INFINEON TLI5012

March 2009
TLI5012
GMR-Based Angular Sensor
for Rotary Switches
Target
Data Sheet
V 0.41
Sensors
Edition 2009-03
Published by
Infineon Technologies AG
81726 München, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TLI5012
TLI5012 GMR-Based Angular Sensor
Revision History: 2009-03, V 0.41
Previous Version: V0.4
Page
Subjects (major changes since last revision)
general
Correction of typing errors
gerneral
Name of product type changed
7
Marking and Ordering Code added
12
Figure 4 updated
14
Figure 5 and figure 6 updated
15
Magnetic Induction reduced in Table 3; Storage Temperature reduced in Table 2; Note added
16
Calculation of the Junction Temperature added
18
Figure 7 updated
19
Angle Delay Time with Prediction in Table 7 added; Figure 8 updated
20
Figure 9 and Figure 10 updated
42
Table 14, Thermal resistance added
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
Target Data Sheet
3
V 0.41, 2009-03
TLI5012
1
1.1
1.2
1.3
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.1.3.1
3.5.2
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synchronous Serial Communication (SSC) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Registers Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLI5012 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pulse Width Modulation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
15
15
17
17
17
18
18
20
20
21
22
25
26
40
4
4.1
4.2
4.3
4.4
4.5
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
42
42
43
43
43
Target Data Sheet
4
7
7
8
8
V 0.41, 2009-03
TLI5012
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Sensitive Bridges of the GMR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Ideal Output of the GMR Sensor Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin Configuration (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
TLI5012 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Application Circuit for TLI5012 with SSC and PWM Interface (using internal CLK) . . . . . . . . . . . . 14
Application Circuit for TLI5012 with only PWM Interface (using internal CLK) . . . . . . . . . . . . . . . . 14
TLI5012 Signal path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Delay of Sensor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SSC Configuration in Sensor-Slave Mode with Push-Pull Outputs (High Speed Application) . . . . 20
SSC Configuration in Sensor-Slave Mode and Open Drain (Safe Bus Systems) . . . . . . . . . . . . . 20
SSC Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SSC Data Transfer (Data Read Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SSC Data Transfer (Data Write Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SSC Bit Ordering (Read Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Fast CRC Polynomial Division Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Typical Example for a PWM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
PG-DSO-8 Package Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Footprint PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Tape and Reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Target Data Sheet
5
V 0.41, 2009-03
TLI5012
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Push-Pull Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Open Drain Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Structure of the Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Structure of the Safety Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Target Data Sheet
6
11
15
15
17
17
18
18
21
21
23
23
25
41
42
V 0.41, 2009-03
TLI5012
1
Product Description
1.1
Overview
The TLI5012 is a 360° angle sensor that detects the orientation of a
magnetic field. This is achieved by measuring sine and cosine angle
components with monolithic integrated Giant Magneto Resistance
(iGMR) elements.
An angle error smaller than 5° will be achieved over temperature.
Data communications are accomplished with a bi-directional SSC
Interface that is SPI compatible.
The absolute angle value and other values are transmitted via SSC or via a Pulse-Width-Modulation (PWM)
Protocol. Also the sine and cosine raw values can be read out. These raw signals are digitally processed internally
to calculate the angle orientation of the magnetic field (magnet).
The TLI5012 is a precalibrated sensor. The calibration parameters are stored in laser fuses. At start-up the values
of the fuses are written into Flip-Flops, where these values can be changed by the application specific parameters.
Product Type
Marking
Ordering Code
Package
TLI5012
I5012
SP000634318
PG-DSO-8
Target Data Sheet
7
V 0.41, 2009-03
TLI5012
Product Description
1.2
•
•
•
•
•
•
•
•
•
•
•
Features
Giant Magneto Resistance (GMR)-based principle
Integrated magnetic field sensing for angle measurement
Full calibrated 0 - 360° angle measurement with revolution counter and angle speed measurement
Two separate highly accurate single bit SD-ADC
15 bit representation of absolute angle value on the output (resolution of 0.01°)
Bi-directional SSC Interface up to 8Mbit/s
Interfaces: SSC, PWM
0.25 µm CMOS technology
Temperature range: -40°C to 125°C (Junction Temperature)
ESD > 2kV (HBM)
Green package with lead-free (Pb-free) plating
1.3
Application Example
The TLI5012 GMR-Based Angular Sensor is designed for angular position sensing in industrial applications, such
as:
•
•
Rotary Switch
General Angular Sensing
Target Data Sheet
8
V 0.41, 2009-03
TLI5012
Functional Description
2
Functional Description
2.1
General
The GMR sensor is implemented using vertical integration. This means that the GMR sensitive areas are
integrated above the logic portion of the TLI5012 device. These GMR elements change their resistance depending
on the direction of the magnetic field.
Four individual GMR elements are connected to one Wheatstone Sensor Bridge. These GMR elements sense one
of two components of the applied magnetic field:
•
•
X component, Vx (cosine) or the
Y component, Vy (sine)
The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled and temperature effects
cancel out each other.
90°
GMR Resistors
S
0°
VX
N
ADCX +
Figure 1
VY
ADCX -
GND
ADCY+
ADCY-
VDD
Sensitive Bridges of the GMR Sensor
Note: In Figure 1, the arrows in the resistors symbolize the direction of the Reference Layer, which is used for the
further explanation.
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are
orientated orthogonally to each other to measure 360°.
With the trigonometric function ARCTAN, the true 360° angle value can be calulated which is represented by the
relation of X and Y signals.
Because only the relative values influence the result, the absolute size of the two signals is of minor importance.
Therefore, most influences to the amplitudes are compensated.
