IRF IR2130D

PD-60022B
IR2130D
3-PHASE DRIVER
Features
n Hermetic
n Floatingchanneldesignedforbootstrap
n
n
n
n
n
n
operation
Fully operational to +400V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Independent half-bridge drivers
Matched propagation delay for both channels
Outputs in phase with inputs
Description
The IR2130D is a high voltage, high speed power MOSFET
and IGBT driver with three independent high and low side
referenced output channels. Proprietary HVIC technology
enables ruggedized monolithic construction. Logic inputs
are compatible with 5V CMOS or LSTTL outputs. A groundreferenced operational amplifier provides analog feedback
of bridge current via an external current sense resistor. A
current trip function which terminates all six outputs is also
derived from this resistor.
Product Summary
VOFFSET
400V max.
IO+/-
200 mA / 420 mA
VOUT
10 - 20V
ton/off (typ.)
675 & 425 ns
Deadtime (typ.)
0.9 µs
An open drain FAULT signal indicates if an overcurrent or undervoltage shutdown has occurred.
The output driverhgre a high pulse current
buffer stage designed for minimum driver cross-con
duction. Propagation delays are matched to simplify
use at high frequencies. The floating channels can
be used to drive N-channel power MOSFETs or
IGBTs in the high side configuration which operate
up to 400 volts.
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to Vso. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions.
Symbol
VB1,2,3
VS1,2,3
VHO1,2,3
VCC
VSO
VLO1,2,3
VIN
VFLT
VCAO
VCAdVS/dt
PD
RthJA
Tj
TS
TL
Parameter
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Output Voltage
Low Side Fixed Supply Voltage
Low Side Driver Return
Low Side Output Voltage
Logic Input Voltage (HIN, LIN & SD)
Fault Output Voltage
Operational Amplifier Output Voltage
Operational amplifier Inverting Input Voltage
Allowable Offset Supply Voltage Transient (Fig. 16)
Package Power Dissipation @ TA< = 25°C (Fig. 19)
Thermal Resistance, Junction to Ambient
Junction Temperature
Storage Temperatue
Lead Temperature (Soldering, 10 seconds)
Weight
www.irf.com
Min.
Max.
-0.3
VS1,2,3 + 20
VSO - 5
VSO + 400
VS1,2,3 - 0.3 VS1,2,3 + 0.3
-0.3
20
-5
V CC + 0.3
VSO - 0.3
VCC + 0.3
-0.3
VCC + 0.3
-0.3
VCC + 0.3
-0.3
VCC + 0.3
-0.3
VCC + 0.3
—
50
—
1.5
—
70
-55
125
-55
150
—
300
6.1 (typical)
Units
V
V/nS
W
°C/W
°C
g
1
3/1/00
IR2130D
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used
within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The
VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB1,2,3
VS1,2,3
VHO1,2,3
VCC
VSS
VLO1,2,3
VIN
VFLT
VCAO
VCA-
Parameter
High Side Floating Supply Voltage
High Side Floating Supply Offset Voltage
High Side Output Voltage
Low Side Fixed Supply Voltage
Logic Ground
Low Side Output Voltage
Logic Input Voltage (HIN, LIN & SD)
Fault Output Voltage
Operational Amplifier Output Voltage
Operational Amplifier Inverting Input Voltage
Min.
Max.
Units
VS1,2,3 + 10
V SO - 5
VS1,2,3
10
-5
0
V SS
VSS
VSS
VSS
VS1,2,3 + 20
VSO + 400
VB1,2,3
20
5
VCC
VSS + 5
VCC
5
5
V
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF unless otherwise specified.
