PHILIPS TZA1020

INTEGRATED CIRCUITS
DATA SHEET
TZA1020; TZA1020A
Pre-amplifiers for CD-RW systems
Product specification
File under Integrated Circuits, IC01
2000 Oct 30
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
CONTENTS
9
LIMITING VALUES
10
THERMAL CHARACTERISTICS
11
CHARACTERISTICS
Transfer functions for normalized servo signals
Laser power control signals (alpha circuit)
Wobble pre-processor
1
FEATURES
2
GENERAL DESCRIPTION
3
QUICK REFERENCE DATA
4
ORDERING INFORMATION
11.1
11.2
11.3
5
BLOCK DIAGRAM
12
APPLICATION AND TEST INFORMATION
6
PINNING
13
PACKAGE OUTLINE
7
FUNCTIONAL DESCRIPTION
14
SOLDERING
7.1
7.2
7.3
7.4
7.5
7.6
7.7
Data amplifier
Normalizer
Wobble pre-processor
Beta detector
Alpha detector
Fast track count
Spot position measurement
14.1
Introduction to soldering surface mount
packages
Reflow soldering
Wave soldering
Manual soldering
Suitability of surface mount IC packages for
wave and reflow soldering methods
8
I2C-BUS PROTOCOL
15
DATA SHEET STATUS
8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.2
Addressing and data bytes
Write mode
Read mode
Control byte subaddress 00
Control byte subaddress 01
Control byte subaddress 02
Control byte subaddress 03
Control byte subaddress 04
Control byte subaddress 05
Control byte subaddress 06
Control byte subaddress 07
Characteristics of the I2C-bus
16
DEFINITIONS
17
DISCLAIMERS
18
PURCHASE OF PHILIPS I2C COMPONENTS
2000 Oct 30
14.2
14.3
14.4
14.5
2
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
1
TZA1020; TZA1020A
FEATURES
• Data amplifier for read speed up to twelve times nominal
data speed
• Normalized and filtered error signals for servo control
• Wobble pre-processor with switchable low-pass filter
• Calculation of signals for real-time laser power control
for write speed up to four times
2
TZA1020 (AEGER2) is an analog pre-processor IC for
CD-R and CD-RW systems with 3-spots push-pull tracking
system. The IC interfaces directly to the photo diodes.
The device generates signals for laser power calibration
and laser power control during disc writing. Normalized
error signals are generated for servo control and wobble
detection. An HF current amplifier is implemented to
detect the actual HF data signal. The Fast Track Count
(FTC) amplifier generates a radial error signal to allow fast
track counting.
• Calculation of signals for optimum laser calibration for
write speed up to four times
• Fast track count amplifier
• Spot position measurement for alignment of photo
diodes
• Reference voltage for laser controller
• On-chip band gap and DACs for accurate and
adjustable current/gain settings
• I2C-bus microcontroller interface for programmable
gain, speed switching and function selection
TZA1020A (AEGER2A) is similar to the TZA1020, except
for non-clamped MIRN, which allows operation with
IGUANA.
• All functions available for CD-R and CD-RW systems.
3
GENERAL DESCRIPTION
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDD
positive supply voltage
4.5
5.0
5.5
V
VSS
negative supply voltage
−5.5
−5.0
−4.5
V
Ii(cd)
central diode input current range
0
−
4000
µA
B−3dB(norm)
−3 dB bandwidth normalized
error signals (servo)
48
60
−
kHz
B−3dB(CAHF)
−3 dB bandwidth pin CAHF
Ci = 12 pF
17
−
−
MHz
∆td(g)(CAHF)
group delay variations pin CAHF
f = 0.1 to 12 MHz;
Ci = 12 pF
−
−
0.9
ns
GI(CAHF)
current gain pin CAHF
cdrwsel = 1
−
35
−
cdrwsel = 0
−
8.75
−
IRREF
reference current
−
−900
−
µA
Tamb
ambient temperature
0
−
70
°C
4
ORDERING INFORMATION
TYPE
NUMBER
TZA1020HP;
TZA1020HP/A
2000 Oct 30
PACKAGE
NAME
QFP44
DESCRIPTION
plastic quad flat package; 44 leads (lead length 1.3 mm);
body 10 × 10 × 1.75 mm
3
VERSION
SOT307-2
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
5
TZA1020; TZA1020A
BLOCK DIAGRAM
handbook, full pagewidth
ERON
15
35
CAGAIN
SA1
SA2
SB1
SB2
C1
C2
C3
C4
11
INPUT
STAGE 3
36
LPF 1
4
8
5
9
34
38
DIODE
INPUT
STAGE 1
LPF 2
10
3
6
7
NORMALIZER
37
27
WOBBLE
PREPROCESSOR
DIODE
INPUT
STAGE 2
26
22
21
20
AMON
ALPHA
DETECTOR
14
19
24
25
TZA1020
TZA1020A
control
switches
control
currents
CURRENT
AMPLIFIER
REGISTER
23
44
43
SDA
SCL
12
42
I2C-BUS
INTERFACE
13
BETA
DETECTOR
40
DACs
UOUT
1
39
41
POR
DRIVER
32
RREF
MEAS
BAND GAP
REFERENCE
2
FAST
TRACK
COUNT
28
16
30
18
29
33
31
17
MGR809
VDD1 VDD2 VSS1 VSS2 GND1 GND2
Fig.1 Block diagram.
