INTEGRATED CIRCUITS DATA SHEET TZA1020; TZA1020A Pre-amplifiers for CD-RW systems Product specification File under Integrated Circuits, IC01 2000 Oct 30 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A CONTENTS 9 LIMITING VALUES 10 THERMAL CHARACTERISTICS 11 CHARACTERISTICS Transfer functions for normalized servo signals Laser power control signals (alpha circuit) Wobble pre-processor 1 FEATURES 2 GENERAL DESCRIPTION 3 QUICK REFERENCE DATA 4 ORDERING INFORMATION 11.1 11.2 11.3 5 BLOCK DIAGRAM 12 APPLICATION AND TEST INFORMATION 6 PINNING 13 PACKAGE OUTLINE 7 FUNCTIONAL DESCRIPTION 14 SOLDERING 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Data amplifier Normalizer Wobble pre-processor Beta detector Alpha detector Fast track count Spot position measurement 14.1 Introduction to soldering surface mount packages Reflow soldering Wave soldering Manual soldering Suitability of surface mount IC packages for wave and reflow soldering methods 8 I2C-BUS PROTOCOL 15 DATA SHEET STATUS 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.2 Addressing and data bytes Write mode Read mode Control byte subaddress 00 Control byte subaddress 01 Control byte subaddress 02 Control byte subaddress 03 Control byte subaddress 04 Control byte subaddress 05 Control byte subaddress 06 Control byte subaddress 07 Characteristics of the I2C-bus 16 DEFINITIONS 17 DISCLAIMERS 18 PURCHASE OF PHILIPS I2C COMPONENTS 2000 Oct 30 14.2 14.3 14.4 14.5 2 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 1 TZA1020; TZA1020A FEATURES • Data amplifier for read speed up to twelve times nominal data speed • Normalized and filtered error signals for servo control • Wobble pre-processor with switchable low-pass filter • Calculation of signals for real-time laser power control for write speed up to four times 2 TZA1020 (AEGER2) is an analog pre-processor IC for CD-R and CD-RW systems with 3-spots push-pull tracking system. The IC interfaces directly to the photo diodes. The device generates signals for laser power calibration and laser power control during disc writing. Normalized error signals are generated for servo control and wobble detection. An HF current amplifier is implemented to detect the actual HF data signal. The Fast Track Count (FTC) amplifier generates a radial error signal to allow fast track counting. • Calculation of signals for optimum laser calibration for write speed up to four times • Fast track count amplifier • Spot position measurement for alignment of photo diodes • Reference voltage for laser controller • On-chip band gap and DACs for accurate and adjustable current/gain settings • I2C-bus microcontroller interface for programmable gain, speed switching and function selection TZA1020A (AEGER2A) is similar to the TZA1020, except for non-clamped MIRN, which allows operation with IGUANA. • All functions available for CD-R and CD-RW systems. 3 GENERAL DESCRIPTION QUICK REFERENCE DATA SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VDD positive supply voltage 4.5 5.0 5.5 V VSS negative supply voltage −5.5 −5.0 −4.5 V Ii(cd) central diode input current range 0 − 4000 µA B−3dB(norm) −3 dB bandwidth normalized error signals (servo) 48 60 − kHz B−3dB(CAHF) −3 dB bandwidth pin CAHF Ci = 12 pF 17 − − MHz ∆td(g)(CAHF) group delay variations pin CAHF f = 0.1 to 12 MHz; Ci = 12 pF − − 0.9 ns GI(CAHF) current gain pin CAHF cdrwsel = 1 − 35 − cdrwsel = 0 − 8.75 − IRREF reference current − −900 − µA Tamb ambient temperature 0 − 70 °C 4 ORDERING INFORMATION TYPE NUMBER TZA1020HP; TZA1020HP/A 2000 Oct 30 PACKAGE NAME QFP44 DESCRIPTION plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 × 10 × 1.75 mm 3 VERSION SOT307-2 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 5 TZA1020; TZA1020A BLOCK DIAGRAM handbook, full pagewidth ERON 15 35 CAGAIN SA1 SA2 SB1 SB2 C1 C2 C3 C4 11 INPUT STAGE 3 36 LPF 1 4 8 5 9 34 38 DIODE INPUT STAGE 1 LPF 2 10 3 6 7 NORMALIZER 37 27 WOBBLE PREPROCESSOR DIODE INPUT STAGE 2 26 22 21 20 AMON ALPHA DETECTOR 14 19 24 25 TZA1020 TZA1020A control switches control currents CURRENT AMPLIFIER REGISTER 23 44 43 SDA SCL 12 42 I2C-BUS INTERFACE 13 BETA DETECTOR 40 DACs UOUT 1 39 41 POR DRIVER 32 RREF MEAS BAND GAP REFERENCE 2 FAST TRACK COUNT 28 16 30 18 29 33 31 17 MGR809 VDD1 VDD2 VSS1 VSS2 GND1 GND2 Fig.1 Block diagram. 2000 Oct 30 4 FEN REN TLN XDN MIRN CWBL PPN AINT ALS AINTON ASTROBE DALPHA AZIN CAHF CALF A1 A2 CALPF HCA1 HCA2 MEAS1 MEAS2 RE Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 6 TZA1020; TZA1020A PINNING SYMBOL PIN SYMBOL DESCRIPTION UOUT 1 reference voltage output RREF 2 reference current input C2 3 central photo diode current input SA1 4 satellite photo diode current input SB1 5 satellite photo diode current input C3 6 central photo diode current input PIN DESCRIPTION PPN 26 normalized, balanced push-pull signal voltage CWBL 27 capacitor for EFM noise reduction loop VDD1 28 positive supply voltage 1 GND1 29 ground 1 VSS1 30 negative supply voltage 1 RE 31 fast track count signal voltage output MEAS1 32 combination of photo diode currents for adjustment 1 C4 7 central photo diode current input SA2 8 satellite photo diode current input SB2 9 satellite photo diode current input C1 10 central photo diode current input CAGAIN 11 set-point laser power on disc, current input MEAS2 33 combination of photo diode currents