Target Data Sheet
9
V 0.41, 2009-03
TLI5012
Functional Description
Y Component (SIN)
VY
X Component (COS)
VX
V
VX (COS)
0°
90°
180°
270°
360°
Angle α
VY (SIN)
Figure 2
Ideal Output of the GMR Sensor Bridges
Target Data Sheet
10
V 0.41, 2009-03
TLI5012
Functional Description
2.2
Pin Configuration
8
7
6
5
1
2
3
4
Figure 3
Pin Configuration (Top View)
2.3
Pin Description
Table 1
Pin Description
Center of Sensitive
Area
Pin No.
Symbol
In/Out
Function
1
CLK
I
External Clock (must be
connected to GND for PWM
output)
2
SCK
I
SSC Clock
3
CSQ
I
SSC Chip Select
4
DATA
I/O
SSC Data
5
IFA
PWM
O
Interface A:
PWM
6
VDD
-
Supply Voltage
7
GND
-
Ground
8
IFB
O
Interface B:
could be remain open or
connected via resistor to GND
Target Data Sheet
11
V 0.41, 2009-03
TLI5012
Functional Description
2.4
Block Diagram
TLI5012
VDD
Osc
VRG
VRA
VRD
PLL
X
GMR
SDADC
CSQ
Digital
Signal
Processing
Y
GMR
SDADC
Temp
SDADC
CLK
SSC
Interface
SCK
DATA
CCU
Cordic
Fuses
PWM
IFA
IFB
GND
Figure 4
TLI5012 Block Diagram
2.5
Functional Block Description
2.5.1
Internal Power Supply
The internal stages of the TLI5012 are supplied with different voltage regulators.
•
•
•
GMR Voltage Regulator VRG
Analog Voltage Regulator VRA
Digital Voltage Regulator VRD (derived from VRA)
These regulators are directly connected to the supply voltage VDD.
2.5.2
Oscillator and PLL
The internal frequency oscillator feeds the Phase Locked Loop (PLL). Also the external clock (CLK) can be used
therefore.
2.5.3
SD-ADC
The SD-ADCs transform the analog GMR-voltages and temperature-voltage into the digital domain.
Target Data Sheet
12
V 0.41, 2009-03
TLI5012
Functional Description
2.5.4
Digital Signal Processing Unit
The Digital Signal Processing Unit (DSPU) contains the:
•
•
•
Capture Compare Unit (CCU), which is used to generate the PWM signal
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle
calculation
Fuses, which contain the calibration parameters
2.5.5
Interfaces
Different Interfaces can be selected:
•
•
SSC Interface
PWM
Target Data Sheet
13
V 0.41, 2009-03
TLI5012
Specification
3
Specification
3.1
Application Circuit
The application circuit in Figure 5 and Figure 6 show the different communication possibilities of TLI5012.
TLI5012
Osc
VRG
VRA
VRD
VDD (3.0 – 5.5V)
100n
1 kΩ
CLK
PLL
X
GMR
CSQ
SDADC
Digital
Signal
Processing
Y
GMR
SDADC
SSC
Interface
SDADC
SCK
SSC
*)
DATA
CCU
Cordic
Temp
1 kΩ
Fuses
IFA (PWM)
PWM
PWM
IFB 10 kΩ
IFB could be remain open or
connected via 10 kΩ resistor to
GND.
GND
* recommended , e.g. 470 Ω
Figure 5
Application Circuit for TLI5012 with SSC and PWM Interface (using internal CLK)
Figure 5 shows a basic block-diagram of the TLI5012 with PWM- Interface. This interface is selectable by
connecting CLK to GND. Additionally to the PWM the SSC Interface could be used. Within the SSC- Interface the
PWM mode is selectable between Push-Pull and Open Drain.
TLI5012
VRG
VRA
VRD
VDD (3.0 – 5.5V)
100 n
Osc
1 kΩ
CLK
PLL
X
GMR
CSQ
SDADC
Digital
Signal
Processing
Y
GMR
SDADC
SSC
Interface
SD ADC
10 kΩ
DATA
CCU
Cordic
Temp
SCK
Fuses
DATA and IFB could be remain
open or connected via 10 kΩ
resistor to GND .
IFA (PWM)
PWM
IFB
10 kΩ
GND
Figure 6
Application Circuit for TLI5012 with only PWM Interface (using internal CLK)
Target Data Sheet
14
V 0.41, 2009-03
TLI5012
Specification
3.2
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ.
Max.
Voltage on VDD pin respect to
ground (VSS)
VDD
-0.5
-
6.5
V
max 40 h/Lifetime
Voltage on any pin respect to
ground (VSS)
VIN
-0.5
-
6.5
V
additionally VDD + 0.5 V may
not be exceeded
Junction Temperature
TJ
-40
-
125
°C
-
-
125
°C
for 3000h not additive
-
-
125
mT
max. 5 min @ tA = 25°C
-
-
100
-40
-
125
Magnetic Field Induction
Storage Temperature
B
TST
max. 5 h @ tA = 25°C
°C
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the device.
3.3
Operating Range
The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012.
All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.
Table 3
Operating Range
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note / Test Condition
Supply Voltage
VDD
3.0
5.0
5.5
V
1)
Output Current (DATA-Pad)
IQ
-
-
-25
mA
PAD_DRV =’0x’, sink current2)
-
-
-5
PAD_DRV =’10’, sink current2)
-
-
-0.4
PAD_DRV =’11’, sink current2)
-
-
-15
-
-
-5
Output Current (IFA / IFB-Pad)
IQ
mA
PAD_DRV =’0x’, sink current2)
PAD_DRV =’1x’, sink current2)
Input Voltage
VIN
-0.3
-
5.5
V
VDD + 0.3 V may not be
exceeded
Magnetic Induction
BXY
30
-
50
mT
in X/Y direction3)
Angle Range
Ang
0
-
360
°
1) Directly blocked with 100nF ceramic capacitor
2) Max. current to GND over Open Drain Output
3) Values refer to an homogenous magnetic field (BXY) without vertical magnetic induction (BZ = 0mT).