2000 Oct 30
4
FEN
REN
TLN
XDN
MIRN
CWBL
PPN
AINT
ALS
AINTON
ASTROBE
DALPHA
AZIN
CAHF
CALF
A1
A2
CALPF
HCA1
HCA2
MEAS1
MEAS2
RE
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
6
TZA1020; TZA1020A
PINNING
SYMBOL
PIN
SYMBOL
DESCRIPTION
UOUT
1
reference voltage output
RREF
2
reference current input
C2
3
central photo diode current input
SA1
4
satellite photo diode current input
SB1
5
satellite photo diode current input
C3
6
central photo diode current input
PIN
DESCRIPTION
PPN
26
normalized, balanced push-pull
signal voltage
CWBL
27
capacitor for EFM noise reduction
loop
VDD1
28
positive supply voltage 1
GND1
29
ground 1
VSS1
30
negative supply voltage 1
RE
31
fast track count signal voltage
output
MEAS1
32
combination of photo diode
currents for adjustment 1
C4
7
central photo diode current input
SA2
8
satellite photo diode current input
SB2
9
satellite photo diode current input
C1
10
central photo diode current input
CAGAIN
11
set-point laser power on disc,
current input
MEAS2
33
combination of photo diode
currents for adjustment 2
SDA
12
I2C-bus data input/output
XDN
34
SCL
13
I2C-bus clock input
normalized spot position error
current output
AMON
14
alpha measurement on switch
(write/read state)
FEN
35
normalized focus error current
output
ERON
15
normalized error signals on switch
REN
36
normalized radial error current
output
TLN
37
normalized track-loss current
output
MIRN
38
mirror output (disc reflection)
current output
CALPF
39
capacitor to define CALF
bandwidth
HCA1
40
capacitor to define time constant
peak detector A1
VDD2
16
positive supply voltage 2
GND2
17
ground 2
VSS2
18
negative supply voltage 2
ASTROBE
19
control signal sample-and-hold in
alpha measurement
AINTON
20
control signal integrator in alpha
measurement
ALS
21
DALPHA output enabled/disabled
AINT
22
integrator capacitor for alpha
measurement
HCA2
41
capacitor to define time constant
peak detector A2
CAHF
23
central aperture high-frequency
current output
A2
42
pit amplitude relative to CALF,
voltage output
DALPHA
24
alpha error signal for laser power
control
A1
43
land amplitude relative to CALF,
voltage output
AZIN
25
set-point alpha control
CALF
44
low-pass filtered aperture signal,
voltage output
2000 Oct 30
5
Philips Semiconductors
Product specification
34 XDN
35 FEN
36 REN
37 TLN
38 MIRN
39 CALPF
TZA1020; TZA1020A
40 HCA1
41 HCA2
42 A2
44 CALF
handbook, full pagewidth
43 A1
Pre-amplifiers for CD-RW systems
UOUT 1
33 MEAS2
RREF 2
32 MEAS1
31 RE
C2 3
SA1 4
30 VSS1
SB1 5
29 GND1
C3 6
28 VDD1
TZA1020HP
TZA1020HP/A
C4 7
27 CWBL
SA2 8
26 PPN
SB2 9
25 AZIN
24 DALPHA
C1 10
23 CAHF
AINT 22
ALS 21
AINTON 20
ASTROBE 19
VSS2 18
GND2 17
VDD2 16
ERON 15
AMON 14
SCL 13
SDA 12
CAGAIN 11
Fig.2 Pin configuration.
A
handbook, halfpage
C
B
C1
C2
C4
C3
SA1 SA2
S1
SB1 SB2
S2
MGR811
Fig.3 Quadrant diode configuration.
2000 Oct 30
6
MGR810
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
7
TZA1020; TZA1020A
7.4
FUNCTIONAL DESCRIPTION
The beta detector generates signals necessary for the
symmetry detection of the HF signal. By measuring peak
values (A1 and A2) and average value of the signal
(CALF), an optimum laser writing power can be
determined. The gain of the measured values is controlled
by the I2C-bus. The time constant of the peak detectors
and bandwidth of the low-pass filtered aperture signal can
also be adapted to the disc speed by the I2C-bus.
All functions are designed in such a way that a read speed
up to twelve times nominal speed is possible
(N = 1, 2, 4, 8 or 12). Recording speed up to four is
possible (N = 1, 2 or 4). The maximum recording speed
must be determined.
7.1
Data amplifier
The central diodes currents (C1 to C4) are fed to a high
bandwidth current amplifier. The gain of the current
amplifier can be switched by means of the I2C-bus
microcontroller interface to compensate for differences in
CD-R and CD-RW disc reflection. Data signals up to
twelve times nominal data speed can be read.
7.2
7.5
Normalizer
7.6
Fast track count
The fast track count circuit generates a Radial Error (RE)
signal for fast track counting. A gain switch compensates
for difference in CD-R and CD-RW disc reflection.
7.7
Spot position measurement
To allow alignment of photo diodes via the TZA1020, a
number of linear combinations of input currents can be
realized (MEAS1 and MEAS2). Selection of the actual
combination is performed by the I2C-bus.
Wobble pre-processor
The wobble signal of the pre-groove is detected by means
of the PPN signal. The currents from inputs C1 to C4 are
filtered and processed to provide optimal signal-to-noise
ratio. The bandwidth of the filter may be adapted to the
disc speed via the I2C-bus. The bandwidth of a noise
reduction loop is controlled by an external capacitor, the
I2C-bus interface controls the total operation of the
processor.
2000 Oct 30
Alpha detector
The alpha detector determines a parameter called ‘alpha’
during disc writing. Alpha must be kept constant to allow
recording over a fingerprint or black dot. The definition of
alpha is different for CD-R and CD-RW; for CD-R the light
absorption of the disc is measured, for CD-RW alpha is
determined by actual laser power and disc reflection. The
gain of the measured signals and the CD-R and CD-RW
selection is performed by the I2C-bus.
The currents from the central diodes (C1 to C4), the
current from the satellite diodes (SA1, SA2, SB1 and SB2)
and the laser set-point current (CAGAIN) are (optionally
sampled) fed to the first low-pass filters with a bandwidth
of 60 kHz. The normalizing circuit generates error signals
for servo control that are independent of the diode current
level. The gain of the error signals is controlled by the
I2C-bus microcontroller interface. A dropout concealment
becomes active if the input current level is below a certain
threshold value. This threshold value is also controlled by
the I2C-bus.
7.3
Beta detector
7
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
8
TZA1020; TZA1020A
I2C-BUS PROTOCOL
8.1
Addressing and data bytes
Full control of the TZA1020 is accomplished via the 2-wire I2C-bus. Up to 400 kbits/s bus speed can be used in
accordance with the I2C-bus fast-mode specification.
For programming the device (write mode) eight data byte registers are available/addressable via eight subaddresses.
Automatic subaddress incrementing enables the writing of successive data bytes in one transmission. During power-on,
data byte registers are reset to a default state by use of a Power-On Reset (POR) circuit whose signal is derived from
the internally generated I2C-bus supply voltage (VSS1).
For reading from the device (read mode) one data byte register is available without subaddressing.
8.1.1
Table 1
WRITE MODE
Slave address; 34H
Slave address
Table 2
0
0
1
1
0
1
0
0
0(1)
0(1)
0(1)
0
0/1
0/1
0/1
Subaddress 00H to 07H
Subaddress
0(1)
Note
1. The use of subaddresses F0H to F7H (11110XXX) instead of 00H to 07H (00000XXX) disables the automatic
subaddress incrementing allowing continuous writing to a single data byte register (e.g. DAC testing).
