PD-60022B IR2130D 3-PHASE DRIVER Features n Hermetic n Floatingchanneldesignedforbootstrap n n n n n n operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for both channels Outputs in phase with inputs Description The IR2130D is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A groundreferenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. Product Summary VOFFSET 400V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 675 & 425 ns Deadtime (typ.) 0.9 µs An open drain FAULT signal indicates if an overcurrent or undervoltage shutdown has occurred. The output driverhgre a high pulse current buffer stage designed for minimum driver cross-con duction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 400 volts. Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to Vso. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSO VLO1,2,3 VIN VFLT VCAO VCAdVS/dt PD RthJA Tj TS TL Parameter High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Driver Return Low Side Output Voltage Logic Input Voltage (HIN, LIN & SD) Fault Output Voltage Operational Amplifier Output Voltage Operational amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient (Fig. 16) Package Power Dissipation @ TA< = 25°C (Fig. 19) Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperatue Lead Temperature (Soldering, 10 seconds) Weight www.irf.com Min. Max. -0.3 VS1,2,3 + 20 VSO - 5 VSO + 400 VS1,2,3 - 0.3 VS1,2,3 + 0.3 -0.3 20 -5 V CC + 0.3 VSO - 0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 -0.3 VCC + 0.3 — 50 — 1.5 — 70 -55 125 -55 150 — 300 6.1 (typical) Units V V/nS W °C/W °C g 1 3/1/00 IR2130D Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCA- Parameter High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN, LIN & SD) Fault Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Min. Max. Units VS1,2,3 + 10 V SO - 5 VS1,2,3 10 -5 0 V SS VSS VSS VSS VS1,2,3 + 20 VSO + 400 VB1,2,3 20 5 VCC VSS + 5 VCC 5 5 V Dynamic Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF unless otherwise specified. Tj = -55 to 125°C Tj = 25°C Symbol ton tr toff tf DT titrip tflt tfltclr tflt,in tbl SR+ SR- Parameter Turn-On Propagation Delay (all six channels) Turn-On Rise Time (all six channels) Turn-Off Propagation Delay (all six channels) Turn-Off Fall Time (all six channels) Deadtime (LS Turn-off to HS Turn-on & HS Turn-off to LS Turn-on) ITRIP to Output Shutdown Prop. Delay ITRIP to FAULT Indication Delay LIN1, 2, 3 To FAULT Clear Time Input Filter Time (all six inputs) ITRIP Blanking Time Amplifier Slew Rate (+) Amplifier Slew Rate (-) Min. Typ. Max. Min. Max. Units Test Conditions 500 675 850 — 850 — 300 80 425 125 550 — — 175 600 — 0.4 35 0.9 55 1.3 — 0.25 85 1.5 µs 660 920 590 845 10 12.5 310 — 400 — 6.2 — 3.2 — — — — — — 2.7 1.5 1100 1000 — — — — — ns ns µs ns ns V/µs V/µs 400 335 5.5 — — 4.4 2.4 ns CL= 1000pF VS1,2,3 = 0 to 400 V V IN = 0 & 5 V CL = 1000pF, VIN = 0 & 5V CL = 1000pF, VIN, VITRIP = 0 & 5V VIN = 0 & 5V VITRIP = 1V Typical Connection 4 2 www.irf.com IR2130D Static Electrical Characteristics VBIAS (VCC , VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are referenced to VSO1, 2, 3. Tj = 25°C Symbol ILK Parameter Min. Typ. Tj=55-125°C Max. Min. Max. Units Offset Supply Leakage Currents — — 50 — 500 IQBS Quiescent VBS Supply Current — 15 30 — 45 IQCC Quiescent VCC Supply Current — 3.0 4.0 — 6.0 IIN+ Logic “1” Input Bias Current(OUT= HI) — 450 650 — 1050 IIN- Logic “0” Input Bias Current(OUT=LO) — 225 400 — — IITRIP + “High” ITRIP Bias Current — 75 150 — — IITRIP- “Low” ITRIP Bias Current — — 100 — 170 VIN,IH Logic “0” Input Voltage( OUT = LO ) — — — 2.2 — VIN,IL Logic “1” Input Voltage ( OUT = HI ) — — — — 0.8 400 490 580 350 580 mV — — 30 — — mV VIT,TH+ VOS ITRIP Input Positive Going Threshold Amplifier Input Offset Voltage µA VIN = 0V or 5V VIN = 0V or 