for adjustment 2 SDA 12 I2C-bus data input/output XDN 34 SCL 13 I2C-bus clock input normalized spot position error current output AMON 14 alpha measurement on switch (write/read state) FEN 35 normalized focus error current output ERON 15 normalized error signals on switch REN 36 normalized radial error current output TLN 37 normalized track-loss current output MIRN 38 mirror output (disc reflection) current output CALPF 39 capacitor to define CALF bandwidth HCA1 40 capacitor to define time constant peak detector A1 VDD2 16 positive supply voltage 2 GND2 17 ground 2 VSS2 18 negative supply voltage 2 ASTROBE 19 control signal sample-and-hold in alpha measurement AINTON 20 control signal integrator in alpha measurement ALS 21 DALPHA output enabled/disabled AINT 22 integrator capacitor for alpha measurement HCA2 41 capacitor to define time constant peak detector A2 CAHF 23 central aperture high-frequency current output A2 42 pit amplitude relative to CALF, voltage output DALPHA 24 alpha error signal for laser power control A1 43 land amplitude relative to CALF, voltage output AZIN 25 set-point alpha control CALF 44 low-pass filtered aperture signal, voltage output 2000 Oct 30 5 Philips Semiconductors Product specification 34 XDN 35 FEN 36 REN 37 TLN 38 MIRN 39 CALPF TZA1020; TZA1020A 40 HCA1 41 HCA2 42 A2 44 CALF handbook, full pagewidth 43 A1 Pre-amplifiers for CD-RW systems UOUT 1 33 MEAS2 RREF 2 32 MEAS1 31 RE C2 3 SA1 4 30 VSS1 SB1 5 29 GND1 C3 6 28 VDD1 TZA1020HP TZA1020HP/A C4 7 27 CWBL SA2 8 26 PPN SB2 9 25 AZIN 24 DALPHA C1 10 23 CAHF AINT 22 ALS 21 AINTON 20 ASTROBE 19 VSS2 18 GND2 17 VDD2 16 ERON 15 AMON 14 SCL 13 SDA 12 CAGAIN 11 Fig.2 Pin configuration. A handbook, halfpage C B C1 C2 C4 C3 SA1 SA2 S1 SB1 SB2 S2 MGR811 Fig.3 Quadrant diode configuration. 2000 Oct 30 6 MGR810 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 7 TZA1020; TZA1020A 7.4 FUNCTIONAL DESCRIPTION The beta detector generates signals necessary for the symmetry detection of the HF signal. By measuring peak values (A1 and A2) and average value of the signal (CALF), an optimum laser writing power can be determined. The gain of the measured values is controlled by the I2C-bus. The time constant of the peak detectors and bandwidth of the low-pass filtered aperture signal can also be adapted to the disc speed by the I2C-bus. All functions are designed in such a way that a read speed up to twelve times nominal speed is possible (N = 1, 2, 4, 8 or 12). Recording speed up to four is possible (N = 1, 2 or 4). The maximum recording speed must be determined. 7.1 Data amplifier The central diodes currents (C1 to C4) are fed to a high bandwidth current amplifier. The gain of the current amplifier can be switched by means of the I2C-bus microcontroller interface to compensate for differences in CD-R and CD-RW disc reflection. Data signals up to twelve times nominal data speed can be read. 7.2 7.5 Normalizer 7.6 Fast track count The fast track count circuit generates a Radial Error (RE) signal for fast track counting. A gain switch compensates for difference in CD-R and CD-RW disc reflection. 7.7 Spot position measurement To allow alignment of photo diodes via the TZA1020, a number of linear combinations of input currents can be realized (MEAS1 and MEAS2). Selection of the actual combination is performed by the I2C-bus. Wobble pre-processor The wobble signal of the pre-groove is detected by means of the PPN signal. The currents from inputs C1 to C4 are filtered and processed to provide optimal signal-to-noise ratio. The bandwidth of the filter may be adapted to the disc speed via the I2C-bus. The bandwidth of a noise reduction loop is controlled by an external capacitor, the I2C-bus interface controls the total operation of the processor. 2000 Oct 30 Alpha detector The alpha detector determines a parameter called ‘alpha’ during disc writing. Alpha must be kept constant to allow recording over a fingerprint or black dot. The definition of alpha is different for CD-R and CD-RW; for CD-R the light absorption of the disc is measured, for CD-RW alpha is determined by actual laser power and disc reflection. The gain of the measured signals and the CD-R and CD-RW selection is performed by the I2C-bus. The currents from the central diodes (C1 to C4), the current from the satellite diodes (SA1, SA2, SB1 and SB2) and the laser set-point current (CAGAIN) are (optionally sampled) fed to the first low-pass filters with a bandwidth of 60 kHz. The normalizing circuit generates error signals for servo control that are independent of the diode current level. The gain of the error signals is controlled by the I2C-bus microcontroller interface. A dropout concealment becomes active if the input current level is below a certain threshold value. This threshold value is also controlled by the I2C-bus. 7.3 Beta detector 7 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 8 TZA1020; TZA1020A I2C-BUS PROTOCOL 8.1 Addressing and data bytes Full control of the TZA1020 is accomplished via the 2-wire I2C-bus. Up to 400 kbits/s bus speed can be used in accordance with the I2C-bus fast-mode specification. For programming the device (write mode) eight data byte registers are available/addressable via eight subaddresses. Automatic subaddress incrementing enables the writing of successive data bytes in one transmission. During power-on, data byte registers are reset to a default state by use of a Power-On Reset (POR) circuit whose signal is derived from the internally generated I2C-bus supply voltage (VSS1). For reading from the device (read mode) one data byte register is available without subaddressing. 