Table 3
SUB
ADDR
Overview of subaddresses
POR
STATE
DATA BYTES
00H
00000000 alphactr2 alphactr1 alphactr0 alphagain4 alphagain3 alphagain2 alphagain1 alphagain0
01H
00000000
free
algctr6
algctr5
algctr4
algct3
algctr2
algctr1
algctr0
02H
00000000
tlngain1
tlngain0
rengain
negain4
negain3
negain2
negain1
negain0
03H
00000000
tmdac
tlnlim1
tlnlim0
sumref4
sumref3
sumref2
sumref1
sumref0
04H
00000000
sdfine7
sdfine6
sdfine5
sdfine4
sdfine3
sdfine2
sdfine1
sdfine0
05H
00011111
lexton
betactrl1
betactrl0
betascl4
betascl3
betascl2
betascl1
betascl0
06H
01100000
free
ppnctrl1
ppnctrl0
ppnscl4
ppnscl3
ppnscl2
ppnscl1
ppnscl0
07H
00000000
porr
free
urefsel
cdrwsel
lpsel1
lpsel0
meassel1
meassel0
8.1.2
READ MODE
0
0
1
1
0
1
0
1
por(1)
0(2)
0(2)
0(2)
0(2)
0(2)
0(2)
0(2)
Table 4
Slave address; 35H
Slave address
Table 5
Read byte
Read byte
Notes
1. In read mode the actual POR status can be read.
2. The state of unused read bits should not be relied upon; their state may be changed during development.
2000 Oct 30
8
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
8.1.2.1
TZA1020; TZA1020A
Examples of valid transmissions to and from the TZA1020
Write: START - 34H - 00H - Data_for_00 - STOP
Write with auto-increment: START - 34H - 00H - data_for_00 - data_for_01 - data_for_02 - STOP
Auto-increment ‘wrap around’: START - 34H - 07H - data_for_07 - data_for_00 - data_for_01 - STOP
Write without auto-increment: START - 34H - F5H - data_for_05 - data_for_05 - data_for_05 - STOP
Read: START - 35H - data_from_ IC - STOP.
8.1.3
CONTROL BYTE SUBADDRESS 00
Table 6
Table 7
Control bits for alphactrl
alphactrl2
alphactrl1
alphactrl0
GAIN INPUT CURRENT
ALPHA DETECTOR
0
0
0
0.50
0
0
1
0.33
0
1
0
0.25
0
1
1
0.20
1
0
0
0.17
1
0
1
0.14
1
1
0
0.12
1
1
1
0.11
Control bits for alphagain-DAC; note 1
alphagain4
alphagain3
alphagain2
alphagain1
alphagain0
CURRENT alphagain-DAC
0
0
0
0
0
3.125 µA
0
0
0
0
1
6.250 µA
0
0
0
1
0
9.375 µA
:
code
:
100 µA (code + 1)/32
1
1
1
0
1
93.750 µA
1
1
1
1
0
96.900 µA
1
1
1
1
1
100 µA
Note
1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA.
2000 Oct 30
9
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
8.1.4
TZA1020; TZA1020A
CONTROL BYTE SUBADDRESS 01
Table 8
Control byte for algctrl switch functions
algctr6
algctr5
algctr4
algctr3
algctr2
algctr1
algctr0
0
0
0
0
0
0
0
POR state
0
−
0
−
−
−
−
current gain alpha CD-R
Aoc = 0alpha CD-R circuit power-off
0
−
1
−
−
−
−
current gain alpha CD-R
Aoc = 1alpha CD-R circuit power-on
1
−
0
−
−
−
−
current gain alpha CD-R
Aoc = 3alpha CD-R circuit power-off
1
−
1
−
−
−
−
current gain alpha CD-R
Aoc = 4alpha CD-R circuit power-on
−
0
−
−
−
−
−
alpha peak detector normal mode
−
1
−
−
−
−
−
alpha peak detector to level (test)
−
−
−
0
−
−
−
CD-RW mode 1
−
−
−
1
−
−
−
CD-RW mode 2
−
−
−
−
0
−
−
alpha CD-R
−
−
−
−
1
−
−
alpha CD-RW
−
−
−
−
−
0
0
DALPHA gain = 0.25
−
−
−
−
−
0
1
DALPHA gain = 0.50
−
−
−
−
−
1
0
DALPHA gain = 0.75
−
−
−
−
−
1
1
DALPHA gain = 1.00
8.1.5
Table 9
DESCRIPTION
CONTROL BYTE SUBADDRESS 02
Control bits for tlngain
tlngain1
tlngain0
GAIN TLN SIGNAL
0
0
1.5
0
1
3.0
1
0
4.5
1
1
6.0
Table 10 Control bits for rengain
rengain
2000 Oct 30
DESCRIPTION
0
1 normal
1
1.3 self test
10
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
Table 11 Control bits for current negain-DAC; note 1
negain4
negain3
negain2
negain1
negain0
CURRENT negain-DAC
0
0
0
0
0
3.125 µA
0
0
0
0
1
6.250 µA
0
0
0
1
0
9.375 µA
:
code
:
100 µA (code + 1)/32
1
1
1
0
1
93.750 µA
1
1
1
1
0
96.900 µA
1
1
1
1
1
100 µA
Note
1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA.
8.1.6
CONTROL BYTE SUBADDRESS 03
Table 12 Control bit for tmdac
tmdac
DESCRIPTION
0
DAC test off
1
DAC test on
Table 13 Control bits for tlnlimit
tlnlim1
tlnlim0
DESCRIPTION
0
0
clamp off
X
1
clamp on 1 (0.6 V; Tamb = 25°C)
1
0
clamp on 2 (1.2 V; Tamb = 25°C)
Table 14 Control bits for current sumref-DAC; note 1
sumref4
sumref3
sumref2
sumref1
sumref0
CURRENT sumref-DAC
0
0
0
0
0
0.468 µA
0
0
0
0
1
0.937 µA
0
0
0
1
0
1.40 µA
:
code
1
1
1
:
15 µA (code + 1)/32
0
1
14.06 µA
1
1
1
1
0
14.53 µA
1
1
1
1
1
15.00 µA
Note
1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA.
2000 Oct 30
11
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
8.1.7
TZA1020; TZA1020A
CONTROL BYTE SUBADDRESS 04
Table 15 Control byte for 8-bit sdfine-DAC; note 1
sdfine7 sdfine6 sdfine5 sdfine4 sdfine3 sdfine2 sdfine1 sdfine0
CURRENT sdfine-DAC
0
0
0
0
0
0
0
0
0.117 µA
0
0
0
0
0
0
0
1
0.234 µA
0
0
0
0
0
0
1
0
0.352 µA
:
code
:
30 µA (code + 1)/256
1
1
1
1
1
1
0
1
29.76 µA
1
1
1
1
1
1
1
0
29.88 µA
1
1
1
1
1
1
1
1
30.0 µA
Note
1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA.
CONTROL BYTE SUBADDRESS 05
8.1.8
Table 16 Control bits for betactrl control via 5-bit DAC
betactrl1
betactrl0
CALF BANDWIDTH (Hz)
0
0
500
0
1
1000
1
0
2000
1
1
4000
Table 17 Control bits for betascl control via 5-bit DAC; note 1
betascl4
betascl3
betascl2
betascl1
betascl0
CURRENT betascl-DAC
0
0
0
0
0
3.125 µA
0
0
0
0
1
6.250 µA
0
0
0
1
0
9.375 µA
:
code
:
100 µA (code + 1)/32
1
1
1
0
1
93.750 µA
1
1
1
1
0
96.900 µA
1
1
1
1
1
100 µA
Note
1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA.
