DAC 2 de-emphasis DAC 3 clock OK hold mode 0 slave receive mode 1 L3/LT mode select 2 comparator delay bypass 3 WS/IEC 958 selection 0 18 bit operation 1 I2S/EIAJ format 2 peak detector input select 3 transparent mode 3 fade processor fade rate 0 to 3 rate control, 0 to 15 4 fade processor control 0 to 3 fade command 5 to 15 − not used − Codec internal settings and status The settings register is write only, and the status register is read only. The interface protocols for accessing these registers is shown in Figs 14 and 15. handbook, full pagewidth L3MODE L3CLK L3DATA 8 9 14 15 0 1 6 7 MBD627 Fig.14 Codec internal settings write transfer. May 1994 20 Philips Semiconductors L3CLK L3DATA 8 15 0 7 16 17 30 31 32 33 46 47 MBD628 Stereo filter and codec May 1994 L3MODE Fig.15 Codec status read transfer. 21 Preliminary specification SAA2003 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 The codec internal settings register is shown in Table 19. Table 19 Codec internal settings register formats. BITS 15 to 12 DESCRIPTION ENCODING/DECODING bit rate index encoding only sample frequency encoding only 9 decode mode encoding and decoding 8 external FS256 encoding and decoding 7 2 channel mono encoding only 6 mute sub-band filters encoding and decoding 5 external master I2S encoding and decoding 4 select channel I/II decoding only 3 and 2 transparent bits encoding only 1 and 0 emphasis indication encoding only 11 and 10 Table 20 Codec status register formats. BITS 15 to 12 11 and 10 9 DESCRIPTION ENCODING/DECODING bit rate index encoding and decoding sample frequency encoding and decoding ready-to-receive encoding and decoding not used − 7 and 6 sub-band mode encoding and decoding 5 synchronization decoding only 8 clock OK encoding and decoding 3 and 2 4 transparent bits encoding and decoding 1 and 0 emphasis indication encoding and decoding first channel identification − first channel peak level; LSB first − second channel identification − second channel peak level; LSB first − 16 17 to 31 32 33 to 47 May 1994 22 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 Average current consumption The average current consumption is shown in Fig.16. MBD640 80 handbook, halfpage I DD (mA) 60 40 20 0 2.5 3.5 4.5 V DD (V) 5.5 Fig.16 Average current consumption. Timing diagrams T FS handbook, full pagewidth t fH t fL FS256 t d1 t d1 SCK t cL t cH Tc t h2 WS, SD1 and SD2 t d2 MBD629 Fig.17 Serial audio interface timing in decode; master mode. May 1994 23 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 T FS handbook, full pagewidth t fH t fL FS256 t d1 t d1 SCK t cL t cH Tc t h2 WS and SD2 t su t h1 t d2 SD1 MLB602 Fig.18 Serial audio interface timing in encode; master mode. handbook, full pagewidth Tc t cL t cH SCK t su t h1 WS, SD1 t h2 SD1, SD2 T FS t FH td t FL FS256 MBD630 Fig.19 Serial audio interface timing; slave mode. May 1994 24 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 t SH handbook, full pagewidth SYNCDAI t d1 WS, SCK (slave to master) t d2 WS, SCK (slave to master) t d3 t d4 SD1 MBD631 Fig.20 Serial audio master/slave timing. andbook, full pagewidth T FS t FH t FL FS256 t d1 t d1 FDCL t cL t cH Tc t h2 FDWS, FDAO, FSYNC t d2 t su t h1 FDAI MBD632 Fig.21 Filtered data interface timing. May 1994 25 Philips Semiconductors Preliminary specification Stereo filter and codec handbook, full pagewidth sub-band # SAA2003 0 1 2 29 30 31 0 1 2 3 FDWS FSYNC MBD633 Fig.22 FSYNC output timing. ok, full pagewidth Tc t cL t cH SCK t d1 SBWS, SBDA t d2 (encode) t d4 t d3 SBWS (decode) t h1 t su1 SBDA t h2 t su2 SBEF MBD634 handbook, full pagewidth SBWS SBCL SBDA 0 1 2 3 4 5 6 7 8 9 10 11 12 L3DATA MBD635 Fig.23 Sub-band PASC interface timing. May 1994 26 