5V µA VIN = 0V VIN = 5V ITRIP = 5V nA ITRIP =0V V — 55 75 — 150 Ω — 8.3 0.5 9.0 4.0 10.6 — 8.0 4.0 10.7 nA VCCUV+ CA- Input Bias Current VCC Supply Undervoltage Positive VCCUV- Going Threshold VCC Supply Undervoltage Negative 8.0 8.7 10.5 7.7 10.5 ICA- VB = VS=400V mA FAULT- Low On Resistance Ron,FLT Test Conditions VSO = CA- = 0.2V CA- = 2.5V V Going Threshold VBSUV+ VBS Supply Undervoltage Positive Going Threshold 7.5 8.4 9.2 — — VBSUV- VBS Supply Undervoltage Negative Going Threshold 7.1 8.0 8.8 — — Output High Short Circuit Pulsed 200 250 — — — Output Low Short Circuit Pulsed Current 420 500 — — — VOH,Amp Amplifier High Level Output Voltage 5.0 5.2 5.4 4.9 5.6 V CA- = 0V, VSO =1V VOL,Amp Amplifier Low Level Output Voltage — 2.5 20 — 20 mV CA- = 1V, VSO =0V ISRC,Amp Amplifier Output Source Current 2.3 4.0 — 1.5 — ISNK,Amp Amplifier Output Sink Current 1.0 2.1 — 0.5 — CA- = 1V, VSO =0V,CAO=2V Amplifier Common Mode Rejection Ratio Amplifier Power Supply Rejection Ratio 60 80 — — — CA- =VSO =0.1V & 5V 55 75 — — — High Level Output Voltage — — 100 — 100 IO+ V VOUT = VIN- = 0V PW <= 10µS Current IO- CMRR PSRR VOH VOL Low Level Output Voltage www.irf.com — — 100 — 100 mA mA dB VOUT =15, VIN- =5V PW <= 10µS CA- = 0V, VSO =1V, CAO=4V CA- = VSO =0.2V VCC = 10V & 20V VIN- = 0V, IO = 0A mV VIN- = 5V, IO = 0A 3 IR2130D Static Electrical Characteristics Continued VBIAS (VCC, VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are referenced to VSO1, 2, 3. Tj = 25°C Symbol IO+,Amp Parameter Amplifier Output High Short Circuit Tj = 55 to 125°C Min. Typ. Max. — 4.5 6.5 Min. Max. — 8.0 CA- = 0V, VSO = 5V — 3.2 5.2 — 7.0 CA- = 5V, VSO = 0V Circuit IO-,Amp Amplifier Output High Short Circuit Circuit 4 Units Test Conditions VCAO = 0V VCAO = 5V www.irf.com IR2130D 4 HIN1,2,3 LIN1,2,3 ITRIP FAULT HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN1,2,3 LIN1,2,3 HIN1,2,3 50% 50% 50% 50% LIN1,2,3 ton tr toff tf LO1,2,3 90% 50% 90% 50% HO1,2,3 HO1,2,3 LO1,2,3 DT 10% 10% DT Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time Waveform Definitions 50% LIN1,2,3 VCC 50% ITRIP FAULT 50% VS0 + CA- - CAO VSS 50% LO1,2,3 50% tflt tfltclr VSS titrip Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions www.irf.com Figure 6. Diagnostic Feedback Operational Amplifier Circuit 5 IR2130D 15V 15V VCC 3V CA0V VS0 VS0 CA- CAO - VSS CAO - 50 pF VSS + ∆T1 ∆T2 3V VCC + + 20k 0.2V 1k 90% ∆V 10% 0V ∆V ∆V SR+ = VOS = SR- = ∆T2 ∆ T1 Figure 7. Operational Amplifier Slew Rate Measurement VCAO - 0.2V 21 Figure 8. Operational Amplifier Input Offset Voltage Measurement VCC VS0 15V VCC CAVS0 - VSS CAO + VSS Measure V CAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V CMRR = -20*LOG (VCAO1-0.1V) - (V CAO2-5V) 4.9V 20k 1k Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V (dB) PSRR = -20* LOG Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements VCAO1 - VCAO2 (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements 1.50 1.50 1.20 Turn-On Delay Time (µs) 1.20 Turn-On Delay Time (µs) CAO - + 0.2V Max. 0.90 Typ. 0.60 Min. 0.30 0.90 Max. Typ. 0.60 Min. 0.30 0.00 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 11A. Turn-On Time vs. Temperature 6 + CA- 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11B. Turn-On Time vs. Voltage www.irf.com 1.00 1.00 0.80 0.80 0.60 0.40 Turn-Off Delay Time (µs) Turn-Off Delay Time (µs) IR2130D Max. Typ. Min. 0.20 Max. 0.60 Typ. 0.40 Min. 0.20 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 250 250 200 200 150 Max. Typ. 50 20 Max. 150 100 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (°C) Figure 13A. Turn-On Rise Time vs. Temperature Figure 13B. Turn-On Rise Time vs. Voltage 125 125 100 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 18 50 0 75 50 Max. 25 16 Figure 12B. Turn-Off Time vs. Voltage Turn-On Rise Time (ns) Turn-On Rise Time (ns) Figure 12A. Turn-Off Time vs. Temperature 100 14 VBIAS Supply Voltage (V) Temperature (°C) Typ. 75 Max. 50 Typ. 25 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 14A. Turn-Off Fall Time vs. Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 14B. Turn-Off Fall Time vs. Voltage 7 IR2130D 1.50 ITRIP to Output Shutdown Delay Time (µs) ITRIP to Output Shutdown Delay Time (µs) 1.50 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 -50 -25 0 25 50 75 100 125 10 12 Figure 15A. ITRIP to Output Shutdown Time vs. Temperature ITRIP to FAULT Indication Delay Time (µs) ITRIP to FAULT Indication Delay Time (µs) 18 20 1.50 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 0.90 0.60 Max. Typ. Min. 0.30 0.00 -50 -25 0 25 50 75 100 125 10 12 Figure 16A. ITRIP to FAULT Indication Time vs. Temperature 16 18 20 Figure 16B. ITRIP to FAULT Indication Time vs. Voltage 25.0 20.0 20.0 LIN1,2,3 to FAULT Clear Time (µs) 25.0 15.0 Max. 10.0 14 VCC Supply Voltage (V) Temperature (°C) LIN1,2,3 to FAULT Clear Time (µs) 16 Figure 15B. ITRIP to Output Shutdown Time vs. Voltage 1.50 Typ. Min. 5.0 0.0 15.0 Max. 10.0 Typ. Min. 5.0 0.0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature 8 14 VBIAS Supply Voltage (V) Temperature (°C) 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage www.irf.com 7.50 7.50 6.00 6.00 4.50 3.00 1.50 Max. Deadtime (µs) Deadtime (µs) IR2130D Typ. Min. 4.50 Max. 3.00 1.50 0.00 Typ. Min. 0.00 -50 -25 0 25 50 75 100 125 10 12 Figure 18A. Deadtime vs. Temperature 18 20 10.0 8.0 Amplifier Slew Rate + (V/µs) 8.0 Amplifier Slew Rate + (V/µs) 16 Figure 18B. Deadtime vs. Voltage 10.0 Typ. 6.0 Min. 4.0 2.0 Typ. 6.0 Min. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VCC Supply Voltage (V) Temperature (°C) Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage 5.00 5.00 4.00 4.00 Typ. Amplifier Slew Rate - (V/µs) Amplifier Slew Rate - (V/µs) 14 VBIAS Supply Voltage (V) Temperature (°C) 3.00 Min. 2.00 Typ. 3.00 Min. 2.00 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 20A. Amplifier Slew Rate (-) vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 20B. Amplifier Slew Rate (-) vs. Voltage 9 5.00 5.00 4.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2130D 3.00 Min. 2.00 1.00 3.00 Min. 2.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 5.00 5.00 4.00 4.00 3.00 2.00 20 2.00 Max. 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 22B. Logic “1” Input Threshold vs. Voltage 750 ITRIP Input Positive Going Threshold (mV) 750 600 14 VCC Supply Voltage (V) Figure 22A. Logic “1” Input Threshold vs. Temperature ITRIP Input Positive Going Threshold (mV) 18 3.00 1.00 Max. 0.00 Max. Typ. 450 Min. 300 150 600 Max. Typ. 450 Min. 300 150 0 0 -50 -25 0 25 50 75 100 125 Figure 23A. ITRIP Input Positive Going Threshold Temperature 10 12 14 16 18 20 VCC Supply Voltage (V) Temperature (°C) 10 16 Figure 20B. Logic “0” Input Threshold vs. Voltage Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Figure 21A. Logic “0” Input Threshold vs. Temperature 1.00 14 VCC Supply Voltage (V) Temperature (°C) vs. Figure 23B. ITRIP Input Positive Going Threshold Voltage vs. www.irf.com 1.00 1.00 0.80 0.80 High Level Output Voltage (V) High Level Output Voltage (V) IR2130D 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 16 18 20 Figure 24B. High Level Output vs. Voltage 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Figure 24A. High Level Output vs. Temperature 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (°C) Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) 14 VBIAS Supply Voltage (V) Temperature (°C) 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 26A. Offset Supply Leakage Current vs. Temperature www.irf.com 125 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 26B. Offset Supply Leakage Current vs. Voltage 11 IR2130D 80 80 VBS Supply Current (µA) 100 VBS Supply Current (µA) 100 60 40 60 40 Max. 20 20 Max. Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 Figure 27A. VBS Supply Current vs. Temperature 8.0 8.0 VCC Supply Current (mA) 10.0 VCC Supply Current (mA) 16 18 20 Figure 27B. VBS Supply Current vs. Voltage 10.0 6.0 4.0 Max. 2.0 14 VBS Floating Supply Voltage (V) Temperature (°C) Typ. 6.0 4.0 Max. 2.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 1.25 1.25 1.00 1.00 0.75 Max. Typ. 0.25 0.00 18 20 0.75 0.50 Max. Typ. 0.25 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 29A. Logic “1” Input Current vs. Temperature 12 16 Figure 28B. VCC Supply Current vs. Voltage Logic "1" Input Bias Current (mA) Logic "1" Input Bias Current (mA) Figure 28A. VCC Supply Current vs. Temperature 0.50 14 VCC Supply Voltage (V) Temperature (°C) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 29A. Logic “1” Input Current vs. Voltage www.irf.com 1.25 1.25 1.00 1.00 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA) IR2130D 0.75 0.50 Max. 0.25 0.75 0.50 Max. 0.25 Typ. Typ. 0.00 0.00 -50 -25 0 25 50 75 100 10 125 12 500 500 400 400 300 Max. 100 18 20 300 200 Max. 100 Typ. 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 31A. “High” ITRIP Current vs. Temperature Figure 31B. “High” ITRIP Current vs. Voltage 250 500 200 400 "Low" ITRIP Bias Current (µA) "Low" ITRIP Bias Current (nA) 16 Figure 30B. Logic “0” Input Current vs. Voltage "High" ITRIP Bias Current (µA) "High" ITRIP Bias Current (µA) Figure 30A. Logic “0” Input Current vs. Temperature 200 14 VCC Supply Voltage (V) Temperature (°C) 150 100 Max. 50 300 200 100 0 Max. 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 32A. “Low” ITRIP Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 32B. “Low” ITRIP Current vs. Voltage 13 IR2130D 10.0 10.0 9.0 VBS Undervoltage Lockout - (V) 11.0 VBS Undervoltage Lockout + (V) 11.0 Max. Typ. 8.0 Min. 7.0 9.0 Max. 8.0 Typ. Min. 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Figure 33. VBS Undervoltage (+) vs. Temperature 100 125 10.0 Max. Typ. Min. 8.0 7.0 Max. 9.0 Typ. 8.0 Min. 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 25 50 75 100 125 Temperature (°C) Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature 250 250 200 200 FAULT- Low On Resistance (ohms) FAULT- Low On Resistance (ohms) 75 11.0 VCC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 9.0 50 Figure 34. VBS Undervoltage (-) vs. Temperature 11.0 10.0 25 Temperature (°C) Temperature (°C) 150 100 Max. 50 150 100 Max. Typ. 50 Typ. 0 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 37A. FAULT Low On Resistance vs. Temperature 14 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 37B. FAULT Low On Resistance vs. Voltage www.irf.com 500 500 400 400 Output Source Current (mA) Output Source Current (mA) IR2130D Typ. 300 Min. 200 300 200 Typ. 100 100 Min. 0 0 -50 -25 0 25 50 75 100 10 125 12 Figure 38A. Output Source Current vs. Temperature 18 20 750 625 Output Sink Current (mA) Typ. 600 Output Sink Current (mA) 16 Figure 38B. Output Source Current vs. Voltage 750 Min. 450 300 150 500 375 Typ. 250 Min. 125 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltage 50 50 40 40 Amplifier Input Offset Voltage (mV) Amplifier Input Offset Voltage (mV) 14 VBIAS Supply Voltage (V) Temperature (°C) Max. 30 20 10 0 30 Max. 20 10 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 40A. Amplifier Input Offset vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 40B. Amplifier Input Offset vs. Voltage 15 IR2130D 8.0 8.0 CA- Input Bias Current (nA) 10.0 CA- Input Bias Current (nA) 10.0 6.0 Max. 4.0 2.0 6.0 Max. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Figure 41A. CA- Input Current vs. Temperature 16 18 20 Figure 41B. CA- Input Current vs. Voltage 100 100 80 Typ. 60 Min. 80 Amplifier CMRR (dB) Amplifier CMRR (dB) 14 VCC Supply Voltage (V) Temperature (°C) 40 20 60 Typ. Min. 40 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltage 100 100 80 80 Typ. 60 Min. Amplifier PSRR (dB) Amplifier PSRR (dB) Typ. 60 Min. 40 20 20 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 43A. Amplifier PSRR vs. Temperature 16 40 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 43B. Amplifier PSRR vs. Voltage www.irf.com 6.00 6.00 5.70 5.70 5.40 Amplifier High Level Output Voltage (V) Amplifier High Level Output Voltage (V) IR2130D Max. Typ. 5.10 Min. 4.80 4.50 5.40 Max. Typ. 5.10 Min. 4.80 4.50 -50 -25 0 25 50 75 100 125 10 12 Figure 44A. Amplifier High Level Output vs. Temperature 18 20 100 Amplifier Low Level Output Voltage (mV) Amplifier Low Level Output Voltage (mV) 16 Figure 44B. Amplifier High Level Output vs. Voltage 100 80 60 40 Max. 20 0 80 60 40 Max. 20 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VCC Supply Voltage (V) Temperature (°C) Figure 45A. Amplifier Low Level Output vs. Temperature Figure 45B. Amplifier Low Level Output vs. Voltage 10.0 10.0 8.0 8.0 Amplifier Output Source Current (mA) Amplifier Output Source Current (mA) 14 VCC Supply Voltage (V) Temperature (°C) 6.0 Typ. 4.0 Min. 2.0 6.0 4.0 Typ. 2.0 Min. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 46A. Amplifier Output Source Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 46B. Amplifier Output Source Current vs. Voltage 17 5.00 5.00 4.00 4.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) IR2130D 3.00 Typ. 2.00 Min. 1.00 0.00 3.00 2.00 Typ. Min. 1.00 0.00 -50 -25 0 25 50 75 100 125 10 12 16 18 20 Figure 47B. Amplifier Output Sink Current vs. Voltage 15.0 15.0 12.0 12.0 Output High Short Circuit Current (mA) Output High Short Circuit Current (mA) Figure 47A. Amplifier Output Sink Current vs. Temperature 9.0 Max. 6.0 14 VCC Supply Voltage (V) Temperature (°C) Typ. 3.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 16 18 20 Figure 48B. Amplifier Output High Short Circuit Current vs. Voltage 15.0 15.0 12.0 12.0 Output Low Short Circuit Current (mA) Output Low Short Circuit Current (mA) Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature 9.0 6.0 14 VCC Supply Voltage (V) Temperature (°C) Max. Typ. 3.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature 18 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage www.irf.com IR2130D 50 50 480V 480V 45 40 320V 35 160V 30 0V Junction Temperature (°C) Junction Temperature (°C) 45 25 40 320V 35 160V 30 0V 25 20 1E+2 1E+3 1E+4 20 1E+2 1E+5 1E+3 Frequency (Hz) 1E+4 1E+5 Frequency (Hz) Figure 50. IR2130 TJ vs. Frequency (IRF820) RGATE = 33W, VCC = 15V Figure 51. IR2130 T J vs. Frequency (IRF830) RGATE = 20W, VCC = 15V 100 140 480V 120 320V 60 480V 320V 40 Junction Temperature (°C) Junction Temperature (°C) 80 100 80 160V 60 0V 160V 40 0V 20 1E+2 1E+3 1E+4 20 1E+2 1E+5 1E+3 Frequency (Hz) 1E+4 1E+5 Frequency (Hz) Figure 52. IR2130 TJ vs. Frequency (IRF840) RGATE = 15W, VCC = 15V Figure 53. IR2130 T J vs. Frequency (IRF450) RGATE = 10W, VCC = 15V 0.0 VS Offset Supply Voltage (V) -3.0 Typ. -6.0 -9.0 -12.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 54. Maximum VS Negative Offset vs. VBS Supply Voltage www.irf.com 19 IR2130D Functional Block Diagram Lead Definitions Lead Symbol Description HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase FAULT VCC Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier VSS Logic ground VB1,2,3 High side floating supplies HO1,2,3 High side gate drive outputs VS1,2,3 High side floating supply returns LO1,2,3 Low side gate drive outputs VS0 Low side return and positive input of current amplifier 20 www.irf.com IR2130D Case Outline and dimensions - MO038AB LEAD ASSIGNMENT IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 3/00 www.irf.com 21