2000 Oct 30
12
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
8.1.9
TZA1020; TZA1020A
CONTROL BYTE SUBADDRESS 06
Table 18 Control bits for ppnctrl control via 5-bit DAC
ppnctrl1
ppnctrl0
DESCRIPTION
1
1
POR state
−
0
integrator slow disabled
−
1
integrator slow enabled
0
−
integrator fast disabled
1
−
integrator fast enabled
Table 19 Control bits for ppnscl control via 5-bit DAC; note 1
ppnscl4
ppnscl3
ppnscl2
ppnscl1
ppnscl0
CURRENT ppnscl-DAC
0
0
0
0
0
3.125 µA
0
0
0
0
1
6.250 µA
0
0
0
1
0
9.375 µA
:
code
:
100 µΑ (code + 1)/32
1
1
1
0
1
93.750 µA
1
1
1
1
0
96.900 µA
1
1
1
1
1
100 µA
Note
1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA.
8.1.10
CONTROL BYTE SUBADDRESS 07
Table 20 Control bits for porr
porr
MODE
0
note 1
1
POR reset
DESCRIPTION
reset of POR signal bit
Note
1. When porr is set to logic 1 it ensures that the POR read bit is reset to logic 0. This way a reading of POR is always
at logic 1 with the occurrence of an actual power-on I2C-bus register reset and cannot accidentally be caused by
other I2C-bus control bits. Bit porr has no control function; it is an ‘unused’ bit dedicated by name to change the
I2C-bus register content from the POR state. Bit POR of the read byte is a wired NOR function that checks all
I2C-bus register bits: when the I2C-bus register contents equals the Power-on reset default state POR will read
logic 1, also when this state is set via the I2C-bus control. Because a setting of porr = 1 differs from the POR default
state it forces a reset to logic 0 of the POR bit independent of other bit settings.
2000 Oct 30
13
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
Table 21 Control bits for meassel
meassel1
meassel0
MEAS1
MEAS2
0
0
0
1
Gs (Ia1 − Ia2)
Gs (Ib2 − Ib1)
1
0
Gs (Ia1 + Ib1)
Gs (Ia2 + Ib2)
1
1
Gs (Ia1 + Ia2)
Gs (Ib2 + Ib1)
Gc [(Ic1 + Ic4) − (Ic2 + Ic3)] Gc [(Ic1 + Ic2) − (Ic3 + Ic4)]
Table 22 Control bits for lpsel
lpsel1
lpsel0
BANDWIDTH
0
0
40 kHz
0
1
80 kHz
1
0
160 kHz
1
1
320 kHz
Table 23 Control bit for cdrwsel
cdrwsel
DESCRIPTION
0
CD-R mode
1
CD-RW mode
Table 24 Control bits for urefsel
urefsel
REFERENCE OUTPUT VOLTAGE
0
2.9 V
1
3.5 V
Table 25 Read byte
POR
DESCRIPTION
0
I2C-bus
1
I2C-bus bit state equals power-on reset state; note 1
bit state differs from power-on reset state
Note
1. At power-on, an internal power-on reset signal is generated which resets the I2C-bus data bits to a pre-defined state.
When the internal data bits are found to be in a POR state (due to an actual power-on reset but also when set via
the I2C-bus) bit POR signals logic 1. Using the POR bit to detect occurrence of a power-on reset requires bit PORR
to be set to logic 1 after power-up. Setting bit PORR forces the POR bit to logic 0 independent of other I2C-bus bit
settings.
2000 Oct 30
14
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
Characteristics of the I2C-bus
8.2
FAST-MODE I2C-BUS
SYMBOL
UNIT
PARAMETER
MIN.
MAX.
fSCL
SCL clock frequency
0
400
kHz
tBUF
bus free time between a STOP and START
condition
1.3
−
µs
tHD;STA
hold time (repeated) START condition; after this
period, the first clock pulses are generated
0.6
−
µs
tLOW
LOW period of the SCL clock
1.3
−
µs
tHIGH
HIGH period of the SCL clock
0.6
−
µs
tSU;STA
set-up time for a repeated START condition
0.6
−
µs
tHD;DAT
data hold time
0
0.9
µs
tSU;DAT
data set-up time
100
−
ns
300
ns
300
ns
0.1Cb(1)
0.1Cb(1)
tr
rise time of both SDA and SCL signals
20 +
tf
fall time of both SDA and SCL signals
20 +
tSU;STO
set-up time for STOP condition
0.6
−
µs
Cb
capacitive load for each bus line; note 1
−
400
pF
Note
1. Cb = total capacitance of one bus line in pF.
For more information on “The I2C-bus and how to use it” see home page http://www.semiconductors.philips.com.
2000 Oct 30
15
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
t LOW
t BUF
tr
tf
t HD;STA
t SP
SCL
16
S
t HD;DAT
t SU;DAT
t HIGH
t SU;STA
MBC611
P
Product specification
Fig.4 Definition of timing on the I2C-bus.
t SU;STO
Sr
TZA1020; TZA1020A
handbook, full pagewidth
t HD;STA
P
Philips Semiconductors
Pre-amplifiers for CD-RW systems
2000 Oct 30
SDA
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
Table 26 Scale factors controlled by the I2C-bus interface
SCALE FACTOR
REscale
TLscale
MIRscale
CONTROL SIGNAL
BINARY VALUE
CONTROL SIGNAL
rengain
0
1
1
1.3
00
1.5
01
3.0
10
4.5
11
6.0
tlngain1 and tlngain0
cdrwsel
VALUE SCALE FACTOR
0
0.05
1
0.2
CONTROL SIGNAL
BINARY VALUE
CONTROL SIGNAL
VALUE CURRENT (µA)
negain4 to negain0
00000
3.125
:
:
01111
50
Table 27 Currents controlled by the I2C-bus interface; note 1
NORMALIZER
CURRENTS
Inegain
Isumref
Isdfine
Iref
sumref4 to sumref0
sdfine7 to sdfine0
−
:
:
11111
100
00000
0.47
:
:
01111
7.5
:
:
11111
15
0000000
0.12
:
:
0111111
15
:
:
1111111
30
−
20
Note
1. The currents are proportional to IRREF. The given current values are valid at IRREF = −900 µA.
2000 Oct 30
17
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
9 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
VDD
positive supply voltage
0
13.2
V
Tstg
storage temperature
−65
+150
°C
Tamb
ambient temperature
0
70
°C
Ves
electrostatic handling voltage:
Machine model
−200
+200
V
Human body model
−1000
+1000
V
10 THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
VALUE
UNIT
60
K/W
in free air
11 CHARACTERISTICS
VDD1 = VDD2 = 5 V; VSS1 = VSS2 = −5 V; Tamb = 25 °C; ERON = 1; AMON = 0; IRREF = −900 µA; unless otherwise
specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VDD1
positive supply voltage 1
(pin 28)
4.5
5.0
5.5
V
VSS1
negative supply voltage 1
(pin 30)
−5.5
−5.0
−4.5
V
VDD2
positive supply voltage 2
(pin 16)
4.5
5.0
5.5
V
VSS2
negative supply voltage 2
(pin 18)
−5.5
−5.0
−4.5
V
∆VDD
difference between VDD1
and VDD2
−0.5
−
+0.5
V
∆VSS
difference between VSS1
and VSS2
−0.5
−
+0.5
V
IDD(tot)
positive supply current
VDD1 + VDD2
quiescent state
−
12
−
mA
maximum current
−
26
−
mA
maximum current at
AMON = 1
−
49
−
mA
quiescent state
−
16
−
mA
maximum current
−
25
−
mA
maximum current at
AMON = 1
−
33
−
mA
ISS(tot)
2000 Oct 30
negative supply current
VSS1 + VSS2
18
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
PARAMETER
TZA1020; TZA1020A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Reference input current; pin RREF
Ii(RREF)
input reference current
IRREF
current range
Vi(RREF)
input voltage on pin RREF
note 1
IRREF = −900 µA
referenced to VSS
−
−900
−
µA
−1200
−
−6500
µA
1.22
1.245
1.26
V
Reference voltage buffer; pin UOUT
VUOUT
LOW-level output
reference voltage
HIGH-level output
reference voltage
urefsel = 0
IUOUT = −6 mA
2.63
2.77
2.90
V
IUOUT = 0 mA
−
2.9
−
V
urefsel = 1
IUOUT = −6 mA
3.23
3.4
3.57
V
IUOUT = 0 mA
−
3.5
−
V
−10
−
0
mA
IUOUT = −6 mA
22
−
−
nF
IUOUT = 0 mA
100
−
−
nF
AMON = 0
1.0
−
75
µA
AMON = 1
0
−
4000
µA
satellite diode input current AMON = 0
for SA1/SA2 and SB1/SB2 AMON = 1
0.6
−
9
µA
0
−
520
µA
input current for set-point
laser power
30
−
1800
µA
AMON = 0
−
0
−
V
IUOUT
current range
CUOUT
capacitance on pin UOUT
(necessary for stability)
Detector inputs
INPUT CURRENT RANGE
Ii(Cn)
Ii(SA,SB)
Ii(CAGAIN)
central diode input current
for C1 to C4
INPUT VOLTAGE LEVEL
Vi(Cn)
central diode input voltage
for C1 to C4
AMON = 1
−
1.4
−
V
Vi(SA,SB)
satellite diode input voltage AMON = 0
for SA1/SA2 and SB1/SB2 AMON = 1
−
1.4
−
V
−
1.4
−
V
input current for set-point
laser power
−
0.7
−
V
−
300
−
Ω
Iexton = 1
−
600
−
Ω
Iexton = 0
−
1000
−
Ω
Iexton = 1
−
1000
−
Ω
Iexton = 0
−
4000
−
Ω
−
700
−
Ω
Vi(CAGAIN)
INPUT RESISTANCE
Ri(Cn)
Ri(SA,SB)
Ri(CAGAIN)
2000 Oct 30
central diode input
resistance for C1 to C4
AMON = 0
AMON = 1; Ii(cd) = 25 µA
satellite diode input
resistance for SA1/SA2
and SB1/SB2
Ii(SA,SB) = 6.25 µA
input resistance for
set-point laser power
Ii(CAGAIN) = 35 µA
19
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
PARAMETER
TZA1020; TZA1020A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Digital control signals
INPUT VOLTAGE LEVELS; PINS ERON, ASTROBE, AINTON, ALS, SDA, SCL AND AMON
VIL
LOW-level input voltage
VDD1 = VDD2 = 5.0 V
−0.3
−
+0.9
V
VIH
HIGH-level input voltage
VDD1 = VDD2 = 5.0 V
2.3
−
5.3
V
VDD1 = 5.0 V
4.5
−
5.0
V
0
−
0.5
V
pins SDA, SCL, AMON
and ALS
−1.5
−
0
µA
pin ERON
−15
−
0
µA
pins AINTON and
ASTROBE
−100
0
+100
nA
pins ASTROBE and
AINTON
−
15
−
ns
pins SDA, SCL, AMON
and ALS
−
36
50
ns
pin ERON
−
2.5
3.5
ns
ERON = 1
0.22
0.24
0.26
ERON = 0
−
0
−
ERON = 1
0.87
0.95
1.03
ERON = 0
−
0
−
ERON = 1
0.87
0.95
1.03
ERON = 0
−
0
−
OUTPUT VOLTAGE LEVEL; PIN SDA
VOH
LOW-level output voltage
VOL
HIGH-level output voltage
INPUT CURRENT
ILI
input leakage current
DELAY TIMES
td
delay time
Normalized servo signals; note 2 and Section 11.1
GAIN SETTINGS
Gfe
gain focus error signal
Gre
gain radial error signal
Gtl
gain track loss signal
Gxd
gain radial beam landing
ERON = 1
0.87
0.95
1.03
ERON = 0
−
0
−
Ggr
gain in grating ratio
correction
ERON = 1
0.94
1
1.06
Gmir
gain in mirror signal
ERON = 1
0.90
1.03
1.15
2000 Oct 30
20
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
PARAMETER
TZA1020; TZA1020A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
OFFSET CURRENTS
Ioffset(fe)
offset current focus error
−550
0
+550
nA
Ioffset(re)
offset current radial error
rengain = 0
−1.5
0
+1.5
µA
Ioffset(tl)
offset current track loss
tlngain(1,0) = 00
−4
0
+4
µA
Ioffset(xd)
offset radial beam landing
−1.5
0
+1.5
µA
∆Ioffset(re)
variation in offset current
