September 2009 TLE5012 TLE5012-E0318 TLE5012-E0742 GMR-Based Angular Sensor for Rotor Position Sensing Target Data Sheet V 0.46 Sensors Edition 2009-09 Published by Infineon Technologies AG 81726 München, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLE5012 TLE5012 GMR-Based Angular Sensor Revision History: 2009-09, V 0.46 Previous Version: V0.41 Page Subjects (major changes since last revision) 13 PRO-SIL Disclaimer added 17 Table 2, Magnetic Field Induction and Storage Temperature amended 22 Table 8, Angle Delay Time with Prediction added, Figure 12 updated 27 Table 13, Lock updated; more detailed description of CMD word 28 Table 14, STAT updated 31-46 Registertype updated 47 Table 16 notes amended 52 Chapter 3.6 addded general Correction of typing errors We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Target Data Sheet 3 V 0.46, 2009-09 TLE5012 1 1.1 1.2 1.3 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Safety Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.5 3.5.1 3.5.1.1 3.5.1.2 3.5.1.3 3.5.1.3.1 3.5.2 3.5.3 3.5.4 3.6 3.6.1 3.7 3.7.1 3.7.2 3.7.3 3.7.4 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Supply (CLK Timing Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Serial Communication (SSC) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Registers Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLE5012 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse Width Modulation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Incremental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Supply Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD Overvoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 17 17 19 19 19 20 21 21 23 24 24 25 27 30 31 46 48 50 52 52 53 53 53 53 54 4 4.1 4.2 4.3 4.4 4.5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 55 55 56 56 56 Target Data Sheet 4 7 7 8 8 V 0.46, 2009-09 TLE5012 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Sensitive Bridges of the GMR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Ideal Output of the GMR Sensor Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configuration (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TLE5012 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PRO-SILTM Logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Application Circuit for TLE5012 with SSC and PWM Interface (using internal CLK) . . . . . . . . . . . 14 Application Circuit for TLE5012 with HS Mode (using internal CLK) . . . . . . . . . . . . . . . . . . . . . . . 15 Application Circuit for TLE5012 with SSC and IIF Interface (using external CLK) . . . . . . . . . . . . . 15 Application Circuit for TLE5012 with only PWM Interface (using internal CLK) . . . . . . . . . . . . . . . 16 Offset and Amplitude Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 TLE5012 Signal path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Delay of Sensor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 External CLK Timing Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SSC Configuration in Sensor-Slave Mode with Push-Pull Outputs (High Speed Application) . . . . 24 SSC Configuration in Sensor-Slave Mode and Open Drain (Safe Bus Systems) . . . . . . . . . . . . . 25 SSC Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SSC Data Transfer (Data Read Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SSC Data Transfer (Data Write Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SSC Bit Ordering (Read Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Fast CRC Polynomial Division Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Typical Example for a PWM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 HS Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Incremental Interface Protocol with symbolically illustration of SPI-Interface. . . . . . . . . . . . . . . . . 51 IIF Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 OV Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 GND - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 VDD - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 PG-DSO-8 Package Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Footprint PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Tape and Reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Target Data Sheet 5 V 0.46, 2009-09 TLE5012 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CLK Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PAD Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Push-Pull Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Open Drain Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure of the Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structure of the Safety Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Incremental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Data Sheet 6 11 17 17 19 19 20 21 22 23 24 25 26 27 28 30 47 48 51 53 55 V 0.46, 2009-09 TLE5012 1 Product Description 1.1 Overview The TLE5012 is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR) elements. High precision angle values are achieved over temperature and lifetime using internal autocalibration algorithm. Data communications are accomplished with a bi-directional SSC Interface that is SPI compatible. The absolute angle value and other values are transmitted via SSC or via a Pulse-Width-Modulation (PWM) Protocol. Also the sine and cosine raw values can be read out. These raw signals are digitally processed internally to calculate the angle orientation of the magnetic field (magnet). The TLE5012 is a precalibrated sensor. The calibration parameters are stored in laser fuses. At start-up the values of the fuses are written into Flip-Flops, where these values can be changed by the application specific parameters. The TLE5012-E0318 and TLE5012-E0742 are especially configured in a Hall-Switch emulation mode for motors with three or seven pole pairs. Online diagnostic functions are provided to ensure reliable operation. Product Type Marking Ordering Code Package TLE5012 5012 SP000477068 PG-DSO-8 TLE5012-E0318 5012E03 SP000611246 PG-DSO-8 TLE5012-E0742 5012E07 SP000611250 PG-DSO-8 Target Data Sheet 7 V 0.46, 2009-09 TLE5012 Product Description 1.2 • • • • • • • • • • • • • • Features Giant Magneto Resistance (GMR)-based principle Integrated magnetic field sensing for angle measurement Full calibrated 0 - 360° angle measurement with revolution counter and angle speed measurement Two separate highly accurate single bit SD-ADC 15 bit representation of absolute angle value on the output (resolution of 0.01°) 16 bit representation of sine / cosine values on the interface Max. 1.0° angle error over lifetime and temperature with activated auto-calibration