8.1.1 Table 1 WRITE MODE Slave address; 34H Slave address Table 2 0 0 1 1 0 1 0 0 0(1) 0(1) 0(1) 0 0/1 0/1 0/1 Subaddress 00H to 07H Subaddress 0(1) Note 1. The use of subaddresses F0H to F7H (11110XXX) instead of 00H to 07H (00000XXX) disables the automatic subaddress incrementing allowing continuous writing to a single data byte register (e.g. DAC testing). Table 3 SUB ADDR Overview of subaddresses POR STATE DATA BYTES 00H 00000000 alphactr2 alphactr1 alphactr0 alphagain4 alphagain3 alphagain2 alphagain1 alphagain0 01H 00000000 free algctr6 algctr5 algctr4 algct3 algctr2 algctr1 algctr0 02H 00000000 tlngain1 tlngain0 rengain negain4 negain3 negain2 negain1 negain0 03H 00000000 tmdac tlnlim1 tlnlim0 sumref4 sumref3 sumref2 sumref1 sumref0 04H 00000000 sdfine7 sdfine6 sdfine5 sdfine4 sdfine3 sdfine2 sdfine1 sdfine0 05H 00011111 lexton betactrl1 betactrl0 betascl4 betascl3 betascl2 betascl1 betascl0 06H 01100000 free ppnctrl1 ppnctrl0 ppnscl4 ppnscl3 ppnscl2 ppnscl1 ppnscl0 07H 00000000 porr free urefsel cdrwsel lpsel1 lpsel0 meassel1 meassel0 8.1.2 READ MODE 0 0 1 1 0 1 0 1 por(1) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) 0(2) Table 4 Slave address; 35H Slave address Table 5 Read byte Read byte Notes 1. In read mode the actual POR status can be read. 2. The state of unused read bits should not be relied upon; their state may be changed during development. 2000 Oct 30 8 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 8.1.2.1 TZA1020; TZA1020A Examples of valid transmissions to and from the TZA1020 Write: START - 34H - 00H - Data_for_00 - STOP Write with auto-increment: START - 34H - 00H - data_for_00 - data_for_01 - data_for_02 - STOP Auto-increment ‘wrap around’: START - 34H - 07H - data_for_07 - data_for_00 - data_for_01 - STOP Write without auto-increment: START - 34H - F5H - data_for_05 - data_for_05 - data_for_05 - STOP Read: START - 35H - data_from_ IC - STOP. 8.1.3 CONTROL BYTE SUBADDRESS 00 Table 6 Table 7 Control bits for alphactrl alphactrl2 alphactrl1 alphactrl0 GAIN INPUT CURRENT ALPHA DETECTOR 0 0 0 0.50 0 0 1 0.33 0 1 0 0.25 0 1 1 0.20 1 0 0 0.17 1 0 1 0.14 1 1 0 0.12 1 1 1 0.11 Control bits for alphagain-DAC; note 1 alphagain4 alphagain3 alphagain2 alphagain1 alphagain0 CURRENT alphagain-DAC 0 0 0 0 0 3.125 µA 0 0 0 0 1 6.250 µA 0 0 0 1 0 9.375 µA : code : 100 µA (code + 1)/32 1 1 1 0 1 93.750 µA 1 1 1 1 0 96.900 µA 1 1 1 1 1 100 µA Note 1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA. 2000 Oct 30 9 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 8.1.4 TZA1020; TZA1020A CONTROL BYTE SUBADDRESS 01 Table 8 Control byte for algctrl switch functions algctr6 algctr5 algctr4 algctr3 algctr2 algctr1 algctr0 0 0 0 0 0 0 0 POR state 0 − 0 − − − − current gain alpha CD-R Aoc = 0alpha CD-R circuit power-off 0 − 1 − − − − current gain alpha CD-R Aoc = 1alpha CD-R circuit power-on 1 − 0 − − − − current gain alpha CD-R Aoc = 3alpha CD-R circuit power-off 1 − 1 − − − − current gain alpha CD-R Aoc = 4alpha CD-R circuit power-on − 0 − − − − − alpha peak detector normal mode − 1 − − − − − alpha peak detector to level (test) − − − 0 − − − CD-RW mode 1 − − − 1 − − − CD-RW mode 2 − − − − 0 − − alpha CD-R − − − − 1 − − alpha CD-RW − − − − − 0 0 DALPHA gain = 0.25 − − − − − 0 1 DALPHA gain = 0.50 − − − − − 1 0 DALPHA gain = 0.75 − − − − − 1 1 DALPHA gain = 1.00 8.1.5 Table 9 DESCRIPTION CONTROL BYTE SUBADDRESS 02 Control bits for tlngain tlngain1 tlngain0 GAIN TLN SIGNAL 0 0 1.5 0 1 3.0 1 0 4.5 1 1 6.0 Table 10 Control bits for rengain rengain 2000 Oct 30 DESCRIPTION 0 1 normal 1 1.3 self test 10 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A Table 11 Control bits for current negain-DAC; note 1 negain4 negain3 negain2 negain1 negain0 CURRENT negain-DAC 0 0 0 0 0 3.125 µA 0 0 0 0 1 6.250 µA 0 0 0 1 0 9.375 µA : code : 100 µA (code + 1)/32 1 1 1 0 1 93.750 µA 1 1 1 1 0 96.900 µA 1 1 1 1 1 100 µA Note 1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA. 8.1.6 CONTROL BYTE SUBADDRESS 03 Table 12 Control bit for tmdac tmdac DESCRIPTION 0 DAC test off 1 DAC test on Table 13 Control bits for tlnlimit tlnlim1 tlnlim0 DESCRIPTION 0 0 clamp off X 1 clamp on 1 (0.6 V; Tamb = 25°C) 1 0 clamp on 2 (1.2 V; Tamb = 25°C) Table 14 Control bits for current sumref-DAC; note 1 sumref4 sumref3 sumref2 sumref1 sumref0 CURRENT sumref-DAC 0 0 0 0 0 0.468 µA 0 0 0 0 1 0.937 µA 0 0 0 1 0 1.40 µA : code 1 1 1 : 15 µA (code + 1)/32 0 1 14.06 µA 1 1 1 1 0 14.53 µA 1 1 1 1 1 15.00 µA Note 1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA. 2000 Oct 30 11 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 8.1.7 TZA1020; TZA1020A CONTROL BYTE SUBADDRESS 04 Table 15 Control byte for 8-bit sdfine-DAC; note 1 sdfine7 sdfine6 sdfine5 sdfine4 sdfine3 sdfine2 sdfine1 sdfine0 CURRENT sdfine-DAC 0 0 0 0 0 0 0 0 0.117 µA 0 0 0 0 0 0 0 1 0.234 µA 0 0 0 0 0 0 1 0 0.352 µA : code : 30 µA (code + 1)/256 1 1 1 1 1 1 0 1 29.76 µA 1 1 1 1 1 1 1 0 29.88 µA 1 1 1 1 1 1 1 1 30.0 µA Note 1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA. CONTROL BYTE