radial error
AMON 0 → 1
−0.8
0
+0.8
µA
∆Ioffset(tl)
variation in offset current
track loss
AMON 0 → 1
−1.4
−0.2
+1.2
µA
OUTPUT IMPEDANCE
Zo(FEN)
output impedance pin FEN
−
40
−
MΩ
Zo(REN)
output impedance pin REN
−
21
−
MΩ
Zo(XDN)
output impedance pin XDN
−
21
−
MΩ
Zo(TLN)
output impedance pin TLN
−
15
−
MΩ
Zo(MIRN)
output impedance
pin MIRN
−
80
−
MΩ
VOLTAGE RANGE OF OUTPUT SIGNALS
Vo(FEN)
output voltage pin FEN
−4
−
+4
V
Vo(REN)
output voltage pin REN
−4
−
+4
V
Vo(XDN)
output voltage pin XDN
−4
−
+4
V
Vo(l)(TLN)
output voltage pin TLN
tlnlim(1,0) = 00; note 3
−4
−
+3
V
tlnlim(1,0) = X1; note 3
−1
−
+1
V
tlnlim(1,0) = 10; note 3
−2
−
+2
V
Vo(l)(MIRN)
output voltage linear range
pin MIRN; TZA1020
note 4
0.2
−
1.0
V
Vo(l)(MIRN)
output voltage linear range
pin MIRN; TZA1020A
note 4
0.2
−
4.0
V
BANDWIDTH
B−3dB
−3 dB bandwidth
48
60
72
kHz
∆B−3dB
relative variation of B−3 dB
over total input current
range
−
−
4
%
4
5
6
kΩ
Fast track count; see Table 28 and notes 5 and 6
GAIN SETTINGS
Ztr(FTC)
transimpedance of fast
track circuit
cdrwsel = 0
cdrwsel = 1
16
20
24
kΩ
AMON = 1
−
0
−
kΩ
Ggr
gain in grating ratio
correction
0.94
1.00
1.06
∆VRE-NOM(p-p)
nominal signal swing
(peak-to-peak value)
−
1
−
2000 Oct 30
21
V
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
TSZtr(FTC)
PARAMETER
TZA1020; TZA1020A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
−
0.2
−
%/K
−3.5
−
+2.5
V
cdrwsel = 0
−40
0
+40
mV
cdrwsel = 1
−100
+25
+150
mV
minimum diode currents
−
125
−
Ω
−
580
−
Ω
800
−
−
kHz
temperature sensitivity for
transimpedance of fast
track circuit
FAST TRACK COUNT SIGNAL VOLTAGE OUTPUT; PIN RE
Vo(RE)
output voltage range
Voffset(RE)
output offset voltage
Ro(RE)
output resistance
B−3dB(RE)
bandwidth of RE signal
CL = 20 pF; valid for
complete input current
range
Spot position measurements; see Table 29 and note 7
GAIN SETTINGS
Gcd
gain central diode current
combination
AMON = 0
0.45
0.50
0.55
AMON = 1
−
0
−
Gsd
gain satellite diode current
combinations
AMON = 0
0.9
1.00
1.1
AMON = 1
−
0
−
meassel = 00
−1.6
0
+1.6
µA
meassel = 01
−1.6
0
+1.6
µA
OFFSET CURRENTS
Ioffset(MEAS)
offset of MEAS1 current
offset of MEAS2 current
meassel = 00
−1.6
0
+1.6
µA
meassel = 01
−1.6
0
+1.6
µA
cdrwsel = 0;
ΣICI = 180 µA
7.5
8.25
9.0
cdrwsel = 1; ΣIC1 = 50 µA 30
35
38
cdrwsel = 0; ΣIC1 = 0 µA
−
100
Ci = 12 pF; note 8
17
−
−
MHz
Ci = 5 pF
19
−
−
MHz
Ci = 12 pF
−
−
0.9
ns
Ci = 5 pF
−
−
1.1
ns
Central aperture high frequency output
GI(CAHF)
current gain
Ioffset(CAHF)
offset current at zero input
current
f−3dB
bandwidth (−3 dB), valid
for total current range
∆td
2000 Oct 30
delay variations valid for
total current range
µA
f = 0.1 to 12 MHz
22
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
PARAMETER
TZA1020; TZA1020A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Laser power calibration signals (beta circuit); see Fig.5 and Table 30
Ip1 = Ip2 = 10 TO 90 µA; 2.1 × Ip1; Ibetascl = Ip1
Vref(beta)
reference voltage for beta
detector
AMON = 0
1.1
1.25
1.4
V
VA1/VA2
ratio between A1 and A2
AMON = 1
−
0
−
V
0.9
1
1.1
−
VA1/VCALF
ratio between CALF and
A1
0.8
1
1.2
−
bandwidth (−3 dB) of CALF CCALPF = 15 nF
and CALFI signal
betactrl = 00
−
500
−
Hz
betactrl = 01
−
1000
−
Hz
betactrl = 10
−
2000
−
Hz
betactrl = 11
−
4000
−
Hz
betactrl = 00
−
500
−
µs
betactrl = 01
−
250
−
µs
betactrl = 10
−
125
−
µs
betactrl = 11
−
60
−
µs
−
250
−
Ω
0
−
4.5
V
ΣIc1 = 100 µA; Ibetascale = Ip1
B−3dB
tcpeak
time constant peak
detector
Ro
output resistance pins A1,
A2 and CALF
Vo
output voltage pins A1, A2
and CALF
CHCA1 = CHCA2 = 10 nF
VDD1 = 5.0 V
Laser power calibration signals (alpha circuit); see note 9 and Tables 31 and 32
GAIN SETTINGS
Galpha(CD-RW)
gain in alpha CD-RW
circuit
ERON = 1
0.88
1
1.12
ERON = 0
−
0
−
GCD-R(i)
gain in CD-R input circuit
AINTON = 1
0.53
0.62
0.72
GCD-R(norm)
gain in CD-R normalizer
ASTROBE = 1
38126
48158
6190
Gsub
subtractor gain
ALS = 1
0.94
0.97
1.0
ALS = 0
−
0
−
∆VAINT-ASTROBE
change in voltage
measured behind
ASTROBE switch
ASTROBE 1 → 0
−
130
−
mV
VAINT
voltage range pin AINT
0.5
−
3
V
Blpf
bandwidth of low-pass filter ERON = 1
48
60
72
kHz
Ipeak
current to peak detector
0.3
−
2
mA
IL(peak)
leakage current of peak
detector
algctr6 = 1; algctr4 = 0
−
100
−
µA/µs
tcpeak
time constant peak
detector time discrete to
time continues
switching AINTON at
realistic data speed = N
−
5/N
−
µs
2000 Oct 30
23
µA/V
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
PARAMETER
TZA1020; TZA1020A
CONDITIONS
VAZIN
voltage on AZIN input node IAZIN = 100 µA
Vo(DALPHA)
output voltage pin
DALPHA
Rsw(AINTON)
resistance AINTON switch
MIN.
TYP.
MAX.