Bi-directional SSC Interface up to 8Mbit/s Supports SIL3 with diagnostic functions and status information Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM) 0.25 µm CMOS technology Automotive qualified: -40°C to 150°C (Junction Temperature) ESD > 2kV (HBM) Green package with lead-free (Pb-free) plating 1.3 Application Example The TLE5012 GMR-Based Angular Sensor is designed for angular position sensing in automotive applications, such as: • • • • Electrical Commutated Motor (e.g. used in Electric Power Steering (EPS)) Rotary Switch Steering Angle General Angular Sensing Target Data Sheet 8 V 0.46, 2009-09 TLE5012 Functional Description 2 Functional Description 2.1 General The GMR sensor is implemented using vertical integration. This means that the GMR sensitive areas are integrated above the logic portion of the TLE5012 device. These GMR elements change their resistance depending on the direction of the magnetic field. Four individual GMR elements are connected to one Wheatstone Sensor Bridge. These GMR elements sense one of two components of the applied magnetic field: • • X component, Vx (cosine) or the Y component, Vy (sine) The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled and temperature effects cancel out each other. 90° GMR Resistors S 0° VX N ADCX + Figure 1 VY ADCX - GND ADCY+ ADCY- VDD Sensitive Bridges of the GMR Sensor Note: In Figure 1, the arrows in the resistors symbolize the direction of the Reference Layer, which is used for the further explanation. The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are orientated orthogonally to each other to measure 360°. With the trigonometric function ARCTAN, the true 360° angle value can be calulated which is represented by the relation of X and Y signals. Because only the relative values influence the result, the absolute size of the two signals is of minor importance. Therefore, most influences to the amplitudes are compensated. Target Data Sheet 9 V 0.46, 2009-09 TLE5012 Functional Description Y Component (SIN) VY X Component (COS) VX V VX (COS) 0° 90° 180° 270° 360° Angle α VY (SIN) Figure 2 Ideal Output of the GMR Sensor Bridges Target Data Sheet 10 V 0.46, 2009-09 TLE5012 Functional Description 2.2 Pin Configuration 8 7 6 5 1 2 3 4 Figure 3 Pin Configuration (Top View) 2.3 Pin Description Table 1 Pin Description Center of Sensitive Area Pin No. Symbol In/Out Function 1 CLK I External Clock (must be connected to GND for PWM output) 2 SCK I SSC Clock 3 CSQ I SSC Chip Select 4 DATA / HS3 I/O SSC Data / IIF Index / Hall Switch Signal 3 5 IFA (IIF_A / HS1 / PWM) O Interface A: IIF Phase A; Hall Switch Signal 1 or PWM output (depends on external application circuit) 6 VDD - Supply Voltage 7 GND - Ground 8 IFB (IIF_B / HS2) O Interface B: IIF Phase B or Hall Switch Signal 2 Target Data Sheet 11 V 0.46, 2009-09 TLE5012 Functional Description 2.4 Block Diagram TLE5012 VDD Osc VRG VRA VRD PLL X GMR SDADC CSQ Digital Signal Processing Y GMR SDADC Temp SDADC CLK SSC Interface SCK DATA CCU Cordic Incremental IF PWM HSM Fuses IFA IFB GND Figure 4 TLE5012 Block Diagram 2.5 Functional Block Description 2.5.1 Internal Power Supply The internal stages of the TLE5012 are supplied with different voltage regulators. • • • GMR Voltage Regulator VRG Analog Voltage Regulator VRA Digital Voltage Regulator VRD (derived from VRA) These regulators are directly connected to the supply voltage VDD. 2.5.2 Oscillator and PLL The internal frequency oscillator feeds the Phase Locked Loop (PLL). Also the external clock (CLK) can be used therefore. 2.5.3 SD-ADC The SD-ADCs transform the analog GMR-voltages and temperature-voltage into the digital domain. Target Data Sheet 12 V 0.46, 2009-09 TLE5012 Functional Description 2.5.4 Digital Signal Processing Unit The Digital Signal Processing Unit (DSPU) contains the: • • • Capture Compare Unit (CCU), which is used to generate the PWM signal COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle calculation Fuses, which contain the calibration parameters 2.5.5 Interfaces Different Interfaces can be selected: • • • • SSC Interface PWM Incremental Interface Hall Switch Mode 2.5.6 Safety Features The TLE5012 offers a multiplicity on safety features to support Safety Integrity Level (SIL). Sensors with this performance are identified by the following logo: Figure 5 PRO-SILTM Logo Safety features are: • • • • • • Test vectors switchable to ADC- input Inversion or combination of filter input streams Data transmission check via 8bit Cyclic Redundancy Check (CRC) Self test routines Two independent active interfaces possible Overvoltage and undervoltage detection Disclaimer PRO-SIL™ is a Registered Trademark of Infineon Technologies AG. The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features. SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency. SIL respectively A-SIL certification for such a System has to be reached on system level by the System Responsible at an accredited Certification Authority. SIL stands for Safety Integrity Level (according to IEC 61508) A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262) Target Data Sheet 13 V 0.46, 2009-09 TLE5012 Specification 3 Specification 3.1 Application Circuit The application circuit in Figure 6, Figure 7, Figure 8 and Figure 9 show the different communication possibilities of TLE5012. TLE5012 VDD (4.5 – 5.5V) 100n Osc VRG VRA 1 kΩ VRD CLK PLL X GMR CSQ SDADC Digital Signal Processing Y GMR SDADC SCK SSC Interface DATA SDADC *) CCU Cordic Temp SSC Fuses IFA (PWM) Incremental IF PWM HSM IFB 10 kΩ GND PWM IFB could be remain open or connected via 10 kΩ resistor to GND. * recommended , e.g. 470 Ω Figure 6 Application Circuit for TLE5012 with SSC and PWM Interface (using internal CLK) Figure 6 shows a basic block-diagram of the TLE5012 with PWM- Interface. This interface is selectable by connecting CLK to GND. Additionally to the PWM the SSC Interface could be used. Within the SSC- Interface the PWM mode is selectable between Push-Pull and Open Drain. Target Data Sheet 14 V 0.46, 2009-09 TLE5012 Specification TLE5012 VRG VRA VRD CLK PLL X GMR Digital Signal Processing SDADC Temp SDADC *) *) *) CSQ SDADC Y GMR VDD (4.5 – 5.5V) 100n Osc SSC Interface SCK DATA (HS3) CCU Cordic IFA (HS1) Incremental IF PWM HSM Fuses IFB (HS2) GND * recommended , e.g. 2.2 kΩ Figure 7 Application Circuit for TLE5012 with HS Mode (using internal CLK) Figure 7 shows a basic block-diagram of the TLE5012 with HS Mode. This interface is selectable by connecting CLK to GND and CSQ to VDD. Additionally to the HSM the SSC Interface could be used by pulling CSQ to GND. Within the SSC- Interface the HS Mode is selectable between Push-Pull and Open Drain. VDD (4.5 – 5.5V) TLE5012 