SUBADDRESS 05 8.1.8 Table 16 Control bits for betactrl control via 5-bit DAC betactrl1 betactrl0 CALF BANDWIDTH (Hz) 0 0 500 0 1 1000 1 0 2000 1 1 4000 Table 17 Control bits for betascl control via 5-bit DAC; note 1 betascl4 betascl3 betascl2 betascl1 betascl0 CURRENT betascl-DAC 0 0 0 0 0 3.125 µA 0 0 0 0 1 6.250 µA 0 0 0 1 0 9.375 µA : code : 100 µA (code + 1)/32 1 1 1 0 1 93.750 µA 1 1 1 1 0 96.900 µA 1 1 1 1 1 100 µA Note 1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA. 2000 Oct 30 12 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 8.1.9 TZA1020; TZA1020A CONTROL BYTE SUBADDRESS 06 Table 18 Control bits for ppnctrl control via 5-bit DAC ppnctrl1 ppnctrl0 DESCRIPTION 1 1 POR state − 0 integrator slow disabled − 1 integrator slow enabled 0 − integrator fast disabled 1 − integrator fast enabled Table 19 Control bits for ppnscl control via 5-bit DAC; note 1 ppnscl4 ppnscl3 ppnscl2 ppnscl1 ppnscl0 CURRENT ppnscl-DAC 0 0 0 0 0 3.125 µA 0 0 0 0 1 6.250 µA 0 0 0 1 0 9.375 µA : code : 100 µΑ (code + 1)/32 1 1 1 0 1 93.750 µA 1 1 1 1 0 96.900 µA 1 1 1 1 1 100 µA Note 1. The currents of all DACs is controlled by reference current (IRREF). The given currents are valid at IRREF = −900 µA. 8.1.10 CONTROL BYTE SUBADDRESS 07 Table 20 Control bits for porr porr MODE 0 note 1 1 POR reset DESCRIPTION reset of POR signal bit Note 1. When porr is set to logic 1 it ensures that the POR read bit is reset to logic 0. This way a reading of POR is always at logic 1 with the occurrence of an actual power-on I2C-bus register reset and cannot accidentally be caused by other I2C-bus control bits. Bit porr has no control function; it is an ‘unused’ bit dedicated by name to change the I2C-bus register content from the POR state. Bit POR of the read byte is a wired NOR function that checks all I2C-bus register bits: when the I2C-bus register contents equals the Power-on reset default state POR will read logic 1, also when this state is set via the I2C-bus control. Because a setting of porr = 1 differs from the POR default state it forces a reset to logic 0 of the POR bit independent of other bit settings. 2000 Oct 30 13 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A Table 21 Control bits for meassel meassel1 meassel0 MEAS1 MEAS2 0 0 0 1 Gs (Ia1 − Ia2) Gs (Ib2 − Ib1) 1 0 Gs (Ia1 + Ib1) Gs (Ia2 + Ib2) 1 1 Gs (Ia1 + Ia2) Gs (Ib2 + Ib1) Gc [(Ic1 + Ic4) − (Ic2 + Ic3)] Gc [(Ic1 + Ic2) − (Ic3 + Ic4)] Table 22 Control bits for lpsel lpsel1 lpsel0 BANDWIDTH 0 0 40 kHz 0 1 80 kHz 1 0 160 kHz 1 1 320 kHz Table 23 Control bit for cdrwsel cdrwsel DESCRIPTION 0 CD-R mode 1 CD-RW mode Table 24 Control bits for urefsel urefsel REFERENCE OUTPUT VOLTAGE 0 2.9 V 1 3.5 V Table 25 Read byte POR DESCRIPTION 0 I2C-bus 1 I2C-bus bit state equals power-on reset state; note 1 bit state differs from power-on reset state Note 1. At power-on, an internal power-on reset signal is generated which resets the I2C-bus data bits to a pre-defined state. When the internal data bits are found to be in a POR state (due to an actual power-on reset but also when set via the I2C-bus) bit POR signals logic 1. Using the POR bit to detect occurrence of a power-on reset requires bit PORR to be set to logic 1 after power-up. Setting bit PORR forces the POR bit to logic 0 independent of other I2C-bus bit settings. 2000 Oct 30 14 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A Characteristics of the I2C-bus 8.2 FAST-MODE I2C-BUS SYMBOL UNIT PARAMETER MIN. MAX. fSCL SCL clock frequency 0 400 kHz tBUF bus free time between a STOP and START condition 1.3 − µs tHD;STA hold time (repeated) START condition; after this period, the first clock pulses are generated 0.6 − µs tLOW LOW period of the SCL clock 1.3 − µs tHIGH HIGH period of the SCL clock 0.6 − µs tSU;STA set-up time for a repeated START condition 0.6 − µs tHD;DAT data hold time 0 0.9 µs tSU;DAT data set-up time 100 − ns 300 ns 300 ns 0.1Cb(1) 0.1Cb(1) tr rise time of both SDA and SCL signals 20 + tf fall time of both SDA and SCL signals 20 + tSU;STO set-up time for STOP condition 0.6 − µs Cb capacitive load for each bus line; note 1 − 400 pF Note 1. Cb = total capacitance of one bus line in pF. For more information on “The I2C-bus and how to use it” see home page http://www.semiconductors.philips.com. 2000 Oct 30 15 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... t LOW t BUF tr tf t HD;STA t SP SCL 16 S t HD;DAT t SU;DAT t HIGH t SU;STA MBC611 P Product specification Fig.4 Definition of timing on the I2C-bus. t SU;STO Sr TZA1020; TZA1020A handbook, full pagewidth t HD;STA P Philips Semiconductors Pre-amplifiers for CD-RW systems 2000 Oct 30 SDA Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A Table 26 Scale factors controlled by the I2C-bus interface SCALE FACTOR REscale TLscale MIRscale CONTROL SIGNAL BINARY VALUE CONTROL SIGNAL rengain 0 1 1 1.3 00 1.5 01 3.0 10 4.5 11 6.0 tlngain1 and tlngain0 cdrwsel VALUE SCALE FACTOR 0 0.05 1 0.2 CONTROL SIGNAL BINARY VALUE CONTROL SIGNAL VALUE CURRENT (µA) negain4 to negain0 00000 3.125 : : 01111 50 Table 27 Currents controlled by the I2C-bus interface; note 1 NORMALIZER CURRENTS Inegain Isumref Isdfine Iref sumref4 to sumref0 sdfine7 to sdfine0 − : : 11111 100 00000 0.47 : : 01111 7.5 : : 11111 15 0000000 0.12 : : 0111111 15 : : 1111111 30 − 20 Note 1. The currents are proportional to