UNIT
−
0
−
mV
−
−60
−
mV
−3.5
−
+3.5
V
−
50
−
Ω
bandwidth (−3 dB) of LPF2 lpsel = 00
32
40
48
kHz
lpsel = 01
64
80
96
kHz
lpsel = 10
120
150
180
kHz
IAZIN = 10 µA
Wobble pre-processor; see note 10 and Table 33
LPF2
B−3dB(LPF2)
∆BLPF2
relative variation BLPF2
over input current range
lpsel = 11
240
300
360
kHz
note 10
−
−
6
%
−
1
−
V−1
cdrwsel = 0
0.758
0.889
0.951
cdrwsel = 1
3.0
3.5
3.84
0.5
−
2
−
6200
−
V/s
−
0
−
V/s
VARIABLE GAIN LOOP
kbal
sensitivity balance circuit
Gbal
gain balancing circuit
Il/Ir
input current range of
balancing circuit
SRloop
slew rate loop
B−3dB(bal)
bandwidth variable gain
loop
ppnctrl1 = 0
Iop = Ion = 0 µA; note 11
800
1000
1250
kHz
ppnctrl1 = 0; note 11
−
0
−
kHz
MULTIPLIER LOOP
VPPN(norm)
normalize voltage pin PPN
Rca
resistance ca
−
3.14
−
V
AMON = 0
−
8
−
kΩ
AMON = 1
−
−
1
kΩ
B−3dB(HPF)
bandwidth (−3 dB) of HPF
40
50
60
kHz
kmult
sensitivity multiplier
−
0.19
−
mA/V2
gm(V-I)
transconductance V → I
−
340
−
µA/V
Vref(V-I)
reference voltage V → I
Vp − Vref(V-I) < 0.354 V;
note 12
ppnctrl2 = 0
2000 Oct 30
24
−
0
−
µA/V
3.25
3.5
3.75
V
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
SYMBOL
PARAMETER
TZA1020; TZA1020A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
OUTPUT STAGE; note 13
VPPN
voltage range
−3.5
−
+2.5
V
R(I-V)
I -> V conversion
resistance
244
320
400
kΩ
Voffset(PPN)
offset voltage of PPN
signal
Ippnscl = 3.125 µA
−38
+6
+50
mV
Ippnscl = 100 µA
−1165
+80
+1325
mV
Ippnscl = 3.125 µA
−115
+6
+130
mV
Ippnscl = 100 µA
ppnctrl1 = 0
Ro(PPN)
output resistance PPN
signal
−3800
+80
+4000
mV
Ippnscl = 3.125 µA
−
2200
−
Ω
Ippnscl = 20 µA
−
400
−
Ω
TSR(I-V)
temperature sensitivity of
offset voltage of PPN
signal
−
0.2
−
%/°C
B−3dB(PPN)
internal signal bandwidth
of PPN circuit
−
1
−
MHz
Notes
1. In the application, the reference current will be generated by means of a resistor. The given current can be realized
by a resistor of 1.3844 kΩ. As these are not available, the actual reference current will be slightly different. This
means that all derived signal currents will be scaled in the same way.
2. IC1 = IC2 = IC3 = IC4 = 10 µA; ISA1 = ISA2 = ISB1 = ISB2 = 1.25 µA; Inegain = 50 µA; Isdfine = 20 µA; IRREF = −900 µA;
Icagain = 35 µA; ERON = 1.
3. The voltage on TLN can be clamped with respect to GND (positive and negative) with one or two diodes. The clamp
has an internal resistance of approximately 900 Ω.
4. In the TZA1020A, pin MIRN is clamped with respect to GND (positive) by means of one diode.
5. IC1 = IC2 = IC3 = IC4 = 25 µA; ISA1 = ISA2 = ISB1 = ISB2 = 3.125 µA; Isdfine = 20 µA; IRREF = −900 µA.
6.
4 × G gr × ( I ref + I sdfine )
V RE = – T rre × ( I C1 + I C4 ) – ( I C2 + I C3 ) – ----------------------------------------------------------- × ( ( I SA1 + I SB1 ) – ( I SA2 + I SB2 ) )
I ref
7. IC1 = IC2 = IC3 = IC4 = 25 µA; ISA1 = ISA2 = ISB1 = ISB2 = 3.125 µA.
8. Ci = total capacitance connected to all input pins C1 to C4 (between pin and ground).
9. ΣIC1 = 2e-3.(1 + 0.7 sin(12π.3e6.t)) µA; ISA1 = ISB1 = ISA2 = ISB2 = 25 µA; IMIRN = 15 µA; Ialphagain = 50 µA;
Isumref = 15 µA; IAZIN = 100 µA; AMON = 1; alphactrl(2 to 0) = 000; algctr4 = 00; algctr6 = 1; algctr5 = 0;
ICAGAIN = 200 µA.
10. IC1 = IC2 = IC3 = IC4 = 25 µA; Ippnscl = 50 µA; ppnctrl1 = 1, ppnctrl2 = 1.
Sr loop × k bal
11. Bandwidth = -------------------------------- .
2π
12. Iop and Ion are limited to 12 µA ±3 µA.
L–R
13. V PPN =  -------------- × R ( I – V ) × I ppnscl
 L + R
2000 Oct 30
25
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
Table 28 Fast track count; note 1
FTC CURRENTS
Isd-fine
CONTROL SIGNAL
BINARY VALUE
CONTROL SIGNAL
VALUE CURRENT (µA)
sdfine7 to sdfine0
0000000
0.12
:
:
0111111
15
:
:
1111111
30
−
20
−
Iref
Note
1. The currents are proportional to IRREF. The given current values are valid at IRREF = −900 µA.
Table 29 Spot position measurements
meassel CODE
IMEAS1
IMEAS2
Gcd [(IC1 + IC4) − (IC2 + IC3)]
Gcd [(IC1 + IC2) − (IC3 + IC4)]
01
Gsd (ISA1 − ISA2)
Gsd (ISB2 − ISB1)
10
Gsd (ISA1 + ISB1)
Gsd (ISA2 + ISB2)
11
Gsd (ISA1 + ISA2)
Gsd (ISB1 + ISB2)
00 (POR)
Table 30 Laser power calibration (beta circuit); note 1
BETA CIRCUIT
CURRENTS
Ibetascl
CONTROL SIGNAL
BINARY VALUE
CONTROL SIGNAL
VALUE CURRENT (µA)
betascl4 to betascl0
00000
3.125
:
:
01111
50
:
:
11111
100
Note
1. The currents are proportional to IRREF. The given current values are valid IRREF = −900 µA.
2000 Oct 30
26
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
MGR812
k, full pagewidth
Σ I CI
Ip1
lp2
Icalfi
V beta
V A1 = ------------------ × I p1
I betascl
V beta
V A2 = ------------------ × I p2
I betascl
V beta
V CALF = ------------------ × I calfi
I betascl
ΣI C1 = I C1 + I C2 + I C3 + I C4
I p1 = ( ΣI C1 ≈ I calfi )
I p2 = ( I calfi ≈ ΣI C1 )
Fig.5 Laser power calibration signal (beta circuit).