100n Osc VRG VRA VRD **) CLK ***) PLL X GMR SDADC SSC Interface SDADC SCK DATA *) SSC CCU Cordic Temp PLL CSQ SDADC Digital Signal Processing Y GMR µC Fuses IFA (IIF_A) Incremental IF PWM HSM IFB (IIF_B) CCU GND *) recommended , e.g. 470 Ω **) connected to V DD for use of internal CLK ***) connected to microcontroller for use of external CLK Figure 8 Application Circuit for TLE5012 with SSC and IIF Interface (using external CLK) Figure 8 shows a basic block-diagram of an angle sensor system using a TLE5012 and a microcontroller for rotor positioning applications. The depicted Interface-Configuration is needed for High-Speed applications like electrical commutated motor drives. It is possible to connect the TLE5012 to a microcontroller via Incremental Interface and for safety reasons also via SSC-Interface. Target Data Sheet 15 V 0.46, 2009-09 TLE5012 Specification TLE5012 VRG VRA VDD (4.5 – 5.5V) 100 n Osc 1 kΩ VRD CLK PLL X GMR CSQ SDADC Digital Signal Processing Y GMR SDADC SCK SSC Interface DATA CCU Cordic Temp SD ADC 10 kΩ Fuses DATA and IFB could be remain open or connected via 10 kΩ resistor to GND . IFA (PWM) Incremental IF PWM HSM IFB 10 kΩ GND Figure 9 Application Circuit for TLE5012 with only PWM Interface (using internal CLK) Target Data Sheet 16 V 0.46, 2009-09 TLE5012 Specification 3.2 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Voltage on VDD pin respect to ground (VSS) VDD -0.5 - 6.5 V max 40 h/Lifetime Voltage on any pin respect to ground (VSS) VIN -0.5 - 6.5 V additionally VDD + 0.5 V may not be exceeded Junction Temperature TJ -40 - 150 °C - - 150 °C for 1000h not additive - - 125 mT max. 5 min @ tA = 25°C - - 100 mT max. 5 h @ tA = 25°C - - 70 mT max. 1000h @ tA = 85°C; not additive - - 60 mT max. 1000h @ tA = 100°C; not additive -40 - 150 °C without magnetic field Magnetic Field Induction Storage Temperature B TST Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device. 3.3 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Table 3 is valid for -40°C < TJ < 150°C. Table 3 Operating Range Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Supply Voltage VDD 4.5 5.0 5.5 V 1) Output Current (DATA-Pad) IQ - - -25 mA PAD_DRV =’0x’, sink current2) - - -5 mA PAD_DRV =’10’, sink current2) - - -0.4 mA PAD_DRV =’11’, sink current2) - - -15 mA PAD_DRV =’0x’, sink current2) - - -5 mA PAD_DRV =’1x’, sink current2) -0.3 - 5.5 V VDD + 0.3 V may not be exceeded Output Current (IFA / IFB-Pad) Input Voltage Target Data Sheet IQ VIN 17 V 0.46, 2009-09 TLE5012 Specification Table 3 Operating Range (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Magnetic Induction BXY 30 - 50 mT Angle Range Ang 0 - 360 ° in X/Y direction3) 1) Directly blocked with 100nF ceramic capacitor 2) Max. current to GND over Open Drain Output 3) Values refer to an homogenous magnetic field (BXY) without vertical magnetic induction (BZ = 0mT). Note: The thermal resistances listed in Table 20 “Package Parameters” on Page 55 must be used to calculate the corresponding ambient temperature. Calculation of the Junction Temperature The total power dissipation PTOT of the chip increases its temperature above the ambient temperature. The power multiplied by the total thermal resistance RthJA (Junction to Ambient) leads to the final junction temperature. RthJA is the sum of the addition of the values of the two components Junction to Case and Case to Ambient. (1) RthJA = RthJC + RthCA TJ = TA + ∆T ∆T = RthJA × PTOT = RthJA × (VDD × I DD + VOUT × I OUT ) (IDD, I OUT > 0, if direction is into IC) Example (assuming no load on Vout): (2) VDD = 5V I DD = 12mA K ∆T = 150 × 5[V ]× 0.012[A] + 0[VA] = 9 K W For moulded sensors, the calculation with RthJC is more adequate. Target Data Sheet 18 V 0.46, 2009-09 TLE5012 Specification 3.4 Characteristics 3.4.1 Electrical Parameters The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values correspond to a supply voltage VDD = 5.0 V and 25 °C, unless individually specified. All other values correspond to -40 °C < TJ < 150°C. Table 4 Electrical Parameters Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Supply Current IDD - 12 13 mA POR Level VPOR 2.0 - 2.9 V POR Hysteresis VPORhy - 30 - mV Power On Time tPon - 4 5 ms Input Signal Low Level VL - - 0.3 VDD V Input Signal High Level VH 0.7 VDD - - V Pull-Up Current IPU -10 - -225 µA CSQ -10 - -150 µA DATA 10 - 225 µA SCK 10 - 150 µA CLK, IFA, IFB - - 1 V DATA; IQ = - 25 mA (PAD_DRV=’0x’), IQ = - 5 mA (PAD_DRV=’10’), IQ = - 0.4 mA (PAD_DRV=’11’) - - 1 V IFA,IFB; IQ = - 15 mA (PAD_DRV=’0x’), IQ = - 5 mA (PAD_DRV=’1x’) Unit Notes Pull-Down Current Output Signal Low Level IPD VOL Power On Reset VDD > VDDmin1) 1) Within “Power On Time” write access is not permitted 3.4.2 ESD Protection Table 5 ESD Protection Parameter ESD Voltage Symbol Values min. max. VHBM - ±2.0 kV Human Body Model1) VSDM - ±0.5 kV Socketed Device Model2) 1) Human Body Model (HBM) according to: JEDEC EIA/JESD22-A114-B 2) Socketed Device Model (SDM) according to: ESD ASS.STD.DS5.3-93 Target Data Sheet 19 V 0.46, 2009-09 TLE5012 Specification 3.4.3 GMR Parameters All parameters apply over the full operating range, unless otherwise specified. Table 6 Basic GMR Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. RGADC - - ±23230 digits AX, AY 6000 9500 15781 digits at calibration conditions 3922 - 20620 digits operating range k 87.5 100 112.49 % at calibration conditions OX, OY -2048 0 +2047 digits at calibration conditions X, Y orthogonality error ϕ -11.25 0 +11.24 ° at calibration conditions X, Y without field X 0, Y0 -5000 - +5000 digits without magnet 4) X, Y output range X, Y amplitude 1) X, Y synchronism 2) X, Y offset 1) 2) 3) 4) 3) see Figure 10 k = 100*(AX/AY) OY=(YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2 Not tested VY +A 0 Offset 0° 90° 180° 270° 360° Angle -A Figure 10 Offset and Amplitude Definition Target Data Sheet 20 V 0.46, 2009-09 TLE5012 Specification 3.4.4 Angle Performance After internal calculation the sensor has a remaining error, as shown in Table 7. The error value refers to BZ = 0mT and the operating conditions given in Table 3 “Operating Range” on Page 17. The overall angle error represents the relative angle error. This error describes the deviation to the reference line after zero angle definition. Table 7 Angle Performance Parameter Symbol Values Min. Typ. Note / Test Condition Max. 1) 1.0 ° including lifetime and temperature drift2)3) 1.6 ° including temperature drift2)3) αErr - 0.6 Overall Angle Error (without auto- αErr calibration) - 0.61) Overall Angle Error (with autocalibration) Unit 1) At 25°C, B =30 mT 2) Including hysteresis error, caused by revolution direction change. 