Note: The thermal resistances listed in Table 14 “Package Parameters” on Page 42 must be used to calculate
the corresponding ambient temperature. Table 3 is valid for -40°C < TJ < 125°C.
Target Data Sheet
15
V 0.41, 2009-03
TLI5012
Specification
Calculation of the Junction Temperature
The total power dissipation PTOT of the chip increases its temperature above the ambient temperature.
The power multiplied by the total thermal resistance RthJA (Junction to Ambient) leads to the final junction temperature. RthJA
is the sum of the addition of the values of the two components Junction to Case and Case to Ambient.
(1)
RthJA = RthJC + RthCA
TJ = TA + ∆T
∆T = RthJA × PTOT = RthJA × (VDD × I DD + VOUT × I OUT
(IDD, IOUT > 0, if direction is into IC)
Example (assuming no load on Vout):
(2)
VDD = 5V
I DD = 12mA
K 
∆T = 150  × 5[V ]× 0.012[A] + 0[VA] = 9 K
W 
For moulded sensors, the calculation with RthJC is more adequate.
Target Data Sheet
16
V 0.41, 2009-03
TLI5012
Specification
3.4
Characteristics
3.4.1
Electrical Parameters
The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values
correspond to a supply voltage VDD = 5.0 V and 25 °C, unless individually specified. All other values correspond
to -40 °C < TJ < 125°C.
Table 4
Electrical Parameters
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Supply Current
IDD
-
12
13
mA
POR Level
VPOR
2.0
-
2.9
V
POR Hysteresis
VPORhy
-
30
-
mV
Power On Time
tPon
-
4
5
ms
Input Signal Low Level
VL
-
-
0.3 VDD
V
Input Signal High Level
VH
0.7 VDD -
-
V
Pull-Up Current
IPU
-10
-
-225
µA
-10
-
-150
10
-
225
µA
SCK
10
-
150
µA
CLK, IFA, IFB
-
-
1
V
DATA; IQ = - 25 mA
(PAD_DRV=’0x’), IQ = - 5 mA
(PAD_DRV=’10’), IQ = - 0.4 mA
(PAD_DRV=’11’)
-
-
1
Pull-Down Current
Output Signal Low Level
IPD
VOL
Power On Reset
VDD > VDDmin1)
CSQ
DATA
IFA,IFB; IQ = - 15 mA
(PAD_DRV=’0x’), IQ = - 5 mA
(PAD_DRV=’1x’)
1) Within “Power On Time” write access is not permitted
3.4.2
ESD Protection
Table 5
ESD Protection
Parameter
ESD Voltage
Symbol
Values
Unit
Notes
min.
max.
VHBM
-
±2.0
kV
Human Body Model1)
VSDM
-
±0.5
kV
Socketed Device Model2)
1) Human Body Model (HBM) according to: JEDEC EIA/JESD22-A114-B
2) Socketed Device Model (SDM) according to: ESD ASS.STD.DS5.3-93
Target Data Sheet
17
V 0.41, 2009-03
TLI5012
Specification
3.4.3
Angle Performance
After internal calculation the sensor has a remaining error, as shown in Table 6. The error value refers to BZ = 0mT
and the operating conditions given in Table 3 “Operating Range” on Page 15.
The overall angle error represents the relative angle error. This error describes the deviation to the reference line
after zero angle definition.
Table 6
Angle Performance
Parameter
Symbol
Values
Min.
αErr
Overall Angle Error
-
Typ.
0.7
Unit
Note / Test Condition
°
including temperature
drift2)3)
Max.
1)
5.0
1) At 25°C, B =30 mT
2) Including hysteresis error, caused by revolution direction change.
3) With magnetic setup in chip production (Fused Calibration Parameters); Relative error after zero angle definition.
3.4.4
Signal Processing
The signal path of the TLI5012 is depicted in Figure 7. It consists of the GMR-bridge, ADC, filter and angle
calculation. Depending on the filter configuration a different total delay time is achieved. Additional to this delay
time, the delay time of the interface has to be considered. The delay time leads to an additional angle error at
higher speeds. With enabling the prediction, the signal delay time will be reduced (Figure 8).
TLI5012
Microcontroller
tupd
X
GMR
SDADC
Filter
Angle
Calculation
Y
GMR
SDADC
IF
Filter
tdelIF
tdel
Figure 7
TLI5012 Signal path
At FIR_MD = 0 only raw values can be read out, due to the more time consuming angle calculation.
Table 7
Signal Processing
Parameter
Update Rate at Interface
Target Data Sheet
Symbol
tupd
Values
Unit
Note / Test Condition
µs
FIR_MD = 0 (only raw
values)1)2)
Min.
Typ.
Max.
-
21.3
-
-
42.7
-
FIR_MD = 11)2)
-
85.3
-
FIR_MD = 2 (default)1)2)
-
170.6
-
FIR_MD = 31)2)
18
V 0.41, 2009-03
TLI5012
Specification
Table 7
Signal Processing
Parameter
Symbol
Angle Delay Time
3)
tdel
Angle Delay Time with
Prediction3)
tdel
Values
Unit
Note / Test Condition
µs
FIR_MD = 11)2)
Min.
Typ.
Max.