2000 Oct 30
27
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
11.1
TZA1020; TZA1020A
Transfer functions for normalized servo signals
I C1 – I C4 I C3 – I C2
I FEN = G fe ×  --------------------+
- × I negdoc
 I C1 + I C4- I--------------------C3 + I C2
( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 )
I XDN = G xd ×  --------------------------------------------------------------------------------------------------------------  × I negdoc
 I C1 + I C2 + I C3 + I C4 + G sat × ( I S1 + I S2 ) 
( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 )
I REN = G re × RE scale ×  --------------------------------------------------------------------------------------------------------------  × I negdoc
 I C1 + I C2 + I C3 + I C4 + G sat × ( I S1 + I S2 ) 
( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 )
I TLN = G tl × TL scale ×  --------------------------------------------------------------------------------------------------------------  × I negdoc
 I C1 + I C2 + I C3 + I C4 + G sat × ( I S1 + I S2 ) 
( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 )
I MIRN = – G mir × MIR scale ×  --------------------------------------------------------------------------------------------------------------  × I negain


I CAGAIN
I C1 + I C2 + I C3 + I C4
I negdoc = I negain ×  ---------------------------------------------------


I sumref
at I C1 + I C2 + I C3 + I C4 < 0.9I sumref
I C1 + I C2 + I C3 + I C4
I negdoc = I negain ×  ---------------------------------------------------


I sumref
at I C1 + I C2 + I C3 + I C4 > 1.1I sumref
I C1 + I C2 + I C3 + I C4
I negdoc = I negain ×  ---------------------------------------------------


I sumref
at I C1 + I C2 + I C3 + I C4 > 1.1I sumref
I S1 = I SA1 + I SB1, I S2 = I SA2 + I SB2
4 × G gr × ( I ref + I sdfine )
G sat = ----------------------------------------------------------I ref
2000 Oct 30
28
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
11.2
TZA1020; TZA1020A
Laser power control signals (alpha circuit)
The alpha circuit can be split into an alpha circuit for CD-RW, an alpha circuit for CD-R and a subtractor with additional
gain switching. The alpha circuit is active only if AMON = 1.
Table 31 Alpha scale factors
SCALE FACTOR
BINARY VALUE
CONTROL SIGNAL
CONTROL SIGNAL
gain input current
alphactrl2 to alphactrl0
current gain output
algctrl4 and Algctrl6
subtractor gain
algctrl1 and algctrl0
VALUE SCALE FACTOR
000
0.50
001
0.33
010
0.25
011
0.20
100
0.17
101
0.14
110
0.12
111
0.11
00
0
01
1
10
3
11
4
00
0.25
01
0.5
10
0.75
11
1.0
BINARY VALUE
CONTROL SIGNAL
VALUE CURRENT (µA)
Table 32 Alpha currents; note 1
ALPHA CIRCUIT
CURRENTS
Ialphagain
Iref
CONTROL SIGNAL
alphagain4 to alphagain0
−
00000
3.125
01111
50
11111
100
−
20
Note
1. The currents and gain factor are proportional to IRREF. The given current values are valid at IRREF = −900 µA.
2000 Oct 30
29
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
11.3
TZA1020; TZA1020A
Wobble pre-processor
Table 33 Wobble currents; note 1
WOBBLE CURRENTS
Ippnscl
CONTROL SIGNAL
BINARY VALUE
CONTROL SIGNAL
VALUE CURRENT (µA)
ppnscl4 to ppnscl0
00000
3.125
:
:
01111
50
:
:
11111
100
Note
1. The currents are proportional to IRREF. The given current values are valid at IRREF = −900 µA.
2000 Oct 30
30
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
12 APPLICATION AND TEST INFORMATION
handbook, full pagewidth
ERON 15
from
laser control
35 FEN
CAGAIN 11
+12 V
INPUT
STAGE 3
36 REN
37 TLN
NORMALIZER
LPF 1
SA1 4
SERVO
34 XDN
SA2 8
38 MIRN
DIODE
INPUT
STAGE 1
SB1 5
SB2 9
LPF 2
C1 10
C2 3
26 PPN
WOBBLE
PREPROCESSOR
DIODE
INPUT
STAGE 2
C3 6
C4 7
27 CWBL
WOBBLE
DEMODULATOR
100 nF
24 DALPHA
to laser
1 nF
22 AINT
ALPHA
DETECTOR
AMON 14
TIMING
CIRCUIT
ASTROBE 19
AINTON 20
70 pF
25 AZIN
from microcontroller
ALS 21
control
switches
TZA1020
TZA1020A
CURRENT
AMPLIFIER
control
currents
23 CAHF
44 CALF
43 A1
REGISTER
42 A2
BETA
DETECTOR
SDA 12
from
microcontroller
I2C-BUS
INTERFACE
SCL 13
UOUT 1
10
nF
32 MEAS1
MEAS
−5 V
BAND GAP
REFERENCE
30
29
28
VSS1 GND1 VDD1
100
nF
−5 V
18
FAST
TRACK
COUNT
100
nF
−5 V
100
nF
+5 V
Fig.6 Application diagram.
2000 Oct 30
31
−5 V
10
nF
−5 V
33 MEAS2
31 RE
16
17
VSS2 GND2 VDD2
100
nF
+5 V
39 CALPF
41 HCA2
POR
DRIVER
RREF 2
BETA
MEASUREMENT
40 HCA1
DACs
to
laser control
EFM
DECODER
MGR813
(optional)
15
nF
−5 V
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
13 PACKAGE OUTLINE
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm
SOT307-2
c
y
X
A
33
23
34
22
ZE
e
E HE
A A2
wM
(A 3)
A1
θ
bp
Lp
pin 1 index
L
12
44
1
detail X
11
wM
bp
e
ZD
v M A
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
v
w
y
mm
2.10
0.25
0.05
1.85
1.65
0.25
0.40
0.20
0.25
0.14
10.1
9.9
10.1
9.9
0.8
12.9
12.3
12.9
12.3
1.3
0.95
0.55
0.15
0.15
0.1
Z D (1) Z E (1)
1.2
0.8
1.2
0.8
θ
o
10
0o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-02-04
97-08-01
SOT307-2
2000 Oct 30
EUROPEAN
PROJECTION
32
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
If wave soldering is used the following conditions must be
observed for optimal results:
14 SOLDERING
14.1
Introduction to soldering surface mount
packages
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
14.2
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
14.3
14.4
Wave soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
To overcome these problems the double-wave soldering
method was specifically developed.
2000 Oct 30
Manual soldering
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
33
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
14.5
TZA1020; TZA1020A
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, SQFP
not suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS not
PLCC(3), SO, SOJ
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
suitable
suitable(2)
suitable
suitable
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
2000 Oct 30
34
Philips Semiconductors
Product specification
Pre-amplifiers for CD-RW systems
TZA1020; TZA1020A
15 DATA SHEET STATUS
DATA SHEET STATUS
PRODUCT
STATUS
DEFINITIONS (1)
Objective specification
Development
This data sheet contains the design target or goal specifications for
product development. Specification may change in any manner without
notice.
Preliminary specification
Qualification
This data sheet contains preliminary data, and supplementary data will be
published at a later date. Philips Semiconductors reserves the right to
make changes at any time without notice in order to improve design and
supply the best possible product.
Product specification
Production
This data sheet contains final specifications. Philips Semiconductors
reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.
Note
1. Please consult the most recently issued data sheet before initiating or completing a design.
16 DEFINITIONS
17 DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes, without notice, in the
products, including circuits, standard cells, and/or
software, described or contained herein in order to
improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for
the use of any of these products, conveys no licence or title
under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that
these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
18 PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
2000 Oct 30
35
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,
Tel. +66 2 361 7910, Fax. +66 2 398 3447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 70
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
753503/01/pp36
Date of release: 2000
Oct 30
Document order number:
9397 750 04694