3) Only with calibrated GMR-compensation parameters of customer setup; Relative error after zero angle definition. Autocalibration The autocalibration enables online parameter calculation and reduces therefore the angle error due to misalignments. After start-up the parameters out of the fuses get loaded into flip-flops. The TLE5012 updates these parameters after a full revolution. The update can be chosen within the Autocalibration Mode (AUTOCAL) bit. It is possible to do the update after every 22.5°, 11.25° or after tupd. 3.4.5 Signal Processing The signal path of the TLE5012 is depicted in Figure 11. It consists of the GMR-bridge, ADC, filter and angle calculation. Depending on the filter configuration a different total delay time is achieved. Additional to this delay time, the delay time of the interface has to be considered. The delay time leads to an additional angle error at higher speeds. With enabling the prediction, the signal delay time will be reduced (Figure 12). TLE5012 Microcontroller tupd X GMR SDADC Filter Angle Calculation Y GMR SDADC Filter tdelIF tdel Figure 11 IF TLE5012 Signal path At FIR_MD = 0 only raw values can be read out, due to the more time consuming angle calculation. Target Data Sheet 21 V 0.46, 2009-09 TLE5012 Specification Table 8 Signal Processing Parameter Symbol Update Rate at Interface tupd Angle Delay Time3) tdel Angle Delay Time with Prediction3) tdel Values Unit Note / Test Condition Min. Typ. Max. - 21.3 - µs FIR_MD = 0 (only raw values)1)2) - 42.7 - µs FIR_MD = 11)2) - 85.3 - µs FIR_MD = 2 (default)1)2) - 170.6 - µs FIR_MD = 31)2) - 60 70 µs FIR_MD = 11)2) - 80 95 µs FIR_MD = 21)2) - 120 140 µs FIR_MD = 31)2) - 20 30 µs FIR_MD = 1; PREDICT = 1 1)2) - 5 20 µs FIR_MD = 2; PREDICT = 1 1)2) - -40 -20 µs FIR_MD = 3; PREDICT = 1 1)2) Angle Noise NAngle - 0.11 - ° FIR_MD = 0, (1 Sigma)2) - 0.08 - ° FIR_MD = 1, (1 Sigma)2) - 0.05 - ° FIR_MD = 2, (1 Sigma)2) (default) - 0.04 - ° FIR_MD = 3, (1 Sigma)2) 1) depends on internal oscillator frequency variation (Chapter 3.4.6) 2) guaranteed by laboratory characterization 3) valid at constant rotation speed Sensor output Angle Magnetic field direction tdel Figure 12 tupd With Prediction Without Prediction time Delay of Sensor Output Target Data Sheet 22 V 0.46, 2009-09 TLE5012 Specification 3.4.6 Clock Supply (CLK Timing Definition) If the external clock supply is selected, the clock signal input ’CLK’ must fulfill certain requirements which are described in the following: • • • The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse width and must be spike filtered. The duty cycle factor should be 0.5 but can deviate to the values limited by tCLKh(f_min) and tCLKl(f_min). The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is generated automatically. tCLK tCLKh tCLKl VH VL t Figure 13 External CLK Timing Definition Table 9 CLK Timing Specification Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. fCLK 3.8 4.0 4.2 MHz CLKDUTY 30 50 70 % CLK Rise Time tCLKr - - 30 ns from VL to VH CLK Fall Time tCLKf - - 30 ns from VH to VL Digital Clock fDIG 22.8 24 25.2 MHz Internal Oscillator Frequency fCLK 3.8 4.0 4.2 MHz Input Frequency CLK Duty Cycle 1)2) 1) Minimum Duty Cycle Factor: tCLKh(f_min) / tCLK(f_min) with tCLK(f_min)= 1 / fCLK(f_min) 2) Maximum Duty Cycle Factor: tCLKh(f_max) / tCLK(f_min) with tCLKh(f_max)= tCLK(f_min) - tCLKl(min) Target Data Sheet 23 V 0.46, 2009-09 TLE5012 Specification 3.5 Interfaces Within the register MOD_3, the driver strength and so the slope can be varied of the sensor output. The driver strength is specified in Table 3 and the slope fall and rise time in Table 10. Table 10 PAD Characteristic Parameter Symbol Output Fall Time tfall, trise Output Rise Time 3.5.1 Values Unit Note / Test Condition Min. Typ. Max. - - 8 ns DATA, 50pF, PAD_DRV=’00’ - - 28 ns DATA, 50pF, PAD_DRV=’01’ - - 45 ns DATA, 50pF, PAD_DRV=’10’ - - 130 ns DATA, 20pF, PAD_DRV=’11’ - - 10 ns IFA/IFB, 20pF, PAD_DRV=’0x’ - - tbd ns IFA/IFB, 20pF, PAD_DRV=’1x’ Synchronous Serial Communication (SSC) Interface The 3-pin SSC Interface has a bi-directional push-pull data line, serial clock signal and chip select. The SSC Interface is designed to communicate with a microcontroller peer to peer for fast applications. SSC Communication for peer to peer Data Transmission between TLE5012 and µC (SSC Slave) TLE 5012 µC (SSC Master) DATA Shift Reg. **) MRST EN MTSR SCK CSQ *) *) SCK Shift Reg. EN Clock Gen. CSQ *) optional , e.g. 100 Ω **) optional , e.g. ≥ 470 Ω Figure 14 SSC Configuration in Sensor-Slave Mode with Push-Pull Outputs (High Speed Application) Target Data Sheet 24 V 0.46, 2009-09 TLE5012 Specification Another possibility is a 3-pin SSC Interface with bidirectional open-drain data line, serial clock signal and chip select. This setup is designed to communicate with a microcontroller in a bus system, together with other SSC slaves (e.g. two TLE5012 for redundancy reasons). This mode can be activated using bit SSC_OD. (SSC Slave) TLE 5012 µC (SSC Master) typ. 1kΩ DATA Shift Reg. *) *) MRST Shift Reg. MTSR SCK *) CSQ *) SCK Clock Gen. CSQ *) optional , e.g. 100 Ω Figure 15 SSC Configuration in Sensor-Slave Mode and Open Drain (Safe Bus Systems) 3.5.1.1 SSC Timing Definition tCSs tCSh tSCKp tCSoff CSQ tSCKh tSCKl SCK DATA tDATAs Figure 16 tDATAh SSC Timing SSC Inactive Time (CSoff) The SSC inactive time defines the delay time after a transfer before the TLE5012 can be selected again. Table 11 SSC Push-Pull Timing Specification Parameter Symbol Values Min. Typ. Max. Unit SSC Baud Rate fSSC - 8.0 - Mbit/s CSQ Setup Time tCSs 105 - - ns CSQ Hold Time tCSh 105 - - ns Target Data Sheet 25 Note / Test Condition V 0.46, 2009-09 TLE5012 Specification Table 11 SSC Push-Pull Timing Specification (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition SSC inactive time CSQ off tCSoff 600 - - ns SCK Period tSCKp 120 125 - ns SCK High tSCKh 40 - - ns SCK Low tSCKl 30 - - ns DATA Setup Time tDATAs 25 - - ns DATA Hold Time tDATAh 40 - - ns Write Read Delay twr_delay 130 - - ns Table 12 SSC Open Drain Timing Specification Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Pull-up Resistor = 1kΩ SSC Baud Rate fSSC - 2.0 - Mbit/s CSQ Setup Time tCSs 300 - - ns CSQ Hold Time tCSh 400 - - ns CSQ off tCSoff 600 - - ns SCK Period tSCKp 500 - - ns SCK High tSCKh - 190 - ns SCK Low tSCKl - 190 - ns DATA Setup Time tDATAs 25 - - ns DATA Hold Time tDATAh 40 - - ns Write Read Delay twr_delay 130 - - ns Target Data Sheet 26 SSC inactive time V 0.46, 2009-09 TLE5012 Specification 3.5.1.2 SSC Data Transfer The SSC data transfer is word aligned. The following transfer words are possible: • • • Command word (to access and change operating modes of the TLE5012) Data words (any data transferred in any direction) Safety word (confirms the data transfer and provide status information) twr_delay COMMAND READ Data 1 READ Data 2 SAFETY-WORD SSC-Master is driving DATA SSC-Slave is driving DAT A Figure 17 SSC Data Transfer (Data Read Example) twr_delay COMMAND WRITE Data 1 SAFETY-WORD SSC-Master is driving DATA SSC-Slave is driving DAT A Figure 18 SSC Data Transfer (Data Write Example) Command Word The TLE5012 is controlled by a command word. It is sent first at every data transmission.The structure of the command word is shown in Table 13, where the UPD-bit allows the access to current values or updated values. If an update command is issued and the update bit (UPD) is set, the immediate values are stored in the update buffer simultaneously. This enables a snapshot of all necessary system parameters at the same time. Bits with an update buffer are marked by an “u” in type of register description. The initialization of such an update is descripted on page 29. Table 13 Structure of the Command Word Name Bits Description RW [15] Read - Write 0:Write 1:Read Lock [14..11] 4 bit Lock Value 0000B: Default Operating Access for addresses 0x00:0x04 1010B: Config- Access for addresses 0x05:0x11 Target Data Sheet 27 V 0.46, 2009-09 TLE5012 Specification Table 13 Structure of the Command Word Name Bits Description UPD [10] Update-Register Access 0: Access to current values 1: Access to updated values ADDR [9..4] 6 bit Address ND [3..0] 4 bit Number of Data-Words Safety Word The safety word contains following bits: Table 14 Structure of the Safety Word Name Bits Description STAT Chip and Interface Status [15] Indication of Chip-Reset (resets after readout) via SSC 0: Reset occurred 1: No reset Reset: 1B [14] System Error (e.g. Overvoltage; Undervoltage; VDD-, GND- off; ROM;...) 0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_ADCM) 1: No error [13] Interface Access Error (access to wrong address; wrong lock) 0: Error occurred 1: No error [12] Valid Angle Value (no system error; no interface error; NO_GMR_A = ’0’; NO_GMR_XY=’0’) 0: Angle value invalid 1: Angle value valid RESP [11..8] Sensor Number Response Indicator The sensor no. bit is pulled low and the other bits are high. CRC [7..0] Cyclic Redundancy Check (CRC) Target Data Sheet 28 V 0.46, 2009-09 TLE5012 Specification Data Communication via SSC SSC Transfer twr_delay Command Word Data Word (s) SCK DATA MSB 14 13 12 11 10 9 8 7 6 5 4 3 2 1 LSB MSB 1 LSB CSQ RW LOCK UPD ADDR LENGTH SSC -Master is driving DAT A SSC -Slave is driving DAT A Figure 19 SSC Bit Ordering (Read Example) The data communication via SSC interface has the following characteristic: • • • • • • • • • • • • The data transmission order is “Most Significant Bit (MSB) first”. Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK. The SSC Interface is word-aligned. All functions are activated after each transmitted word. A “high” condition on the negated Chip Select pin (CSQ) of the selected TLE5012 interrupts the transfer immediately. The CRC calculator is automatically reset. After changing the data direction, a delay (twr_delay) has to be considered before continuing the data transfer. This is necessary for internal register access. Every access to the TLE5012 with the number of data (ND) ≥ 1 is performed with address auto-increment. At an overflow at address 3FH the transfer continuous at address 00H. With ND = 0 no auto-increment is done and a continuously readout of the same address can be realized. Afterwards no Safety Word is send and the transfer ends with high condition on CSQ. After every data transfer with ND ≥ 1 the 16 bit Safety Word will be appended by the selected TLE5012. At a rising edge of CSQ without data transfer before (no SCK-pulse), the update-registers are updated with according values. After sending the Safety Word the transfer ends. To start another data transfer, the CSQ has to be deselected once for tCSoff. The SSC is default Push-Pull. The Push-Pull driver is only active, if the TLE5012 has to send data, otherwise the Push-Pull is disabled for receiving data from the microcontroller. Cyclic Redundancy Check (CRC) • • • • • • This CRC is according to the J1850 Bus-Specification. Every new transfer resets the CRC generation. Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)). Generator-Polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used (see Figure 20) The remainder of the fast CRC circuit is initial set to ’11111111B’. Remainder is inverted before transmission. Serial CRC output X7 1 X6 1 X5 1 X4 1 xor X3 1 X2 xor 1 X1 xor 1 X0 1 & xor Input TX_CRC parallel Remainder Figure 20 Fast CRC Polynomial Division Circuit Target Data Sheet 29 V 0.46, 2009-09 TLE5012 Specification 3.5.1.3 Registers Chapter This chapter defines the registers of the TLE5012. It also defines the read/write access rights of the specific registers. Table 15 identifies the values with symbols. Access to the registers is accomplished via the SSC Interface. Table 15 Registers Overview Register Short Name Register Long Name Offset Address Page Number Registers Chapter, TLE5012 Register STAT Status Register 00H 31 ACSTAT Activation Status Register 01H 33 AVAL Angle Value Register 02H 34 ASPD Angle Speed Register 03H 35 AREV Angle Revolution Register 04H 35 FSYNC Frame Synchronization Register 05H 36 MOD_1 Interface Mode1 Register 06H 37 SIL SIL Register 07H 38 MOD_2 Interface Mode2 Register 08H 39 MOD_3 Interface Mode3 Register 09H 40 OFFX Offset X 0AH 41 OFFY Offset Y 0BH 42 SYNCH Synchronicity 0CH 42 IFAB IFAB Register 0DH 43 MOD_4 Interface Mode4 Register 0EH 44 TCO_Y Temperature Coeffizient Register 0FH 45 ADC_X X-raw value 10H 45 ADC_Y Y-raw value 11H 46 The register is addressed wordwise. Target Data Sheet 30 V 0.46, 2009-09 TLE5012 Specification 3.5.1.3.1 TLE5012 Register Status Register STAT Offset Status Register Reset Value 00H 5'B67 6B15 8001H 12B*05B $ 12B*05B ;< 6B520 6B$'&7 5HV U UZ UX UX U UX 6B0$*2/ 6B;<2/ 6B29 6B'638 6B)86( 6B95 6B:' 6B567 UX UX UX UX UX UX UX UX Field Bits Type Description RD_ST 15 r Read Status 0B after readout 1B status values changed Reset: 1B S_NR 14:13 rw Slave Number is given at startup by the external circuit of IFA and IFB. Reset: 00B NO_GMR_A 12 ru No GMR Angle Value 0B valid GMR angle value on the interface 1B no valid GMR angle value on the interface Reset: 0B NO_GMR_XY 11 ru No GMR XY Values 0B valid GMR_XY values on the interface 1B no valid GMR_XY values on the interface Reset: 0B S_ROM 10 r Status ROM 0B after readout, CRC ok 1B CRC fail or running Reset: 0B S_ADCT 9 ru Status ADC-Test 0B after readout 1B Test vectors out of limit Reset: 0B Target Data Sheet 31 V 0.46, 2009-09 TLE5012 Specification