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 t ML handbook, full pagewidth L3MODE t d1 t cH t cL t h2 L3CLK t su t h1 L3DATA (INPUT) t d2 t d3 L3DATA (OUTPUT) MBD637 Fig.24 L3 bus timing; addressing mode. handbook, full pagewidth L3MODE t d1 t cH t cL t h3 L3CLK t su t h1 L3DATA (INPUT) t d3 t d2 t d4 t h2 t d5 L3DATA (OUTPUT) t ML L3MODE MBD636 Fig.25 L3 bus timing; data transfer mode. May 1994 27 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 t SH handbook, full pagewidth SYNCDAI t d2 t d1 FS256 CLOCK SOURCE external internal t d5 t d4 FS256 CLOCK SOURCE internal external t d3 FDIR MBD638 Fig.26 Internal/external clock source transition timing. Tc24 t c24L t c24H CLK24 tf tr Tc22 t c22L t c22H CLK22 tf tr Fig.27 CLK22 and CLK24 timing. May 1994 28 MBD639 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT −0.5 +6.5 V −0.5 VDD + 0.5 V input current − 20 mA VO output voltage −0.5 +6.5 V IO output current − 20 mA IDDQ quiescent supply current − 100 µA Tstg storage temperature −65 +150 °C Tamb operating ambient temperature −40 +85 °C Ves1 electrostatic handling note 2 −2000 +2000 V Ves2 electrostatic handling note 3 −200 +200 V VDD supply voltage VI input voltage II note 1 clocks stopped Notes 1. The input voltage (VI) may not exceed 6.5 V. 2. Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor. 3. Equivalent to discharging a 200 pF capacitor through a 2.5 µH inductor. CHARACTERISTICS Tamb = −40 to 85 °C; VDD = 2.7 to 5.5 V; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supply VDD supply voltage IDD supply current 2.7 5.0 5.5 V VDD = 3.0 V − 32.5 35.0 mA VDD = 5.0 V − 68.8 75.0 mA sleep mode; VDD = 5.0 V − − 400 µA 0 − 0.3VDD V Inputs FDAI, L3CLK, URDA, SBDIR, SBEF, X256, SLEEP and L3MODE VIL LOW level input voltage VIH HIGH level input voltage ILI input leakage current CI input capacitance VI = 0 to VDD 0.7VDD − VDD V −10 − +10 µA − − 10 pF Inputs TEST0 and TEST1 VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V RI(pd) input pull-down resistance − 50 − kΩ CI input capacitance − − 10 pF May 1994 VI = VDD 29 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT Inputs LTCNT0 and LTCNT1 VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V RI(pu) input pull-up resistance − 50 − kΩ CI input capacitance − − 10 pF VI = 0 V Input RESET VtLH threshold voltage LOW-to-HIGH − − 0.8VDD V VtHL threshold voltage HIGH-to-LOW 0.2VDD − − V Vhys hysteresis voltage − 0.33VDD − V CI input capacitance − − 10 pF Outputs FDCL, FDWS, FDIR, FSYNC, FDAO, MUTEDAC, ATTDAC and DEEMDAC VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 30 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 30 pF − − 20 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 30 pF − − 20 ns Output CLK22 VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 30 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 30 pF − − 7 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 30 pF − − 7 ns Output CLK24 VOL LOW level output voltage IOL = 6 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −6 mA VDD − 0.4 − VDD V CL load capacitance − − 50 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 50 pF − − 7 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 50 pF − − 7 ns May 1994 30 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT Output SYNCDAI VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 40 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 40 pF − − 20 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 40 pF − − 20 ns Output FS256 VOL LOW level output voltage IOL = 6 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −6 mA VDD − 0.4 − VDD V CL load capacitance − − 60 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 60 pF − − 7 