IRREF. The given current values are valid at IRREF = −900 µA. 2000 Oct 30 17 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A 9 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER MIN. MAX. UNIT VDD positive supply voltage 0 13.2 V Tstg storage temperature −65 +150 °C Tamb ambient temperature 0 70 °C Ves electrostatic handling voltage: Machine model −200 +200 V Human body model −1000 +1000 V 10 THERMAL CHARACTERISTICS SYMBOL Rth(j-a) PARAMETER CONDITIONS thermal resistance from junction to ambient VALUE UNIT 60 K/W in free air 11 CHARACTERISTICS VDD1 = VDD2 = 5 V; VSS1 = VSS2 = −5 V; Tamb = 25 °C; ERON = 1; AMON = 0; IRREF = −900 µA; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies VDD1 positive supply voltage 1 (pin 28) 4.5 5.0 5.5 V VSS1 negative supply voltage 1 (pin 30) −5.5 −5.0 −4.5 V VDD2 positive supply voltage 2 (pin 16) 4.5 5.0 5.5 V VSS2 negative supply voltage 2 (pin 18) −5.5 −5.0 −4.5 V ∆VDD difference between VDD1 and VDD2 −0.5 − +0.5 V ∆VSS difference between VSS1 and VSS2 −0.5 − +0.5 V IDD(tot) positive supply current VDD1 + VDD2 quiescent state − 12 − mA maximum current − 26 − mA maximum current at AMON = 1 − 49 − mA quiescent state − 16 − mA maximum current − 25 − mA maximum current at AMON = 1 − 33 − mA ISS(tot) 2000 Oct 30 negative supply current VSS1 + VSS2 18 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL PARAMETER TZA1020; TZA1020A CONDITIONS MIN. TYP. MAX. UNIT Reference input current; pin RREF Ii(RREF) input reference current IRREF current range Vi(RREF) input voltage on pin RREF note 1 IRREF = −900 µA referenced to VSS − −900 − µA −1200 − −6500 µA 1.22 1.245 1.26 V Reference voltage buffer; pin UOUT VUOUT LOW-level output reference voltage HIGH-level output reference voltage urefsel = 0 IUOUT = −6 mA 2.63 2.77 2.90 V IUOUT = 0 mA − 2.9 − V urefsel = 1 IUOUT = −6 mA 3.23 3.4 3.57 V IUOUT = 0 mA − 3.5 − V −10 − 0 mA IUOUT = −6 mA 22 − − nF IUOUT = 0 mA 100 − − nF AMON = 0 1.0 − 75 µA AMON = 1 0 − 4000 µA satellite diode input current AMON = 0 for SA1/SA2 and SB1/SB2 AMON = 1 0.6 − 9 µA 0 − 520 µA input current for set-point laser power 30 − 1800 µA AMON = 0 − 0 − V IUOUT current range CUOUT capacitance on pin UOUT (necessary for stability) Detector inputs INPUT CURRENT RANGE Ii(Cn) Ii(SA,SB) Ii(CAGAIN) central diode input current for C1 to C4 INPUT VOLTAGE LEVEL Vi(Cn) central diode input voltage for C1 to C4 AMON = 1 − 1.4 − V Vi(SA,SB) satellite diode input voltage AMON = 0 for SA1/SA2 and SB1/SB2 AMON = 1 − 1.4 − V − 1.4 − V input current for set-point laser power − 0.7 − V − 300 − Ω Iexton = 1 − 600 − Ω Iexton = 0 − 1000 − Ω Iexton = 1 − 1000 − Ω Iexton = 0 − 4000 − Ω − 700 − Ω Vi(CAGAIN) INPUT RESISTANCE Ri(Cn) Ri(SA,SB) Ri(CAGAIN) 2000 Oct 30 central diode input resistance for C1 to C4 AMON = 0 AMON = 1; Ii(cd) = 25 µA satellite diode input resistance for SA1/SA2 and SB1/SB2 Ii(SA,SB) = 6.25 µA input resistance for set-point laser power Ii(CAGAIN) = 35 µA 19 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL PARAMETER TZA1020; TZA1020A CONDITIONS MIN. TYP. MAX. UNIT Digital control signals INPUT VOLTAGE LEVELS; PINS ERON, ASTROBE, AINTON, ALS, SDA, SCL AND AMON VIL LOW-level input voltage VDD1 = VDD2 = 5.0 V −0.3 − +0.9 V VIH HIGH-level input voltage VDD1 = VDD2 = 5.0 V 2.3 − 5.3 V VDD1 = 5.0 V 4.5 − 5.0 V 0 − 0.5 V pins SDA, SCL, AMON and ALS −1.5 − 0 µA pin ERON −15 − 0 µA pins AINTON and ASTROBE −100 0 +100 nA pins ASTROBE and AINTON − 15 − ns pins SDA, SCL, AMON and ALS − 36 50 ns pin ERON − 2.5 3.5 ns ERON = 1 0.22 0.24 0.26 ERON = 0 − 0 − ERON = 1 0.87 0.95 1.03 ERON = 0 − 0 − ERON = 1 0.87 0.95 1.03 ERON = 0 − 0 − OUTPUT VOLTAGE LEVEL; PIN SDA VOH LOW-level output voltage VOL HIGH-level output voltage INPUT CURRENT ILI input leakage current DELAY TIMES td delay time Normalized servo signals; note 2 and Section 11.1 GAIN SETTINGS Gfe gain focus error signal Gre gain radial error signal Gtl gain track loss signal Gxd gain radial beam landing ERON = 1 0.87 0.95 1.03 ERON = 0 − 0 − Ggr gain in grating ratio correction ERON = 1 0.94 1 1.06 Gmir gain in mirror signal ERON = 1 0.90 1.03 1.15 2000 Oct 30 20 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL PARAMETER TZA1020; TZA1020A CONDITIONS MIN. TYP. MAX. UNIT OFFSET CURRENTS Ioffset(fe) offset current focus error −550 0 +550 nA Ioffset(re) offset current radial error rengain = 0 −1.5 0 +1.5 µA Ioffset(tl) offset current track loss tlngain(1,0) = 00 −4 0 +4 µA Ioffset(xd) offset radial beam landing −1.5 0 +1.5 µA ∆Ioffset(re) variation in offset current radial error AMON 0 → 1 −0.8 0 +0.8 µA ∆Ioffset(tl) variation in offset current track loss AMON 0 → 1 −1.4 −0.2 +1.2 µA OUTPUT IMPEDANCE Zo(FEN) output impedance pin FEN − 40 − MΩ Zo(REN) output impedance pin REN − 21 − MΩ Zo(XDN) output impedance pin XDN − 21 − MΩ Zo(TLN) output impedance pin TLN − 15 − MΩ Zo(MIRN) output impedance pin MIRN − 80 − MΩ VOLTAGE RANGE OF OUTPUT SIGNALS Vo(FEN) output voltage pin FEN −4 − +4 V Vo(REN) output voltage pin REN −4 − +4 V Vo(XDN) output voltage pin XDN −4 − +4 V Vo(l)(TLN) output voltage pin TLN tlnlim(1,0) = 00; note 3 −4 − +3 V tlnlim(1,0) = X1; note 3 −1 − +1 V tlnlim(1,0) = 10; note 3 −2 − +2 V Vo(l)(MIRN) output voltage linear range pin MIRN; TZA1020 note 4 0.2 − 1.0 V Vo(l)(MIRN) output voltage linear range pin MIRN; TZA1020A note 4 