Field Bits Type Description S_MAGOL 7 ru Status Magnitude Out of Limit 0B after readout 1B GMR-magnitude out of limit (>23230 digits) Reset: 0B S_XYOL 6 ru Status X,Y Data Out of Limit 0B after readout 1B X,Y data out of limit (>23230 digits) Reset: 0B S_OV 5 ru Status Overflow 0B after readout 1B DSPU overflow occurred Reset: 0B S_DSPU 4 ru Status Digital Signal Processing Unit 0B after readout 1B DSPU self test not ok, or selftest is running Reset: 0B S_FUSE 3 ru Status Fuse CRC 0B after readout, Fuse CRC ok 1B Fuse CRC fail Reset: 0B S_VR 2 ru Status Voltage Regulator 0B after readout 1B VDD overvoltage; VDD undervoltage; VDD-off; GNDoff; or VOVG; VOVA; VOVD too high Reset: 0B S_WD 1 ru Status Watchdog 0B after chip reset 1B watchdog counter expired Reset: 0B S_RST 0 ru Status Reset 0B after readout 1B indication of power-up, short power-break or active reset Reset: 1B Target Data Sheet 32 V 0.46, 2009-09 TLE5012 Specification Activation Status Register ACSTAT Offset Activation Status Register Reset Value 01H 5EFEH 5HV $6B$'&7 5HV UZ UZ $6B9(&B 0$* $6B9(&B ;< $6B29 $6B'638 $6B)86( $6B95 $6B:' $6B567 UZ UZ UZ UZ UZ UZ UZ UZ Field Bits Type Description Res 15:10 rw Reserved Reset: 010111B AS_ADCT 9 rw Enable GMR Vector check Reset: 1B AS_VEC_MAG 7 rw Activation of ADC-Redundancy-BIST 0B after execution 1B activation of redundancy BIST Reset: 1B AS_VEC_XY 6 rw Activation of ADC-BIST 0B after execution 1B activation of BIST Reset: 1B AS_OV 5 rw Enable of DSPU Overflow Check Reset: 1B AS_DSPU 4 rw Activation DSPU BIST 0B after execution 1B activation of DSPU BIST Reset: 1B AS_FUSE 3 rw Activation Fuse CRC 0B after execution 1B activation of Fuse CRC Reset: 1B AS_VR 2 rw Enable Voltage Regulator Check Reset: 1B AS_WD 1 rw Enable DSPU Watchdog-HW-Reset Reset: 1B Target Data Sheet 33 V 0.46, 2009-09 TLE5012 Specification Field Bits Type Description AS_RST 0 rw Activation of Hardware Reset Activation occurs after CSQ switches from ’0’ to ’1’ after SSC transfer. 0B after execution 1B activation of HW Reset Reset: 0B Angle Value Register AVAL Offset Angle Value Register Reset Value 02H 8000H 5'B$9 $1*B9$/ U UX $1*B9$/ UX Field Bits Type Description RD_AV 15 r Read Status, Angle Value 0B after readout 1B new angle value (ANG_VAL) present Reset: 1B ANG_VAL 14:0 ru Calculated Angle Value (ANG_RANGE = 0x080) 4000H -180° 0000H 0° 3FFFH +179.99° Reset: 0H Target Data Sheet 34 V 0.46, 2009-09 TLE5012 Specification Angle Speed Register ASPD Offset Angle Speed Register Reset Value 03H 8000H 5'B$6 $1*B63' U UX $1*B63' UX Field Bits Type Description RD_AS 15 r Read Status, Angle Speed 0B after readout 1B new angle speed value (ANG_SPD) present Reset: 1B ANG_SPD 14:0 ru Calculated Angle Speed Without prediction difference between two consecutive angle values. With prediction, difference between three consecutive angle values. Reset: 0H Angle Revolution Register AREV Offset Angle Revolution Register Reset Value 04H 8000H 5'B5(9 )&17 5(92/ U UZX UX 5(92/ UX Target Data Sheet 35 V 0.46, 2009-09 TLE5012 Specification Field Bits Type Description RD_REV 15 r Read Status, Revolution 0B after readout 1B new value (REVOL) present Reset: 1B FCNT 14:9 rwu Frame Counter (unsigned 6 bit value) Counts every new angle value Reset: 0H REVOL 8:0 ru Number of Revolutions (signed 9 bit value) If prediction is enabled, revolution counter is one schedule delayed related to ANG_VAL. Reset: 0H Frame Synchronization Register FSYNC Offset Frame Synchronization Register Reset Value 05H 0000H 5HV )6<1& UZX 5HV Field Bits Type Description FSYNC 15:9 rwu Frame Synchronization Counter Value Sub counter within one frame. Reset: 0H Target Data Sheet 36 V 0.46, 2009-09 TLE5012 Specification Interface Mode1 Register MOD_1 Offset Interface Mode1 Register Reset Value 06H 8001H ),5B0' 5HV UZ 5HV &/.B6(/ 66&B2' '638B+2 /' ,,)B02' UZ UZ UZ UZ Field Bits Type Description FIR_MD 15:14 rw Filter Decimation Setting 00B 21.3µs 01B 42.7µs 10B 85.3µs 11B 170.6µs Reset: 10B CLK_SEL 4 rw Clock Source Select 0B internal oscillator 1B external 4MHz clock Reset: 0B SSC_OD 3 rw SSC-Interface 0B Push-Pull 1B Open Drain (default within TLE5012-E0318 and TLE5012-E0742) Reset: 0B DSPU_HOLD 2 rw Hold DSPU Operation 0B DSPU in normal schedule operation 1B DSPU is on hold Reset: 0B IIF_MOD 1:0 rw Incremental Interface Mode 00B IIF disabled 01B A/B operation with Index on DATA 10B not allowed 11B not allowed Reset: 01B Target Data Sheet 37 V 0.46, 2009-09 TLE5012 Specification SIL Register SIL Offset SIL Register Reset Value 07H 0000H ),/7B3$ 5 ),/7B,1 9 UZ UZ 5HV $'&79B( 1 $'&79B< $'&79B; UZ UZ UZ )86(B5( / 5HV 5HV UZ Field Bits Type Description FILT_PAR 15 rw Filter Parallel 0B filter parallel disabled 1B filter parallel enabled (source: X-value) Reset: 0B FILT_INV 14 rw Filter Inverted 0B filter inverted disabled 1B filter inverted enabled Reset: 0B FUSE_REL 10 rw Fuse Reload 0B fuse reload disabled 1B fuse parameters reloaded to DSPU at next cycle start Reset: 0B ADCTV_EN 6 rw ADC-Test vectors 0B ADC-Test vectors disabled 1B ADC-Test vectors enabled Reset: 0B ADCTV_Y 5:3 rw Test vector Y 000B 0V 001B +70% 010B +100% 011B +Overflow 101B -70% 110B -100% 111B -Overflow Reset: 0H Target Data Sheet 38 V 0.46, 2009-09 TLE5012 Specification Field Bits Type Description ADCTV_X 2:0 rw Test vector X 000B 0V 001B +70% 010B +100% 011B +OV 101B -70% 110B -100% 111B -OV Reset: 0H Interface Mode2 Register MOD_2 Offset Interface Mode2 Register Reset Value 08H 0800H 5HV $1*B5$1*( UZ $1*B5$1*( $1*B',5 35(',&7 $872&$/ UZ UZ UZ UZ Field Bits Type Description ANG_RANGE 14:4 rw Angle Range Angle Range [°] = 360° * (27 / ANG_RANGE) 200H represents 90° 080H represents 360° Reset: 080H ANG_DIR 3 rw Angle Direction 0B counterclockwise rotation of magnet 1B clockwise rotation of magnet Reset: 0B PREDICT 2 rw Prediction 0B prediction disabled 1B prediction enabled (default within TLE5012-E0318 and TLE5012-E0742) Reset: 0B Target Data Sheet 39 V 0.46, 2009-09 TLE5012 Specification Field Bits Type Description AUTOCAL 1:0 rw Autocalibration Mode 00B no autocalibration 01B autocalibration time mode (1LSB parameter change every tupd) (default within TLE5012-E0318 and TLE5012-E0742) 10B autocalibration angle mode1 (1LSB parameter change every 22.5°) 11B autocalibration angle mode2 (1LSB parameter change every 11.25°) Reset: 00B Interface Mode3 Register MOD_3 Offset Interface Mode3 Register Reset Value 09H 0000H $1*B%$6( UZ $1*B%$6( 63,.