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 60 pF − − 7 ns ILI 3-state leakage current VI = 0 to VDD −10 − +10 µA Output SD2 VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 30 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 30 pF − − 20 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 30 pF − − 20 ns ILI 3-state leakage current VI = 0 to VDD −10 − +10 µA 0 − 0.4 V Output IECOP VOL LOW level output voltage IOL = 4 mA IOH = −4 mA VDD − 0.4 − VDD V − − 50 pF 0.4 V to VDD − 0.4 V; CL = 50 pF − − 20 ns output fall time VDD − 0.4 V to 0.4 V; CL = 50 pF − − 20 ns 3-state leakage current VI = 0 to VDD −10 − +10 µA VOH HIGH level output voltage CL load capacitance tr output rise time tf ILI May 1994 31 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT Inputs/outputs SBDA, SBCL and SBWS VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V RI(pd) input pull-down resistance VI = VDD − 50 − kΩ CI input capacitance − − 10 pF VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 30 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 30 pF − − 20 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 30 pF − − 20 ns Inputs/outputs SD1, SCK and WS VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V RI(pd) input pull-down resistance − 50 − kΩ CI input capacitance − − 10 pF VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 50 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 50 pF − − 20 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 50 pF − − 20 ns 0 − 0.3VDD V VI = VDD Input/output L3DATA VIL LOW level input voltage VIH HIGH level input voltage 0.7VDD − VDD V CI input capacitance − − 10 pF VOL LOW level output voltage IOL = 4 mA 0 − 0.4 V VOH HIGH level output voltage IOH = −4 mA VDD − 0.4 − VDD V CL load capacitance − − 60 pF tr output rise time 0.4 V to VDD − 0.4 V; CL = 60 pF − − 20 ns tf output fall time VDD − 0.4 V to 0.4 V; CL = 60 pF − − 20 ns Input X22IN (external clock) VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V ILI input leakage current −10 − +10 µA CI input capacitance − − 10 pF May 1994 32 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT Output X22OUT − 22.5792 − MHz 1.5 − − mS 3.5 − − feedback capacitance − − 5 pF output capacitance − − 10 pF fxtal crystal frequency gm transconductance Gv small signal voltage gain Cfb CO note 1 Gv = gm × RO Input X24IN (external clock) VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V ILI input leakage current −10 − +10 µA CI input capacitance − − 10 pF − 24.567 − MHz 1.5 − − mS Output X24OUT fxtal crystal frequency note 1 gm transconductance Gv small signal voltage gain 3.5 − − Cfb feedback capacitance − − 5 pF CO output capacitance − − 10 pF fs = 48 kHz − 12.288 − MHz fs = 44.1 kHz − 11.2896 − MHz fs = 32 kHz Gv = gm × RO Input X256 fi input frequency − 8.192 − MHz tcH HIGH time 35 − − ns tcL LOW time 35 − − ns CLK22 and CLK24 timing; Fig.27 OUTPUT CLK24 fo output frequency CL = 50 pF − 24.576 − MHz tc24H HIGH time CL = 50 pF 12 − − ns tc24L LOW time CL = 50 pF 12 − − ns tr rise time CL = 50 pF − − 7 ns tf fall time CL = 50 pF − − 7 ns OUTPUT CLK22 fo output frequency CL = 30 pF − 22.5792 − MHz tc22H HIGH time CL = 30 pF 11 − − ns tc22L LOW time CL = 30 pF 11 − − ns tr rise time CL = 30 pF − − 7 ns tf fall time CL = 30 pF − − 7 ns May 1994 33 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL SAA2003 PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Drive processing interface timing; see Fig.23 tcy SCK cycle time − 1302 − ns tcH SCK HIGH time 460 651 − ns tcL SCK LOW time 460 651 − ns td1 SBWS and SBDA delay time until SCK LOW 20 − − ns td2 SCK delay time until SBWS and SBDA valid − − 20 ns tsu1 SBDA input set-up time before SCK HIGH 235 − − ns th1 SBDA input hold