-
60
70
-
80
95
FIR_MD = 21)2)
-
120
140
FIR_MD = 31)2)
-
20
30
µs
FIR_MD = 1; PREDICT = 1
1)2)
-
5
20
FIR_MD = 2; PREDICT = 1
1)2)
-
-40
-20
FIR_MD = 3; PREDICT = 1
1)2)
Angle Noise
NAngle
°
FIR_MD = 0, (1 Sigma)2)
-
0.11
-
-
0.08
-
FIR_MD = 1, (1 Sigma)2)
-
0.05
-
FIR_MD = 2, (1 Sigma)2)
(default)
-
0.04
-
FIR_MD = 3, (1 Sigma)2)
1) depends on internal oscillator frequency variation
2) guaranteed by laboratory characterization
3) valid at constant rotation speed
Angle
Magnetic field
direction
tdel
Figure 8
tupd
With Prediction
Without
Prediction
time
Delay of Sensor Output
Target Data Sheet
19
V 0.41, 2009-03
TLI5012
Specification
3.5
Interfaces
3.5.1
Synchronous Serial Communication (SSC) Interface
The 3-pin SSC Interface has a bi-directional push-pull data line, serial clock signal and chip select. The SSC
Interface is designed to communicate with a microcontroller pear to pear for fast applications.
SSC Communication
for pear to pear Data Transmission between TLI5012 and µC
(SSC Slave) TLI5012
µC (SSC Master)
MRST
**)
DATA
Shift Reg.
EN
MTSR
SCK
*)
SCK
CSQ
*)
CSQ
Shift Reg.
EN
Clock Gen.
*) opional , e.g. 100 Ω
**) opional , e.g. ≥ 470 Ω
Figure 9
SSC Configuration in Sensor-Slave Mode with Push-Pull Outputs (High Speed Application)
Another possibility is a 3-pin SSC Interface with bidirectional open-drain data line, serial clock signal and chip
select. This setup is designed to communicate with a microcontroller in a bus system, together with other SSC
slaves (e.g. two TLI5012 for redundancy reasons). This mode can be activated using bit SSC_OD.
(SSC Slave) TLI5012
µC (SSC Master)
typ. 1kΩ
Shift Reg.
DATA
*)
*)
MRST
Shift Reg.
MTSR
SCK
*)
CSQ
*)
SCK
Clock Gen.
CSQ
*) opional , e.g. 100 Ω
Figure 10
SSC Configuration in Sensor-Slave Mode and Open Drain (Safe Bus Systems)
Target Data Sheet
20
V 0.41, 2009-03
TLI5012
Specification
3.5.1.1
SSC Timing Definition
tCSs
tCSh
tSCKp
tCSoff
CSQ
tSCKh
tSCKl
SCK
DATA
tDATAs
Figure 11
tDATAh
SSC Timing
SSC Inactive Time (CSoff)
The SSC inactive time defines the delay time after a transfer before the TLE5012 can be selected again.
Table 8
SSC Push-Pull Timing Specification
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
SSC Baud Rate
fSSC
-
8.0
-
Mbit/s
CSQ Setup Time
tCSs
105
-
-
ns
CSQ Hold Time
tCSh
105
-
-
ns
CSQ off
tCSoff
600
-
-
ns
SCK Period
tSCKp
120
125
-
ns
SCK High
tSCKh
40
-
-
ns
SCK Low
tSCKl
30
-
-
ns
DATA Setup Time
tDATAs
25
-
-
ns
DATA Hold Time
tDATAh
40
-
-
ns
Write Read Delay
twr_delay
130
-
-
ns
Table 9
Note / Test Condition
SSC inactive time
SSC Open Drain Timing Specification
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Pull-up Resistor = 1kΩ
SSC Baud Rate
fSSC
-
2.0
-
Mbit/s
CSQ Setup Time
tCSs
300
-
-
ns
CSQ Hold Time
tCSh
400
-
-
ns
CSQ off
tCSoff
600
-
-
ns
SCK Period
tSCKp
500
-
-
ns
SCK High
tSCKh
-
190
-
ns
Target Data Sheet
21
SSC inactive time
V 0.41, 2009-03
TLI5012
Specification
Table 9
SSC Open Drain Timing Specification (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
SCK Low
tSCKl
-
190
-
ns
DATA Setup Time
tDATAs
25
-
-
ns
DATA Hold Time
tDATAh
40
-
-
ns
Write Read Delay
twr_delay
130
-
-
ns
3.5.1.2
Note / Test Condition
SSC Data Transfer
The SSC data transfer is word aligned. The following transfer words are possible:
•
•
•
Command word (to access and change operating modes of the TLI5012)
Data words (any data transferred in any direction)
Safety word (confirms the data transfer and provide status information)
twr_delay
COMMAND
READ Data 1
READ Data 2
SAFETY-WORD
SSC-Master is driving DATA
SSC-Slave is driving DAT A
Figure 12
SSC Data Transfer (Data Read Example)
twr_delay
COMMAND
WRITE Data 1
SAFETY-WORD
SSC-Master is driving DATA
SSC-Slave is driving DAT A
Figure 13
SSC Data Transfer (Data Write Example)
Target Data Sheet
22
V 0.41, 2009-03
TLI5012
Specification
Command Word
TheTLI5012 is controlled by a command word. It is sent first at every data transmission.
Table 10
Structure of the Command Word
Name
Bits
Description
RW
[15]
Read - Write
0:Write
1:Read
Lock
[14..11]
4 bit Lock Value
0x00: Default Operating Access
0x02: Config- Access
UPD
[10]
Update-Register Access
0: Access to current values
1: Access to updated values
ADDR
[9..4]
6 bit Address
ND
[3..0]
4 bit Number of Data-Words
Safety Word
The safety word contains following bits:
Table 11
Structure of the Safety Word
Name
Bits
Description
STAT
Chip and Interface Status
[15]
Indication of Chip-Reset (resets after readout) via SSC
0: No reset
1: Reset occurred
Reset: 0B
[14]
System Error (e.g. Overvoltage; Undervoltage; VDD-, GND- off; ROM;...)