() 5HV UZ UZ Field Bits Type Description ANG_BASE 15:4 rw Angle Base 800H -180° 000H 0° 001H 0.0879° 7FFH +179.912° Reset: 000H SPIKEF 3 rw Analog Spike Filters of Input Pads 0B spike filter disabled 1B spike filter enabled Reset: 0B Target Data Sheet 40 3$'B'59 UZ V 0.46, 2009-09 TLE5012 Specification Field Bits Type Description PAD_DRV 1:0 rw Configuration of Pad-Driver 00B IFA/IFB: strong driver, DATA: strong driver, fast edge 01B IFA/IFB: strong driver, DATA: strong driver, slow edge 10B IFA/IFB: weak driver, DATA: medium driver, fast edge (default within TLE5012-E0318 and TLE5012-E0742) 11B IFA/IFB: weak driver, DATA: weak driver, slow edge Reset: 00B Offset X Register OFFX Offset Offset X Reset Value 0AH 0000H ;B2))6(7 UZ 5HV ;B2))6(7 UZ Field Bits Type Description X_OFFSET 15:4 rw Offset Correction of X-value Reset: 0H Target Data Sheet 41 V 0.46, 2009-09 TLE5012 Specification Offset Y Register OFFY Offset Offset Y Reset Value 0BH 0000H <B2))6(7 UZ 5HV <B2))6(7 UZ Field Bits Type Description Y_OFFSET 15:4 rw Offset Correction of Y-value Reset: 0H Synchronicity Register SYNCH Offset Synchronicity Reset Value 0CH 0000H 6<1&+ UZ 5HV 6<1&+ UZ Field Bits Type Description SYNCH 15:4 rw Amplitude Synchronicity +2047D 112.494% 0D 100% -2048D 87.500% Reset: 0H Target Data Sheet 42 V 0.46, 2009-09 TLE5012 Specification IFAB Register IFAB Offset IFAB Register Reset Value 0DH 0003H 257+2 UZ 257+2 5HV ,)$%B2' ,)$%B+<67 UZ UZ UZ Field Bits Type Description ORTHO 15:4 rw Orthogonality Correction of X and Y Components +2047D 11.2445° 0D 0° -2048D -11.2500° Reset: 0H IFAB_OD 2 rw IFA & IFB Open Drain 0B Push-Pull 1B Open Drain (default within TLE5012-E0318 and TLE5012-E0742) Reset: 0B IFAB_HYST 1:0 rw HSM Hysteresis 00B 0° 01B 0.09° 10B 0.27° 11B 0.625° Reset: 11B Target Data Sheet 43 V 0.46, 2009-09 TLE5012 Specification Interface Mode4 Register MOD_4 Offset Interface Mode4 Register Reset Value 0EH 0000H 7&2B;B7 5HV UZ +60B3/3 ,)$%B5(6 ,)B0' UZ UZ UZ Field Bits Type Description TCO_X_T 15:9 rw Offset Temperature Coefficient for X-Component Reset: 0H HSM_PLP 7:5 rw Hall Switch Mode; Polepair Configuration 000B 2 pole pairs 001B 3 pole pairs (default within TLE5012-E0318) 010B 4 pole pairs 011B 6 pole pairs 100B 7 pole pairs (default within TLE5012-E0742) 101B 8 pole pairs 110B 12 pole pairs 111B 16 pole pairs Reset: 000B IFAB_RES 4:3 rw IFAB Resolution 00B 12bit = 0.088° (244Hz) 01B 11bit = 0.176° (488Hz) 10B 10bit = 0.352° (977Hz) 11B 9bit = 0.703° (1953Hz) Reset: 00B IF_MD 2:0 rw Interface Mode PWM, HSM if CLK is connected to GND at startup. Note: Not mentioned combinations are not allowed 000B SSC mode; IIF 001B SSC mode; PWM 010B SSC mode; HSM (default within TLE5012-E0318 and TLE5012-E0742) Reset: 000B Target Data Sheet 44 V 0.46, 2009-09 TLE5012 Specification Temperature Coeffizient Register TCO_Y Offset Temperature Coeffizient Register Reset Value 0FH 0000H 5HV 7&2B<B7 &5&B3$5 UZ UZ Field Bits Type Description TCO_Y_T 15:9 rw Offset Temperature Coefficient for Y-Component Reset: 0H CRC_PAR 7:0 rw CRC of Parameters CRC of parameters from address 08H to 0FH Reset: 0H X-raw Value Register ADC_X Offset X-raw value Reset Value 10H 0000H $'&B; U Field Bits Type Description ADC_X 15:0 r ADC value of X-GMR Read out of this register will update ADC_Y Reset: 0H Target Data Sheet 45 V 0.46, 2009-09 TLE5012 Specification Y-raw Value Register ADC_Y Offset Y-raw value Reset Value 11H 0000H $'&B< U Field Bits Type Description ADC_Y 15:0 r ADC value of Y-GMR Updated when ADC_X or ADC_Y is read. Reset: 0H 3.5.2 Pulse Width Modulation Interface The Pulse Width Modulation (PWM) Interface can be selected by connecting CLK to VDD. The PWM update rate can be programmed within the register 0EH (IFAB_RES) in following steps: • • • • 0.25 kHz with 12 bit resolution 0.5 kHz with 11 bit resolution 1.0 kHz with 10 bit resolution (default) 2.0 kHz with 9 bit resolution PWM uses a square wave with constant frequency whose duty cycle is modulated resulting in an average value of the waveform. Figure 21 shows the principle behavior of a PWM with different duty cycles and the definition of timing values. The duty cycle of a PWM is defined by following general formulas: Duty Cycle = ton t PWM t PWM = t on + toff f PWM = 1 t PWM (3) The range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. More details are given in Table 16. Target Data Sheet 46 V 0.46, 2009-09 TLE5012 Specification ON = High level UIFA tON OFF = Low level Duty cycle = 5% Vdd tPWM t OFF ‚0' UIFA Vdd UIFA ‚0' Vdd Duty cycle = 50% t Duty cycle = 95% t ‚0' t Figure 21 Typical Example for a PWM Signal Table 16 PWM Interface Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition PWM Output Frequency fPWM 244 - 1953 Hz selectable by IFAB_RES1) Output Duty Cycle Range DYPWM 6.25 - 93.75 % Absolute Angle - 2 - % Electrical Error (S_RST; S_VR) - 98 - % System Error (S_FUSE; S_OV; S_XYOL; S_MAGOL; S_ADCT) 0 - 1 % Short to GND 99 - 100 % Short to VDD, Power-Loss -5 - 5 % 2) PWM Period Variation tPWMvar IFAB_RES 1) fPWM = (fDIG * 2 ) / (24 * 4096) 2) depends on internal oscillator frequency variation (Chapter 3.4.6) Target Data Sheet 47 V 0.46, 2009-09 TLE5012 Specification 3.5.3 Hall Switch Mode The Hall Switch Mode (HSM) within the TLE5012 allows to emulate the output of three Hall switches. Hall switches are often used in electrical commutated motors to get information of the rotor position. With these three output signals the motor will be commutated in the right way. Depending on the used pole pairs of the rotor, different amount of electrical periods have to be realized. This is selectable within 0EH (HSM_PLP). Within the TLE5012E0318 three polepairs and within the TLE5012-E0742 seven polepairs are fused. Figure 22 depicts the three output signals with the relationship between electrical angle and mechanical angle. The mechanical 0° point is always used as reference. Hall-Switch-Mode: 3phase Generation Electrical Angle 0° 60° 120° 180° 240° 300° 360° HS1 HS2 HS3 Angle Mech. Angle with 8 Pole Pairs 0° 7.5° 15° 22.5° 30° 37.5° 45° Mech. Angle with 3 Pole Pairs 0° 20° 40° 60° 80° 100° 120° Figure 22 Hall Switch Mode The HSM Interface can be selected by connecting CLK to GND and CSQ has to be logic “1”. Table 17 Hall Switch Mode Parameter Rotation Speed Target Data Sheet Symbol n Values Min. Typ. Max. - - 10000 48 Unit Note / Test Condition rpm V 0.46, 2009-09 TLE5012 Specification Table 17 Hall Switch Mode Parameter Electrical Angle Accuracy Symbol αelect Values Unit Note / Test Condition ° 2 polepairs with autocalibration1)2) Min. Typ. Max. - 1.2 2 - 1.8 3 3 polepairs with autocal.1)2) - 2.4 4 4 polepairs with autocal.1)2) - 3.6 6 6 polepairs with autocal.1)2) - 4.2 7 7 polepairs with autocal.1)2) - 4.8 8 8 polepairs with autocal.1)2) - 7.2 12 12 polepairs with autocal.1)2) - 9.6 16 16 polepairs with autocal.1)2) Mechanical Angle Switching Hysteresis αHShystm 0 - 0.625 ° selectable by IFAB_HYST3) Electrical Angle Switching