time after SCK HIGH 30 − − ns tsu2 set-up time from SCK HIGH until SBEF valid − − 90 ns th2 SBEF input hold time after SCK HIGH 380 − − ns Filtered data interface timing; see Fig.21 FDCL, FDWS, FDAI AND FDAO f256 FS256 frequency fs = 48 kHz − 12.288 − MHz fs = 44.1 kHz − 11.2896 − MHz fs = 32 kHz − 8.192 − MHz Tc FDCL cycle time fs = 48 kHz − 325.6 − ns tFH FS256 HIGH time fs = 48 kHz; note 2 35 − − ns fs = 44.1 kHz; note 2 38 − − ns fs = 32 kHz; note 2 75 − − ns fs = 48 kHz; note 2 35 − − ns fs = 44.1 kHz; note 2 38 − − ns fs = 32 kHz; note 2 35 − − ns 0 − 50 ns tFL FS256 LOW time td1 FS256 delay time until FDCL transition tcH FDCL HIGH time fs = 48 kHz 143 − − ns tcL FDCL LOW time fs = 48 kHz 143 − − ns th2 FDWS, FDAO and FSYNC hold time after FS256 HIGH 0 − − ns td2 FS256 HIGH delay time until FDWS, FDAO and FSYNC valid 0 − 50 ns tsu FDAI input set-up time before FS256 HIGH 20 − − ns th1 FDAI input hold time after FS256 HIGH 30 − − ns May 1994 34 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT Timing characteristics FDIR and SYNCDAI; see Fig.26 tsH SYNCDAI HIGH time 1280 − − ns td1 internal clock delay time after SYNCDAI LOW 0 − − ns td2 external clock delay time after SYNCDAI LOW − − 320 ns td3 FDIR delay time before SYNCDAI HIGH 280 − − ns td4 external clock delay time before SYNCDAI HIGH − − 320 ns td5 internal clock delay time before SYNCDAI HIGH 0 − − ns Baseband data interface timing characteristics MASTER MODE; SEE FIGS 17 AND 18 Tc SCK cycle time fs = 48 kHz − 325.6 − ns tcH SCK HIGH time fs = 48 kHz 143 − − ns tcL SCK LOW time fs = 48 kHz 143 − − ns td1 FS256 HIGH delay time until SCK transition 0 − 50 ns th2 WS, SD1 and SD2 hold time after FS256 HIGH 0 − − ns td2 FS256 delay time until WS, SD1 and SD2 valid 0 − 50 ns tsu SD1 input set-up time before SCK HIGH 30 − − ns th1 SD1 input hold time after SCK HIGH 0 − − ns SLAVE MODE; SEE FIG.19 Tc SCK cycle time fs = 48 kHz 325.6 − 651.2 ns tcH SCK HIGH time fs = 48 kHz 116 − − ns tcL SCK LOW time fs = 48 kHz 116 − − ns tsu WS and SD1 inputs set-up time before SCK HIGH 30 − − ns th1 WS and SD1 inputs hold time after SCK HIGH 0 − − ns th2 SD1 and SD2 outputs hold time after SCK HIGH 66 − − ns td SCK delay time until SD1 and SD2 outputs valid − − 223 ns May 1994 35 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT Timing characteristics master/slave mode transition; see Fig.20 tsH SYNCDAI HIGH time 1280 − − ns td1 WS and SCK outputs enabled after SYNCDAI LOW 140 − − ns td2 WS and SCK outputs disabled before SYNCDAI LOW 140 − − ns td3 SD1 output disabled before SYNCDAI HIGH 250 − − ns td4 SD1 output enabled after SYNCDAI LOW 790 − − ns Timing L3 interface; see Fig.24 ADDRESSING MODE tcH L3CLK HIGH time 210 − − ns tcL L3CLK LOW time 210 − − ns td1 L3MODE LOW delay time until L3CLK HIGH 190 − − ns tsu L3DATA input set-up time before L3CLK HIGH 190 − − ns th1 L3DATA input hold time after L3CLK HIGH 30 − − ns th2 L3CLK HIGH hold time before L3MODE HIGH 190 − − ns td2 L3MODE LOW delay time until L3DATA disabled 0 − 50 ns td3 L3MODE HIGH delay time until L3DATA enabled 0 − 50 ns May 1994 36 Philips Semiconductors Preliminary specification Stereo filter and codec SYMBOL PARAMETER SAA2003 CONDITIONS MIN. TYP. MAX. UNIT DATA MODE; SEE FIG.25 tcH L3CLK HIGH time 210 − − ns tcL L3CLK LOW time 210 − − ns td1 L3MODE delay time until L3CLK HIGH 190 − − ns td2 L3MODE delay time until L3DATA enabled 0 − 50 ns td3 L3MODE delay time until L3DATA valid − − 380 ns tsu L3DATA set-up time before L3CLK HIGH 190 − − ns th1 L3DATA input hold time after L3CLK HIGH 30 − − ns th2 L3DATA output hold time after L3CLK HIGH 120 − − ns td4 L3CLK delay time until L3DATA output valid not between data bits 7 and 8 − − 360 ns between data