0: No error
1: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_ADCM)
[13]
Interface Access Error (access to wrong address; wrong lock)
0: No error
1: Error occurred
[12]
Valid Angle Value (no system error; no interface error; NO_GMR_A = ’0’;
NO_GMR_XY=’0’)
0: Angle value valid
1: Angle value invalid
RESP
[11..8]
Sensor Number Response Indicator
The sensor no. bit is pulled low and the other bits are high.
CRC
[7..0]
Cyclic Redundancy Check (CRC)
Target Data Sheet
23
V 0.41, 2009-03
TLI5012
Specification
Data Communication via SSC
SSC Transfer
twr_delay
Command Word
Data Word (s)
SCK
DATA
MSB
14
13
12
11
10
9
8
7
6
5
4
3
2
1
LSB
MSB
1
LSB
CSQ
RW
LOCK
UPD
ADDR
LENGTH
SSC -Master is driving DAT A
SSC -Slave is driving DAT A
Figure 14
SSC Bit Ordering (Read Example)
The data communication via SSC interface has the following characteristic:
•
•
•
•
•
•
•
•
•
•
•
•
The data transmission order is “Most Significant Bit (MSB) first”.
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.
The SSC Interface is word-aligned. All functions are activated after each transmitted word.
A “high” condition on the negated Chip Select pin (CSQ) of the selected TLE5012 interrupts the transfer
immediately. The CRC calculator is automatically reset.
After changing the data direction, a delay (twr_delay) has to be considered before continuing the data transfer.
This is necessary for internal register access.
Every access to the TLI5012 with the number of data (ND) ≥ 1 is performed with address auto-increment.
At an overflow at address 3FH the transfer continuous at address 00H.
With ND = 0 no auto-increment is done and a continuously readout of the same address can be realized.
Afterwards no Safety Word is send and the transfer ends with high condition on CSQ.
After every data transfer with ND ≥ 1 the 16 bit Safety Word will be appended by the selected TLI5012.
At a rising edge of CSQ without data transfer before (no SCK-pulse), the update-registers are updated with
according values.
After sending the Safety Word the transfer ends. To start another data transfer, the CSQ has to be deselected
once for tCSoff.
The SSC is default Push-Pull. The Push-Pull driver is only active, if the TLI5012 has to send data, otherwise
the Push-Pull is disabled for receiving data from the microcontroller.
Cyclic Redundancy Check (CRC)
•
•
•
•
•
•
This CRC is according to the J1850 Bus-Specification.
Every new transfer resets the CRC generation.
Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).
Generator-Polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used
(see Figure 15)
The remainder of the fast CRC circuit is initial set to ’11111111B’.
Remainder is inverted before transmission.
Serial
CRC
output
X7
1
X6
1
X5
1
X4
1
xor
X3
1
X2
xor
1
X1
xor
1
X0
1
&
xor
Input
TX_CRC
parallel
Remainder
Figure 15
Fast CRC Polynomial Division Circuit
Target Data Sheet
24
V 0.41, 2009-03
TLI5012
Specification
3.5.1.3
Registers Chapter
This chapter defines the registers of the TLI5012 . It also defines the read/write access rights of the specific
registers. Table 12 identifies the values with symbols. Access to the registers is accomplished via the SSC
Interface.
Table 12
Registers Overview
Register Short Name
Register Long Name
Offset Address
Page Number
Registers Chapter, TLI5012 Register
STAT
Status Register
00H
26
ACSTAT
Activation Status Register
01H
28
AVAL
Angle Value Register
02H
29
ASPD
Angle Speed Register
03H
30
AREV
Angle Revolution Register
04H
30
FSYNC
Frame Synchronization Register
05H
31
MOD_1
Interface Mode1 Register
06H
32
SIL
SIL Register
07H
33
MOD_2
Interface Mode2 Register
08H
34
MOD_3
Interface Mode3 Register
09H
35
OFFX
Offset X
0AH
36
OFFY
Offset Y
0BH
36
SYNCH
Synchronicity
0CH
37
IFAB
IFAB Register
0DH
37
MOD_4
Interface Mode4 Register
0EH
38
TCO_Y
Temperature Coeffizient Register
0FH
39
ADC_X
X-raw value
10H
39
ADC_Y
Y-raw value
11H
40
The register is addressed wordwise.