Hysteresis4) αHShystel - 1.25 - ° 2 polepairs; IFAB_HYST=111)2) - 1.88 - 3 polepairs; IFAB_HYST=111)2) - 2.50 - 4 polepairs; IFAB_HYST=111)2) - 3.75 - 6 polepairs; IFAB_HYST=111)2) - 4.38 - 7 polepairs; IFAB_HYST=111)2) - 5.00 - 8 polepairs; IFAB_HYST=111)2) - 7.50 - 12 polepairs; IFAB_HYST=111)2) - 10 - 16 polepairs; IFAB_HYST=111)2) Fall Time tHSfall - 0.02 1 µs RL = 2.2kΩ; CL < 50pF Rise Time tHSrise - 0.4 1 µs RL = 2.2kΩ; CL < 50pF 1) 2) 3) 4) depends on internal oscillator frequency variation (Chapter 3.4.6) guaranteed by design including GMR hysteresis The hysteresis has to be considered only at change of rotation direction. To avoid switching on mechanical vibrations of the rotor, a hysteresis is recommended (Figure 23). Target Data Sheet 49 V 0.46, 2009-09 TLE5012 Specification Ideal Switching Point α HShystel αHShystel αelect Figure 23 HS Hysteresis 3.5.4 Incremental Interface 0° αelect The Incremental Interface (IIF) uses an up/down counter of a microcontroller for the angle transmission. The synchronization is done by the parallel active SSC-Interface. The angle value read out by the SSC-Interface can be compared with the stored counter value. In case of a non-synchronization, the microcontroller add the difference to the actual counter value to synchronize the TLE5012 with the microcontroller. The resolution of the IIF can be selected within the interface mode4 register (MOD_4) under IFAB_RES. A/B Mode The phase shift between phase A and B indicates a clockwise (B follows A) or a counterclockwise (A follows B) rotation of the magnet. Target Data Sheet 50 V 0.46, 2009-09 TLE5012 Specification VDD µC CSQ N SSC iGMRSensor S SSC SCK DATA INC IFA A IFB B 12bit Up/Down Counter GND CSQ SPI Interface SCK DATA D0 D1 D2 D11 D3 D13 D14 3 2 D15 90° el. Phase shift Phase A VH VL Incremental Interface Phase B VH VL Counter Figure 24 0 1 2 3 4 1 Incremental Interface Protocol with symbolically illustration of SPI-Interface Index Signal The Index-Signal is generated via Data pin, while CSQ is high (no SSC-communication). The Index-Signal is coded in quadrants via a PWM-sequence, Figure 25. Angle 0° 90° 180° 270° 0° INDEX t0° t 90° Figure 25 IIF Index Coding Table 18 Incremental Interface Parameter Incremental output Frequency Target Data Sheet t180° Symbol fInc Values Min. Typ. Max. - - 1.0 51 t270° Unit Note / Test Condition MHz Frequency of Phase A and Phase B V 0.46, 2009-09 TLE5012 Specification Table 18 Incremental Interface (cont’d) Parameter Symbol Index Values Unit Note / Test Condition Min. Typ. Max. t0° - 5 - µs 0° t90° - 10 - µs 90° t180° - 15 - µs 180° t270° - 20 - µs 270° 3.6 Test Structure 3.6.1 ADC Test Vectors It is possible to feed the ADCs with appropriate values to simulate a certain magnet position and other GMR effects. This test can be activated within SIL register (ADCTV_EN). With ADCTV_Y and ADCTV_X the vector length can be adjusted like Figure 26. The values are generated with resistors on the chip. The following X/Y ADC values can be programmed: • • • • 4 points, circle amplitude = 70% (0°,90°, 180°, 270°) 8 points, circle amplitude = 100% (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) 8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°) 4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°) ADCTV_Y 122.1% 141.4% 100 .0% 0% 70% Figure 26 ADCTV_X ADC Test Vectors Target Data Sheet 52 V 0.46, 2009-09 TLE5012 Specification 3.7 Overvoltage Comparators Various comparators monitor the voltage in order to ensure error free operation. The overvoltages must be active at least 256 periods of tDIG to set the test comparator bits in the SSC Interface registers. This works as digital spike suppression. Table 19 Test Comparators Parameter Symbol Values Unit Min. Typ. Max. VOVG - 2.80 - V VOVA - 2.80 - V VOVD - 2.80 - V VDD Overvoltage VDDOV - 6.05 - V VDD Undervoltage VDDUV - 2.70 - V GND - Off Voltage VGNDoff - -0.55 - V VDD - Off Voltage VVDDoff - 0.55 - V Spike Filter Delay tDEL - 10 - µs Overvoltage Detection 3.7.1 Note / Test Condition Internal Supply Voltage Comparators Every voltage regulator has an overvoltage comparator to detect a malfunction. If the nominal output voltage of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated. VDDA - REF VDD VRG VRA VRD 10µs Spike Filter + GND Figure 27 OV Comparator 3.7.2 VDD Overvoltage Detection xxx_OV GND The Overvoltage Detection Comparator monitors the external supply voltage at the VDD pin. It activates the S_VR bit.(Figure 27) 3.7.3 GND - Off Comparator The GND - Off Comparator is used to detect a voltage difference between the GND pin and SCK. It activates the S_VR bit of the SSC - Interface. This circuit can detect a disconnection of the Supply GND Pin. Target Data Sheet 53 V 0.46, 2009-09 TLE5012 Specification VDD VDDA Diodereference SCK +dV - 1µs Mono Flop + GND 10µs Spike Filter GND_OFF GND Figure 28 GND - Off Comparator 3.7.4 VDD - Off Comparator The VDD - Off Comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5012 is supplied by the SCK and CSQ input pins via the ESD structures. It activates the S_VR bit. VDDA - VDD 1µs Mono Flop VVDDoff CSQ SCK -dV GND Figure 29 + 10µs Spike Filter VDD _OFF GND VDD - Off Comparator Target Data Sheet 54 V 0.46, 2009-09 TLE5012 Package Information 4 Package Information 4.1 Package Parameters Table 20 Package Parameters Parameter Symbol Limit Values Unit Notes min. typ. max. Thermal Resistance RthJA - 150 200 K/W Junction to Air1) RthJC - - 75 K/W Junction to Case RthJL - - 85 K/W Junction to Lead Soldering Moisture Level MSL 3 Lead Frame 260°C Cu Plating Sn 100% > 7 µm 1) according to Jedec JESD51-7 Package Outline 0.35 x 45˚ +0.06 B 2) 0.41 +0.1 -0.06 0.2 M A C 1.22 ±0.18 0.19 1.27 4 -0.2 1) 8˚MAX. 1.75 MAX. 0.175 ±0.07 (1.45) 4.2 0.64 ±0.25 0.1 A B 8x SEATING PLANE E 6 ±0.2 0.2 M C 8x 4) D 4 0.32 MIN. 1 A ø0.6 Sensitive Area 3) 5 8 Index Marking Detail A 3 x 1.27 = 3.81 0.75 D E CENTER OF SENSITIVE AREA 5 -0.2 1) 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area 3) Max. 3˚ tilt of sensitive area to preference "B" 4) Reference "D" is defined with the center of all 8 pins P-PG-DSO-08-16-S-PO V03 Figure 30 PG-DSO-8 Package Dimension Target Data Sheet 55 V 0.46, 2009-09 TLE5012 Package Information Footprint 1.31 4.3 5.69 0.65 1.27 Figure 31 Footprint PG-DSO-8 4.4 Packing 0.3 5.2 12 ±0.3 8 1.75 6.4 2.1 Figure 32 Tape and Reel 4.5 Marking Position Marking Description 1st Line 5012xx See ordering table on page 7 2nd Line xxx Lot code 3rd Line Gxxxx G..green, 4-digit..date code Processing Note: For processing recommendations, please refer to Infineon’s Notes on processing Target Data Sheet 56 V 0.46, 2009-09 www.infineon.com Published by Infineon Technologies AG