bits 7 and 8 − − 530 ns th3 L3CLK HIGH hold time before L3MODE LOW 190 − − ns td5 L3MODE LOW delay time until L3DATA output disabled 0 − 50 ns tML L3MODE LOW time 190 − − ns between data words Notes 1. The crystal frequencies 22.5792 MHz ±200 × 10−6 MHz and 24.5760 MHz ±200 × 10−6 MHz must track each other in frequency with an accuracy of 200 × 10−6 MHz. For example if the 24.5760 MHz clock is 150 × 10−6 MHz fast, then the range of the 22.5792 MHz clock becomes −50 × 10−6 MHz and +350 × 10−6 MHz 2. Timing values only valid for internally generated FS256. May 1994 37 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 PACKAGE OUTLINE handbook, full pagewidth seating plane S 0.1 S 12.9 12.3 44 1.2 (4x) 0.8 34 B 33 1 pin 1 index 0.15 M B 0.8 11 23 12 10.1 9.9 12.9 12.3 0.40 0.20 22 0.8 0.40 0.20 1.2 (4x) 0.8 0.15 M A 10.1 9.9 X A 0.85 0.75 1.85 1.65 0.25 0.14 0.25 0.05 MBB944 - 2 detail X 0.95 0.55 Dimensions in mm. Fig.28 Plastic quad flat-pack, 44-pin (short) (QFP44SL). May 1994 38 2.10 1.70 0 to 10 o Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement. SOLDERING Plastic quad flat-packs Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C. BY WAVE During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C. REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL) Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.) A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications. For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement. BY SOLDER PASTE REFLOW Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be May 1994 39 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. The Digital Compact Cassette logo is a registered trade mark of Philips Electronics N.V. May 1994 40 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 NOTES May 1994 41 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 NOTES May 1994 42 Philips Semiconductors Preliminary specification Stereo filter and codec SAA2003 NOTES May 1994 43 Philips Semiconductors – a worldwide company Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2327, Fax. (011)829-1849 Canada: INTEGRATED CIRCUITS: Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213. Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: PHILIPS HONG KONG Ltd., Components Div., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729 India: Philips INDIA Ltd, Components Dept, Shivsagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200 Italy: PHILIPS COMPONENTS S.r.l., Viale F. Testi, 327, 20162 MILANO, Tel. (02)6752.3302, Fax. (02)6752 3300. Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: Philips Components, 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811 Philips Semiconductors Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341 Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546. Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: PHILIPS PORTUGUESA, S.A., Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)14163160/4163333, Fax. (01)14163174/4163366. Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: S.A. PHILIPS Pty Ltd., Components Division, 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494. Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382. Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319. Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0 212)279 2770, Fax. (0212)269 3094 United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42 United States: INTEGRATED CIRCUITS: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601 For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825 SCD31 © Philips Electronics N.V. 1994 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 513061/1500/01/pp44 Document order number: Date of release: May 1994 9397 731 40011