Target Data Sheet
25
V 0.41, 2009-03
TLI5012
Specification
3.5.1.3.1
TLI5012 Register
Status Register
STAT
Offset
Status Register
Reset Value
00H
5'B67
6B15
8001H
12B*05B
$
12B*05B
;<
6B520
6B$'&7
5HV
U
U
U
U
U
U
6B0$*2/
6B;<2/
6B29
6B'638
6B)86(
6B95
6B:'
6B567
U
U
U
U
U
U
U
U
Field
Bits
Type
Description
RD_ST
15
r
Read Status
0B
after readout
1B
status values changed
Reset: 1B
S_NR
14:13
r
Slave Number
Reset: 00B
NO_GMR_A
12
r
No GMR Angle Value
0B
valid GMR angle value on the interface
1B
no valid GMR angle value on the interface
Reset: 0B
NO_GMR_XY
11
r
No GMR XY Values
0B
valid GMR_XY values on the interface
1B
no valid GMR_XY values on the interface
Reset: 0B
S_ROM
10
r
Status ROM
0B
after readout, CRC ok
1B
CRC fail or running
Reset: 0B
S_ADCT
9
r
Status ADC-Test
0B
after readout
1B
Test vectors out of limit
Reset: 0B
S_MAGOL
7
r
Status Magnitude Out of Limit
0B
after readout
1B
GMR-magnitude out of limit (>23230 digits)
Reset: 0B
Target Data Sheet
26
V 0.41, 2009-03
TLI5012
Specification
Field
Bits
Type
Description
S_XYOL
6
r
Status X,Y Data Out of Limit
0B
after readout
1B
X,Y data out of limit (>23230 digits)
Reset: 0B
S_OV
5
r
Status Overflow
0B
after readout
1B
DSPU overflow occurred
Reset: 0B
S_DSPU
4
r
Status Digital Signal Processing Unit
0B
after readout
1B
DSPU self test not ok, or selftest is running
Reset: 0B
S_FUSE
3
r
Status Fuse CRC
0B
after readout, Fuse CRC ok
1B
Fuse CRC fail
Reset: 0B
S_VR
2
r
Status Voltage Regulator
0B
after readout
1B
VDD overvoltage; VDD undervoltage; VDD-off; GNDoff; or VOVG; VOVA; VOVD too high
Reset: 0B
S_WD
1
r
Status Watchdog
0B
after chip reset
1B
watchdog counter expired
Reset: 0B
S_RST
0
r
Status Reset
0B
after readout
1B
indication of power-up, short power-break or active
reset
Reset: 1B
Target Data Sheet
27
V 0.41, 2009-03
TLI5012
Specification
Activation Status Register
ACSTAT
Offset
Activation Status Register
Reset Value
01H
5CEEH
5HV
$6B$'&7
5HV
UZ
$6B9(&B
0$*
$6B9(&B
;<
$6B29
$6B'638
$6B)86(
$6B95
$6B:'
$6B567
UZ
UZ
UZ
UZ
UZ
UZ
UZ
UZ
Field
Bits
Res
15:10
AS_ADCT
9
rw
Enable GMR Vector check
Reset: 0B
AS_VEC_MAG
7
rw
Activation of ADC-Redundancy-BIST
0B
after execution
1B
activation of redundancy BIST
Reset: 1B
AS_VEC_XY
6
rw
Activation of ADC-BIST
0B
after execution
1B
activation of BIST
Reset: 1B
AS_OV
5
rw
Enable of DSPU Overflow Check
Reset: 1B
AS_DSPU
4
rw
Activation DSPU BIST
0B
after execution
1B
activation of DSPU BIST
Reset: 0B
AS_FUSE
3
rw
Activation Fuse CRC
0B
after execution
1B
activation of Fuse CRC
Reset: 1B
AS_VR
2
rw
Enable Voltage Regulator Check
Reset: 1B
AS_WD
1
rw
Enable DSPU Watchdog-HW-Reset
Reset: 1B
Target Data Sheet
Type
Description
Reserved
Reset: 010111B
28
V 0.41, 2009-03
TLI5012
Specification
Field
Bits
Type
Description
AS_RST
0
rw
Activation of Hardware Reset
Activation occurs after CSQ switches from ’0’ to ’1’ after
SSC transfer.
0B
after execution
1B
activation of HW Reset
Reset: 0B
Angle Value Register
AVAL
Offset
Angle Value Register
Reset Value
02H
8000H
5'B$9
$1*B9$/
U
U
$1*B9$/
U
Field
Bits
Type
Description
RD_AV
15
r
Read Status, Angle Value
0B
after readout
1B
new angle value (ANG_VAL) present
Reset: 1B
ANG_VAL
14:0
r
Calculated Angle Value
(ANG_RANGE = 0x080)
4000H -180°
0000H 0°
3FFFH +179.99°
Reset: 0H
Target Data Sheet
29
V 0.41, 2009-03
TLI5012
Specification
Angle Speed Register
ASPD
Offset
Angle Speed Register
Reset Value
03H
8000H
5'B$6
$1*B63'
U
U
$1*B63'
U
Field
Bits
Type
Description
RD_AS
15
r
Read Status, Angle Speed
0B
after readout
1B
new angle speed value (ANG_SPD) present
Reset: 1B
ANG_SPD
14:0
r
Calculated Angle Speed
Difference between two consecutive angle values.
Reset: 0H
Angle Revolution Register
AREV
Offset
Angle Revolution Register
Reset Value
04H
8000H
5'B5(9
)&17
5(92/
U
UZ
U
5(92/
U
Target Data Sheet
30
V 0.41, 2009-03
TLI5012
Specification
Field
Bits
Type
Description
RD_REV
15
r
Read Status, Revolution
0B
after readout
1B
new value (REVOL) present
Reset: 1B
FCNT
14:9
rw
Frame Counter (unsigned 6 bit value)
Counts every new angle value
Reset: 0H
REVOL
8:0
r
Number of Revolutions (signed 9 bit value)
Reset: 0H
Frame Synchronization Register
FSYNC
Offset
Frame Synchronization Register
Reset Value
05H
0000H
5HV
)6<1&
UZ
5HV
Field
Bits
Type
Description
FSYNC
15:9
rw
Frame Synchronization Counter Value
Sub counter within one frame.