Tj = -55 to
125°C
Tj = 25°C
Symbol
ton
tr
toff
tf
DT
titrip
tflt
tfltclr
tflt,in
tbl
SR+
SR-
Parameter
Turn-On Propagation Delay
(all six channels)
Turn-On Rise Time (all six channels)
Turn-Off Propagation Delay
(all six channels)
Turn-Off Fall Time (all six channels)
Deadtime (LS Turn-off to HS Turn-on
& HS Turn-off to LS Turn-on)
ITRIP to Output Shutdown Prop. Delay
ITRIP to FAULT Indication Delay
LIN1, 2, 3 To FAULT Clear Time
Input Filter Time (all six inputs)
ITRIP Blanking Time
Amplifier Slew Rate (+)
Amplifier Slew Rate (-)
Min. Typ. Max. Min. Max. Units Test Conditions
500
675
850
—
850
—
300
80
425
125
550
—
—
175
600
—
0.4
35
0.9
55
1.3
—
0.25
85
1.5
µs
660 920
590 845
10
12.5
310
—
400 —
6.2
—
3.2
—
—
—
—
—
—
2.7
1.5
1100
1000
—
—
—
—
—
ns
ns
µs
ns
ns
V/µs
V/µs
400
335
5.5
—
—
4.4
2.4
ns
CL= 1000pF
VS1,2,3 = 0 to 400 V
V IN = 0 & 5 V
CL = 1000pF,
VIN = 0 & 5V
CL = 1000pF,
VIN, VITRIP = 0 & 5V
VIN = 0 & 5V
VITRIP = 1V
Typical Connection
4
2
www.irf.com
IR2130D
Static Electrical Characteristics
VBIAS (VCC , VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN parameters are
referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3. The VO and IO parameters are
referenced to VSO1, 2, 3.
Tj = 25°C
Symbol
ILK
Parameter
Min.
Typ.
Tj=55-125°C
Max. Min. Max.
Units
Offset Supply Leakage Currents
—
—
50
—
500
IQBS
Quiescent VBS Supply Current
—
15
30
—
45
IQCC
Quiescent VCC Supply Current
—
3.0
4.0
—
6.0
IIN+
Logic “1” Input Bias Current(OUT= HI)
—
450
650
—
1050
IIN-
Logic “0” Input Bias Current(OUT=LO)
—
225
400
—
—
IITRIP +
“High” ITRIP Bias Current
—
75
150
—
—
IITRIP-
“Low” ITRIP Bias Current
—
—
100
—
170
VIN,IH
Logic “0” Input Voltage( OUT = LO )
—
—
—
2.2
—
VIN,IL
Logic “1” Input Voltage ( OUT = HI )
—
—
—
—
0.8
400
490
580
350
580
mV
—
—
30
—
—
mV
VIT,TH+
VOS
ITRIP Input Positive Going Threshold
Amplifier Input Offset Voltage
µA
VIN = 0V or 5V
VIN = 0V or 5V
µA
VIN = 0V
VIN = 5V
ITRIP = 5V
nA
ITRIP =0V
V
—
55
75
—
150
Ω
—
8.3
0.5
9.0
4.0
10.6
—
8.0
4.0
10.7
nA
VCCUV+
CA- Input Bias Current
VCC Supply Undervoltage Positive
VCCUV-
Going Threshold
VCC Supply Undervoltage Negative
8.0
8.7
10.5
7.7
10.5
ICA-
VB = VS=400V
mA
FAULT- Low On Resistance
Ron,FLT
Test Conditions
VSO = CA- = 0.2V
CA- = 2.5V
V
Going Threshold
VBSUV+
VBS Supply Undervoltage Positive
Going Threshold
7.5
8.4
9.2
—
—
VBSUV-
VBS Supply Undervoltage Negative
Going Threshold
7.1
8.0
8.8
—
—
Output High Short Circuit Pulsed
200
250
—
—
—
Output Low Short Circuit Pulsed
Current
420
500
—
—
—
VOH,Amp
Amplifier High Level Output Voltage
5.0
5.2
5.4
4.9
5.6
V
CA- = 0V, VSO =1V
VOL,Amp
Amplifier Low Level Output Voltage
—
2.5
20
—
20
mV
CA- = 1V, VSO =0V
ISRC,Amp
Amplifier Output Source Current
2.3
4.0
—
1.5
—
ISNK,Amp
Amplifier Output Sink Current
1.0
2.1
—
0.5
—
CA- = 1V, VSO =0V,CAO=2V
Amplifier Common Mode Rejection
Ratio
Amplifier Power Supply Rejection
Ratio
60
80
—
—
—
CA- =VSO =0.1V & 5V
55
75
—
—
—
High Level Output Voltage
—
—
100
—
100
IO+
V
VOUT = VIN- = 0V
PW <= 10µS
Current
IO-
CMRR
PSRR
VOH
VOL
Low Level Output Voltage
www.irf.com
—
—
100
—
100
mA
mA
dB
VOUT =15, VIN- =5V
PW <= 10µS
CA- = 0V, VSO =1V, CAO=4V
CA- = VSO =0.2V
VCC = 10V & 20V
VIN- = 0V, IO = 0A
mV
VIN- = 5V, IO = 0A
3
IR2130D
Static Electrical Characteristics Continued
VBIAS (VCC, VBS1, 2, 3) = 15V, VSO1, 2, 3 = VSS unless otherwise specified. The VIN, VTH and IIN
parameters are referenced to VSS and are applicable to all six logic input leads: HIN1, 2, 3 & LIN1, 2, 3.