0.2 − 4.0 V BANDWIDTH B−3dB −3 dB bandwidth 48 60 72 kHz ∆B−3dB relative variation of B−3 dB over total input current range − − 4 % 4 5 6 kΩ Fast track count; see Table 28 and notes 5 and 6 GAIN SETTINGS Ztr(FTC) transimpedance of fast track circuit cdrwsel = 0 cdrwsel = 1 16 20 24 kΩ AMON = 1 − 0 − kΩ Ggr gain in grating ratio correction 0.94 1.00 1.06 ∆VRE-NOM(p-p) nominal signal swing (peak-to-peak value) − 1 − 2000 Oct 30 21 V Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL TSZtr(FTC) PARAMETER TZA1020; TZA1020A CONDITIONS MIN. TYP. MAX. UNIT − 0.2 − %/K −3.5 − +2.5 V cdrwsel = 0 −40 0 +40 mV cdrwsel = 1 −100 +25 +150 mV minimum diode currents − 125 − Ω − 580 − Ω 800 − − kHz temperature sensitivity for transimpedance of fast track circuit FAST TRACK COUNT SIGNAL VOLTAGE OUTPUT; PIN RE Vo(RE) output voltage range Voffset(RE) output offset voltage Ro(RE) output resistance B−3dB(RE) bandwidth of RE signal CL = 20 pF; valid for complete input current range Spot position measurements; see Table 29 and note 7 GAIN SETTINGS Gcd gain central diode current combination AMON = 0 0.45 0.50 0.55 AMON = 1 − 0 − Gsd gain satellite diode current combinations AMON = 0 0.9 1.00 1.1 AMON = 1 − 0 − meassel = 00 −1.6 0 +1.6 µA meassel = 01 −1.6 0 +1.6 µA OFFSET CURRENTS Ioffset(MEAS) offset of MEAS1 current offset of MEAS2 current meassel = 00 −1.6 0 +1.6 µA meassel = 01 −1.6 0 +1.6 µA cdrwsel = 0; ΣICI = 180 µA 7.5 8.25 9.0 cdrwsel = 1; ΣIC1 = 50 µA 30 35 38 cdrwsel = 0; ΣIC1 = 0 µA − 100 Ci = 12 pF; note 8 17 − − MHz Ci = 5 pF 19 − − MHz Ci = 12 pF − − 0.9 ns Ci = 5 pF − − 1.1 ns Central aperture high frequency output GI(CAHF) current gain Ioffset(CAHF) offset current at zero input current f−3dB bandwidth (−3 dB), valid for total current range ∆td 2000 Oct 30 delay variations valid for total current range µA f = 0.1 to 12 MHz 22 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL PARAMETER TZA1020; TZA1020A CONDITIONS MIN. TYP. MAX. UNIT Laser power calibration signals (beta circuit); see Fig.5 and Table 30 Ip1 = Ip2 = 10 TO 90 µA; 2.1 × Ip1; Ibetascl = Ip1 Vref(beta) reference voltage for beta detector AMON = 0 1.1 1.25 1.4 V VA1/VA2 ratio between A1 and A2 AMON = 1 − 0 − V 0.9 1 1.1 − VA1/VCALF ratio between CALF and A1 0.8 1 1.2 − bandwidth (−3 dB) of CALF CCALPF = 15 nF and CALFI signal betactrl = 00 − 500 − Hz betactrl = 01 − 1000 − Hz betactrl = 10 − 2000 − Hz betactrl = 11 − 4000 − Hz betactrl = 00 − 500 − µs betactrl = 01 − 250 − µs betactrl = 10 − 125 − µs betactrl = 11 − 60 − µs − 250 − Ω 0 − 4.5 V ΣIc1 = 100 µA; Ibetascale = Ip1 B−3dB tcpeak time constant peak detector Ro output resistance pins A1, A2 and CALF Vo output voltage pins A1, A2 and CALF CHCA1 = CHCA2 = 10 nF VDD1 = 5.0 V Laser power calibration signals (alpha circuit); see note 9 and Tables 31 and 32 GAIN SETTINGS Galpha(CD-RW) gain in alpha CD-RW circuit ERON = 1 0.88 1 1.12 ERON = 0 − 0 − GCD-R(i) gain in CD-R input circuit AINTON = 1 0.53 0.62 0.72 GCD-R(norm) gain in CD-R normalizer ASTROBE = 1 38126 48158 6190 Gsub subtractor gain ALS = 1 0.94 0.97 1.0 ALS = 0 − 0 − ∆VAINT-ASTROBE change in voltage measured behind ASTROBE switch ASTROBE 1 → 0 − 130 − mV VAINT voltage range pin AINT 0.5 − 3 V Blpf bandwidth of low-pass filter ERON = 1 48 60 72 kHz Ipeak current to peak detector 0.3 − 2 mA IL(peak) leakage current of peak detector algctr6 = 1; algctr4 = 0 − 100 − µA/µs tcpeak time constant peak detector time discrete to time continues switching AINTON at realistic data speed = N − 5/N − µs 2000 Oct 30 23 µA/V Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL PARAMETER TZA1020; TZA1020A CONDITIONS VAZIN voltage on AZIN input node IAZIN = 100 µA Vo(DALPHA) output voltage pin DALPHA Rsw(AINTON) resistance AINTON switch MIN. TYP. MAX. UNIT − 0 − mV − −60 − mV −3.5 − +3.5 V − 50 − Ω bandwidth (−3 dB) of LPF2 lpsel = 00 32 40 48 kHz lpsel = 01 64 80 96 kHz lpsel = 10 120 150 180 kHz IAZIN = 10 µA Wobble pre-processor; see note 10 and Table 33 LPF2 B−3dB(LPF2) ∆BLPF2 relative variation BLPF2 over input current range lpsel = 11 240 300 360 kHz note 10 − − 6 % − 1 − V−1 cdrwsel = 0 0.758 0.889 0.951 cdrwsel = 1 3.0 3.5 3.84 0.5 − 2 − 6200 − V/s − 0 − V/s VARIABLE GAIN LOOP kbal sensitivity balance circuit Gbal gain balancing circuit Il/Ir input current range of balancing circuit SRloop slew rate loop B−3dB(bal) bandwidth variable gain loop ppnctrl1 = 0 Iop = Ion = 0 µA; note 11 800 1000 1250 kHz ppnctrl1 = 0; note 11 − 0 − kHz MULTIPLIER LOOP VPPN(norm) normalize voltage pin PPN Rca resistance ca − 3.14 − V AMON = 0 − 8 − kΩ AMON = 1 − − 1 kΩ B−3dB(HPF) bandwidth (−3 dB) of HPF 40 50 60 kHz kmult sensitivity multiplier − 0.19 − mA/V2 gm(V-I) transconductance V → I − 340 − µA/V Vref(V-I) reference voltage V → I Vp − Vref(V-I) < 0.354 V; note 12 ppnctrl2 = 0 2000 Oct 30 24 − 0 − µA/V 3.25 3.5 3.75 V Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems SYMBOL PARAMETER TZA1020; TZA1020A CONDITIONS MIN. TYP. MAX. UNIT OUTPUT STAGE; note 13 VPPN voltage range −3.5 − +2.5 V R(I-V) I -> V conversion resistance 244 320 400 kΩ Voffset(PPN) offset voltage of PPN signal Ippnscl = 3.125 µA −38 +6 +50 mV Ippnscl = 100 µA −1165 +80 +1325 mV Ippnscl = 3.125 µA −115 +6 +130 mV Ippnscl = 100 µA ppnctrl1 = 0 Ro(PPN) output resistance PPN signal −3800 +80 +4000 mV Ippnscl = 3.125 µA − 2200 − Ω Ippnscl = 20 µA − 400 − Ω TSR(I-V) temperature sensitivity of offset voltage of PPN signal − 0.2 − %/°C B−3dB(PPN) internal signal bandwidth of PPN circuit − 1 − MHz Notes 1. In the application, the reference current will be generated by means of a resistor. The given current can be realized by a resistor of 1.3844 kΩ. As these are not available, the actual reference current will be slightly different. This means that all derived signal currents will be scaled in the same way. 2. IC1 = IC2 = IC3 = IC4 = 10 µA; ISA1 = ISA2 = ISB1 = ISB2 = 1.25 µA; Inegain = 50 µA; Isdfine = 20 µA; IRREF = −900 µA; Icagain = 35 µA; ERON = 1. 