Reset: 0H
Target Data Sheet
31
V 0.41, 2009-03
TLI5012
Specification
Interface Mode1 Register
MOD_1
Offset
Interface Mode1 Register
Reset Value
06H
8001H
),5B0'
5HV
UZ
5HV
&/.B6(/
66&B2'
'638B+2
/'
UZ
UZ
UZ
5HV
Field
Bits
Type
Description
FIR_MD
15:14
rw
Filter Decimation Setting
00B 21.3µs
01B 42.7µs
10B 85.3µs
11B 170.6µs
Reset: 10B
CLK_SEL
4
rw
Clock Source Select
0B
internal oscillator
1B
external 4MHz clock
Reset: 0B
SSC_OD
3
rw
SSC-Interface
0B
Push-Pull
1B
Open Drain
Reset: 0B
DSPU_HOLD
2
rw
Hold DSPU Operation
0B
DSPU in normal schedule operation
1B
DSPU is on hold
Reset: 0B
Res
1:0
Target Data Sheet
Reserved
Reset: 01B
32
V 0.41, 2009-03
TLI5012
Specification
SIL Register
SIL
Offset
SIL Register
Reset Value
07H
0000H
),/7B3$
5
),/7B,1
9
UZ
UZ
5HV
$'&79B(
1
$'&79B<
$'&79B;
UZ
UZ
UZ
)86(B5(
/
5HV
5HV
UZ
Field
Bits
Type
Description
FILT_PAR
15
rw
Filter Parallel
0B
filter parallel disabled
1B
filter parallel enabled (source: X-value)
Reset: 0B
FILT_INV
14
rw
Filter Inverted
0B
filter inverted disabled
1B
filter inverted enabled
Reset: 0B
FUSE_REL
10
rw
Fuse Reload
0B
fuse reload disabled
1B
fuse parameters reloaded to DSPU at next cycle
start
Reset: 0B
ADCTV_EN
6
rw
ADC-Test vectors
0B
ADC-Test vectors disabled
1B
ADC-Test vectors enabled
Reset: 0B
ADCTV_Y
5:3
rw
Test vector Y
000B 0V
001B +70%
010B +100%
011B +Overflow
101B -70%
110B -100%
111B -Overflow
Reset: 000B
Target Data Sheet
33
V 0.41, 2009-03
TLI5012
Specification
Field
Bits
Type
Description
ADCTV_X
2:0
rw
Test vector X
000B 0V
001B +70%
010B +100%
011B +OV
101B -70%
110B -100%
111B -OV
Reset: 000B
Interface Mode2 Register
MOD_2
Offset
Interface Mode2 Register
Reset Value
08H
0800H
5HV
$1*B5$1*(
UZ
$1*B5$1*(
$1*B',5
UZ
UZ
5HV
Field
Bits
Type
Description
ANG_RANGE
14:4
rw
Angle Range
Angle Range [°] = 360° * (27 / ANG_RANGE)
200H represents 90°
080H represents 360°
Reset: 080H
ANG_DIR
3
rw
Angle Direction
0B
counterclockwise rotation of magnet°
1B
clockwise rotation of magnet
Reset: 0B
Target Data Sheet
34
V 0.41, 2009-03
TLI5012
Specification
Interface Mode3 Register
MOD_3
Offset
Interface Mode3 Register
Reset Value
09H
0000H
$1*B%$6(
UZ
$1*B%$6(
63,.()
5HV
UZ
UZ
3$'B'59
UZ
Field
Bits
Type
Description
ANG_BASE
15:4
rw
Angle Base
800H -180°
000H 0°
001H 0.00879°
7FFH +179.912°
Reset: 0H
SPIKEF
3
rw
Analog Spike Filters of Input Pads
0B
spike filter disabled
1B
spike filter enabled
Reset: 0B
PAD_DRV
1:0
rw
Configuration of Pad-Driver
00B IFA/IFB: strong driver, DATA: strong driver, fast
edge
01B IFA/IFB: strong driver, DATA: strong driver, slow
edge
10B IFA/IFB: weak driver, DATA: medium driver, fast
edge
11B IFA/IFB: weak driver, DATA: weak driver, slow
edge
Reset: 00B
Target Data Sheet
35
V 0.41, 2009-03
TLI5012
Specification
Offset X Register
OFFX
Offset
Offset X
Reset Value
0AH
0000H
;B2))6(7
UZ
5HV
;B2))6(7
UZ
Field
Bits
Type
Description
X_OFFSET
15:4
rw
Offset Correction of X-value
Reset: 0H
Offset Y Register
OFFY
Offset
Offset Y
Reset Value
0BH
0000H
<B2))6(7
UZ
5HV
<B2))6(7
UZ
Field
Bits
Type
Description
Y_OFFSET
15:4
rw
Offset Correction of Y-value
Reset: 0H
Target Data Sheet
36
V 0.41, 2009-03
TLI5012
Specification
Synchronicity Register
SYNCH
Offset
Synchronicity
Reset Value
0CH
0000H
6<1&+
UZ
5HV
6<1&+
UZ
Field
Bits
Type
Description
SYNCH
15:4
rw
Amplitude Synchronicity
+2047D 112.494%
0D
100%
-2047D 87.500%
Reset: 0H
IFAB Register
IFAB
Offset
IFAB Register
Reset Value
0DH
0004H
257+2
UZ
257+2
5HV
,)$%B2'
UZ
5HV
UZ
Field
Bits
Type
Description
ORTHO
15:4
rw
Orthogonality Correction of X and Y Components
+2047D 11.2445°
0D
0°
-2047D -11.2500°
Reset: 0H
Target Data Sheet
37
V 0.41, 2009-03
TLI5012
Specification
Field
Bits
Type
Description
IFAB_OD
2
rw
IFA & IFB Open Drain
0B
Push-Pull
1B
Open Drain
Reset: 1B
Interface Mode4 Register
MOD_4
Offset
Interface Mode4 Register
Reset Value
0EH
0011H
7&2B;B7
5HV
UZ
5HV
,)$%B5(6
,)B0'
UZ
UZ
Field
Bits
Type
Description
TCO_X_T
15:9
rw
Offset Temperature Coefficient for X-Component
Reset: 0H
IFAB_RES
4:3
rw
IFAB Resolution
00B 12bit = 0.088° (244Hz)
01B 11bit = 0.176° (488Hz)
10B 10bit = 0.352° (977Hz)
11B 9bit = 0.703° (1953Hz)
Reset: 10B
IF_MD
2:0
rw
Interface Mode
PWM if CLK is connected to GND at startup.
Note: Not mentioned combinations are not allowed
001B SSC mode; PWM
Reset: 001B
Target Data Sheet
38
V 0.41, 2009-03
TLI5012
Specification
Temperature Coeffizient Register
TCO_Y
Offset
Temperature Coeffizient Register
Reset Value
0FH
0000H
5HV
7&2B<B7
&5&B3$5
UZ
UZ
Field
Bits
Type
Description
TCO_Y_T
15:9
rw
Offset Temperature Coefficient for Y-Component
Reset: 0H
CRC_PAR
7:0
rw
CRC of Parameters
CRC of parameters from address 08H to 0FH
Reset: 0H
X-raw Value Register
ADC_X
Offset
X-raw value
Reset Value
10H
0000H
$'&B;
U
Field
Bits
Type
Description
ADC_X
15:0
r
ADC value of X-GMR
Read out of this register will update ADC_Y
Reset: 0H
Target Data Sheet
39
V 0.41, 2009-03
TLI5012
Specification
Y-raw Value Register
ADC_Y
Offset
Y-raw value
Reset Value
11H
0000H
$'&B<
U
Field
Bits
Type
Description
ADC_Y
15:0
r
ADC value of Y-GMR
Updated when ADC_X or ADC_y is read.
Reset: 0H
3.5.2
Pulse Width Modulation Interface
The Pulse Width Modulation (PWM) update rate can be programmed within the register 0EH (IFAB_RES) in
following steps:
•
•
•
•
0.25 kHz with 12 bit resolution
0.5 kHz with 11 bit resolution
1.0 kHz with 10 bit resolution (default)
2.0 kHz with 9 bit resolution
PWM uses a square wave with constant frequency whose duty cycle is modulated resulting in an average value
of the waveform.
Figure 16 shows the principle behavior of a PWM with different duty cycles and the definition of timing values. The
duty cycle of a PWM is defined by following general formulas:
Duty Cycle =
ton
t PWM
t PWM = t on + toff
f PWM =
1
t PWM
(3)
The range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. More details are given in
Table 13.
Target Data Sheet
40
V 0.41, 2009-03
TLI5012
Specification
ON = High level
UIFA
tON
OFF = Low level
Duty cycle = 5%
Vdd
tPWM
t OFF
‚0'
UIFA
Vdd
UIFA
‚0'
Vdd
Duty cycle = 50%
t
Duty cycle = 95%
t
‚0'
t
Figure 16
Typical Example for a PWM Signal
Table 13
PWM Interface
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
PWM Output Frequency
fPWM
244
-
1953
Hz
selectable by IFAB_RES1)
Output Duty Cycle Range
DYPWM
6.25
-
93.75
%
Absolute Angle
-
2
-
%
Electrical Error (S_RST;
S_VR)
-
98
-
%
System Error (S_FUSE;
S_OV; S_XYOL;
S_MAGOL; S_ADCT)
0
-
1
%
Short to GND
99
-
100
%
Short to VDD, Power-Loss
-5
-
5
%
2)
PWM Period Variation
tPWMvar
1) fPWM = (fDIG * 2IFAB_RES) / (24 * 4096)
2) depends on internal oscillator frequency variation
Target Data Sheet
41
V 0.41, 2009-03
TLI5012
Package Information
4
Package Information
4.1
Package Parameters
Table 14
Package Parameters
Parameter
Symbol Limit Values
Unit
Notes
min. typ. max.
Thermal Resistance
RthJA
-
150 200
K/W
Junction to Air1)
RthJC
-
-
75
K/W
Junction to Case
RthJL
-
-
85
K/W
Junction to Lead
Soldering Moisture Level
MSL 3
260°C
Cu
Lead Frame
Plating
Sn 100%
> 7 µm
1) according to Jedec JESD51-7
Package Outline
0.35 x 45˚
+0.06
B
2)
0.41 +0.1
-0.06
0.2
M
A
C 1.22 ±0.18
0.19
1.27
4 -0.2 1)
8˚MAX.
1.75 MAX.
0.175 ±0.07
(1.45)
4.2
0.64 ±0.25
0.1
A B 8x SEATING
PLANE
E
6 ±0.2
0.2
M
C 8x
4)
D
4
0.32 MIN.
1
A
ø0.6 Sensitive Area 3)
5
8
Index
Marking
Detail A
3 x 1.27 = 3.81
0.75 D E
CENTER OF
SENSITIVE
AREA
5 -0.2 1)
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
3) Max. 3˚ tilt of sensitive area to preference "B"
4) Reference "D" is defined with the center of all 8 pins
P-PG-DSO-08-16-S-PO V03
Figure 17
PG-DSO-8 Package Dimension
Target Data Sheet
42
V 0.41, 2009-03
TLI5012
Package Information
Footprint
1.31
4.3
5.69
0.65
1.27
Figure 18
Footprint PG-DSO-8
4.4
Packing
0.3
5.2
12 ±0.3
8
1.75
6.4
2.1
Figure 19
Tape and Reel
4.5
Marking
Position
Marking
Description
1st Line
I5012xx
See ordering table on page 7
2nd Line
xxx
Lot code
3rd Line
Gxxxx
G..green, 4-digit..date code
Processing
Note: For processing recommendations, please refer to Infineon’s Notes on processing
Target Data Sheet
43
V 0.41, 2009-03
www.infineon.com
Published by Infineon Technologies AG