3. The voltage on TLN can be clamped with respect to GND (positive and negative) with one or two diodes. The clamp has an internal resistance of approximately 900 Ω. 4. In the TZA1020A, pin MIRN is clamped with respect to GND (positive) by means of one diode. 5. IC1 = IC2 = IC3 = IC4 = 25 µA; ISA1 = ISA2 = ISB1 = ISB2 = 3.125 µA; Isdfine = 20 µA; IRREF = −900 µA. 6. 4 × G gr × ( I ref + I sdfine ) V RE = – T rre × ( I C1 + I C4 ) – ( I C2 + I C3 ) – ----------------------------------------------------------- × ( ( I SA1 + I SB1 ) – ( I SA2 + I SB2 ) ) I ref 7. IC1 = IC2 = IC3 = IC4 = 25 µA; ISA1 = ISA2 = ISB1 = ISB2 = 3.125 µA. 8. Ci = total capacitance connected to all input pins C1 to C4 (between pin and ground). 9. ΣIC1 = 2e-3.(1 + 0.7 sin(12π.3e6.t)) µA; ISA1 = ISB1 = ISA2 = ISB2 = 25 µA; IMIRN = 15 µA; Ialphagain = 50 µA; Isumref = 15 µA; IAZIN = 100 µA; AMON = 1; alphactrl(2 to 0) = 000; algctr4 = 00; algctr6 = 1; algctr5 = 0; ICAGAIN = 200 µA. 10. IC1 = IC2 = IC3 = IC4 = 25 µA; Ippnscl = 50 µA; ppnctrl1 = 1, ppnctrl2 = 1. Sr loop × k bal 11. Bandwidth = -------------------------------- . 2π 12. Iop and Ion are limited to 12 µA ±3 µA. L–R 13. V PPN = -------------- × R ( I – V ) × I ppnscl L + R 2000 Oct 30 25 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A Table 28 Fast track count; note 1 FTC CURRENTS Isd-fine CONTROL SIGNAL BINARY VALUE CONTROL SIGNAL VALUE CURRENT (µA) sdfine7 to sdfine0 0000000 0.12 : : 0111111 15 : : 1111111 30 − 20 − Iref Note 1. The currents are proportional to IRREF. The given current values are valid at IRREF = −900 µA. Table 29 Spot position measurements meassel CODE IMEAS1 IMEAS2 Gcd [(IC1 + IC4) − (IC2 + IC3)] Gcd [(IC1 + IC2) − (IC3 + IC4)] 01 Gsd (ISA1 − ISA2) Gsd (ISB2 − ISB1) 10 Gsd (ISA1 + ISB1) Gsd (ISA2 + ISB2) 11 Gsd (ISA1 + ISA2) Gsd (ISB1 + ISB2) 00 (POR) Table 30 Laser power calibration (beta circuit); note 1 BETA CIRCUIT CURRENTS Ibetascl CONTROL SIGNAL BINARY VALUE CONTROL SIGNAL VALUE CURRENT (µA) betascl4 to betascl0 00000 3.125 : : 01111 50 : : 11111 100 Note 1. The currents are proportional to IRREF. The given current values are valid IRREF = −900 µA. 2000 Oct 30 26 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A MGR812 k, full pagewidth Σ I CI Ip1 lp2 Icalfi V beta V A1 = ------------------ × I p1 I betascl V beta V A2 = ------------------ × I p2 I betascl V beta V CALF = ------------------ × I calfi I betascl ΣI C1 = I C1 + I C2 + I C3 + I C4 I p1 = ( ΣI C1 ≈ I calfi ) I p2 = ( I calfi ≈ ΣI C1 ) Fig.5 Laser power calibration signal (beta circuit). 2000 Oct 30 27 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 11.1 TZA1020; TZA1020A Transfer functions for normalized servo signals I C1 – I C4 I C3 – I C2 I FEN = G fe × --------------------+ - × I negdoc I C1 + I C4- I--------------------C3 + I C2 ( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 ) I XDN = G xd × -------------------------------------------------------------------------------------------------------------- × I negdoc I C1 + I C2 + I C3 + I C4 + G sat × ( I S1 + I S2 ) ( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 ) I REN = G re × RE scale × -------------------------------------------------------------------------------------------------------------- × I negdoc I C1 + I C2 + I C3 + I C4 + G sat × ( I S1 + I S2 ) ( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 ) I TLN = G tl × TL scale × -------------------------------------------------------------------------------------------------------------- × I negdoc I C1 + I C2 + I C3 + I C4 + G sat × ( I S1 + I S2 ) ( I C1 + I C4 ) – ( I C2 + I C3 ) – G sat × ( I S1 – I S2 ) I MIRN = – G mir × MIR scale × -------------------------------------------------------------------------------------------------------------- × I negain I CAGAIN I C1 + I C2 + I C3 + I C4 I negdoc = I negain × --------------------------------------------------- I sumref at I C1 + I C2 + I C3 + I C4 < 0.9I sumref I C1 + I C2 + I C3 + I C4 I negdoc = I negain × --------------------------------------------------- I sumref at I C1 + I C2 + I C3 + I C4 > 1.1I sumref I C1 + I C2 + I C3 + I C4 I negdoc = I negain × --------------------------------------------------- I sumref at I C1 + I C2 + I C3 + I C4 > 1.1I sumref I S1 = I SA1 + I SB1, I S2 = I SA2 + I SB2 4 × G gr × ( I ref + I sdfine ) G sat = ----------------------------------------------------------I ref 2000 Oct 30 28 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 11.2 TZA1020; TZA1020A Laser power control signals (alpha circuit) The alpha circuit can be split into an alpha circuit for CD-RW, an alpha circuit for CD-R and a subtractor with additional gain switching. The alpha circuit is active only if AMON = 1. Table 31 Alpha scale factors SCALE FACTOR BINARY VALUE CONTROL SIGNAL CONTROL SIGNAL gain input current alphactrl2 to alphactrl0 current gain output algctrl4 and Algctrl6 subtractor gain algctrl1 and algctrl0 VALUE SCALE FACTOR 000 0.50 001 0.33 010 0.25 011 0.20 100 0.17 101 0.14 110 0.12 111 0.11 00 0 01 1 10 3 11 4 00 0.25 01 0.5 10 0.75 11 1.0 BINARY VALUE CONTROL SIGNAL VALUE CURRENT (µA) Table 32 Alpha currents; note 1 ALPHA CIRCUIT CURRENTS Ialphagain Iref CONTROL SIGNAL alphagain4 to alphagain0 − 00000 3.125 01111 50 11111 100 − 20 Note 1. The currents and gain factor are proportional to IRREF. The given current values are valid at IRREF = −900 µA. 2000 Oct 30 29 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 11.3 TZA1020; TZA1020A Wobble pre-processor Table 33 Wobble currents; note 1 WOBBLE CURRENTS Ippnscl CONTROL SIGNAL BINARY VALUE CONTROL SIGNAL VALUE CURRENT (µA) ppnscl4 to ppnscl0 00000 3.125 : : 01111 50 : : 11111 100 Note 1. The currents are proportional to IRREF. The given current values are valid at IRREF = −900 µA. 2000 Oct 30 30 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A 12 APPLICATION AND TEST INFORMATION handbook, full pagewidth ERON 15 from laser control 35 FEN CAGAIN 11 +12 V INPUT STAGE 3 36 REN 37 TLN NORMALIZER LPF 1 SA1 4 SERVO 34 XDN SA2 8 38 MIRN DIODE INPUT STAGE 1 SB1 5 SB2 9 LPF 2 C1 10 C2 3 26 PPN WOBBLE PREPROCESSOR DIODE INPUT STAGE 2 C3 6 C4 7 27 CWBL WOBBLE DEMODULATOR 100 nF 24 DALPHA to laser 1 nF 22 AINT ALPHA DETECTOR AMON 14 TIMING CIRCUIT ASTROBE 19 AINTON 20 70 pF 25 AZIN from microcontroller ALS 21 control switches TZA1020 TZA1020A CURRENT AMPLIFIER control currents 23 CAHF 44 CALF 43 A1 REGISTER 42 A2 BETA DETECTOR SDA 12 from microcontroller I2C-BUS INTERFACE SCL 13 UOUT 1 10 nF 32 MEAS1 MEAS −5 V BAND GAP REFERENCE 30 29 28 VSS1 GND1 VDD1 100 nF −5 V 18 FAST TRACK COUNT 100 nF −5 V 100 nF +5 V Fig.6 Application diagram. 2000 Oct 30 31 −5 V 10 nF −5 V 33 MEAS2 31 RE 16 17 VSS2 GND2 VDD2 100 nF +5 V 39 CALPF 41 HCA2 POR DRIVER RREF 2 BETA MEASUREMENT 40 HCA1 DACs to laser control EFM DECODER MGR813 (optional) 15 nF −5 V Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A 13 PACKAGE OUTLINE QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm SOT307-2 c y X A 33 23 34 22 ZE e E HE A A2 wM (A 3) A1 θ bp Lp pin 1 index L 12 44 1 detail X 11 wM bp e ZD v M A D B HD v M B 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HD HE L Lp v w y mm 2.10 0.25 0.05 1.85 1.65 0.25 0.40 0.20 0.25 0.14 10.1 9.9 10.1 9.9 0.8 12.9 12.3 12.9 12.3 1.3 0.95 0.55 0.15 0.15 0.1 Z D (1) Z E (1) 1.2 0.8 1.2 0.8 θ o 10 0o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 95-02-04 97-08-01 SOT307-2 2000 Oct 30 EUROPEAN PROJECTION 32 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A If wave soldering is used the following conditions must be observed for optimal results: 14 SOLDERING 14.1 Introduction to soldering surface mount packages • Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “Data Handbook IC26; Integrated Circuit Packages” (document order number 9398 652 90011). • For packages with leads on two sides and a pitch (e): – larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used. 14.2 – smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. Reflow soldering Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. • For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 14.3 14.4 Wave soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. To overcome these problems the double-wave soldering method was specifically developed. 2000 Oct 30 Manual soldering When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. 33 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems 14.5 TZA1020; TZA1020A Suitability of surface mount IC packages for wave and reflow soldering methods SOLDERING METHOD PACKAGE REFLOW(1) WAVE BGA, SQFP not suitable HLQFP, HSQFP, HSOP, HTSSOP, SMS not PLCC(3), SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO suitable suitable(2) suitable suitable suitable not recommended(3)(4) suitable not recommended(5) suitable Notes 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”. 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version). 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. 2000 Oct 30 34 Philips Semiconductors Product specification Pre-amplifiers for CD-RW systems TZA1020; TZA1020A 15 DATA SHEET STATUS DATA SHEET STATUS PRODUCT STATUS DEFINITIONS (1) Objective specification Development This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice. Preliminary specification Qualification This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Product specification Production This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Note 1. Please consult the most recently issued data sheet before initiating or completing a design. 16 DEFINITIONS 17 DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Right to make changes Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 18 PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 2000 Oct 30 35 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553 For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com SCA 70 © Philips Electronics N.V. 2000 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 753503/01/pp36 Date of release: 2000 Oct 30 Document order number: 9397 750 04694