The VO and IO parameters are referenced to VSO1, 2, 3.
Tj = 25°C
Symbol
IO+,Amp
Parameter
Amplifier Output High Short Circuit
Tj = 55 to 125°C
Min.
Typ.
Max.
—
4.5
6.5
Min. Max.
—
8.0
CA- = 0V, VSO = 5V
—
3.2
5.2
—
7.0
CA- = 5V, VSO = 0V
Circuit
IO-,Amp
Amplifier Output High Short Circuit
Circuit
4
Units
Test Conditions
VCAO = 0V
VCAO = 5V
www.irf.com
IR2130D
4
HIN1,2,3
LIN1,2,3
ITRIP
FAULT
HO1,2,3
LO1,2,3
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
HIN1,2,3
LIN1,2,3
HIN1,2,3
50%
50%
50%
50%
LIN1,2,3
ton
tr
toff
tf
LO1,2,3
90%
50%
90%
50%
HO1,2,3
HO1,2,3
LO1,2,3
DT
10%
10%
DT
Figure 3. Deadtime Waveform Definitions
Figure 4. Input/Output Switching Time Waveform
Definitions
50%
LIN1,2,3
VCC
50%
ITRIP
FAULT
50%
VS0
+
CA-
-
CAO
VSS
50%
LO1,2,3
50%
tflt
tfltclr
VSS
titrip
Figure 5. Overcurrent Shutdown Switching Time Waveform
Definitions
www.irf.com
Figure 6. Diagnostic Feedback Operational Amplifier
Circuit
5
IR2130D
15V
15V
VCC
3V
CA0V
VS0
VS0
CA-
CAO
-
VSS
CAO
-
50 pF
VSS
+
∆T1
∆T2
3V
VCC
+
+
20k
0.2V
1k
90%
∆V
10%
0V
∆V
∆V
SR+ =
VOS =
SR- =
∆T2
∆ T1
Figure 7. Operational Amplifier Slew Rate
Measurement
VCAO
- 0.2V
21
Figure 8. Operational Amplifier Input Offset Voltage
Measurement
VCC
VS0
15V
VCC
CAVS0
-
VSS
CAO
+
VSS
Measure V CAO1 at VS0 = 0.1V
VCAO2 at VS0 = 5V
CMRR = -20*LOG
(VCAO1-0.1V) - (V CAO2-5V)
4.9V
20k
1k
Measure VCAO1 at VCC = 10V
VCAO2 at VCC = 20V
(dB)
PSRR = -20* LOG
Figure 9. Operational Amplifier Common Mode Rejection
Ratio Measurements
VCAO1 - VCAO2
(10V) (21)
Figure 10. Operational Amplifier Power Supply Rejection
Ratio Measurements
1.50
1.50
1.20
Turn-On Delay Time (µs)
1.20
Turn-On Delay Time (µs)
CAO
-
+
0.2V
Max.
0.90
Typ.
0.60
Min.
0.30
0.90
Max.
Typ.
0.60
Min.
0.30
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 11A. Turn-On Time vs. Temperature
6
+
CA-
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11B. Turn-On Time vs. Voltage
www.irf.com
1.00
1.00
0.80
0.80
0.60
0.40
Turn-Off Delay Time (µs)
Turn-Off Delay Time (µs)
IR2130D
Max.
Typ.
Min.
0.20
Max.
0.60
Typ.
0.40
Min.
0.20
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
250
250
200
200
150
Max.
Typ.
50
20
Max.
150
100
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 13A. Turn-On Rise Time vs. Temperature
Figure 13B. Turn-On Rise Time vs. Voltage
125
125
100
100
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
18
50
0
75
50
Max.
25
16
Figure 12B. Turn-Off Time vs. Voltage
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
Figure 12A. Turn-Off Time vs. Temperature
100
14
VBIAS Supply Voltage (V)
Temperature (°C)
Typ.
75
Max.
50
Typ.
25
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 14A. Turn-Off Fall Time vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14B. Turn-Off Fall Time vs. Voltage
7
IR2130D
1.50
ITRIP to Output Shutdown Delay Time (µs)
ITRIP to Output Shutdown Delay Time (µs)
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
-50
-25
0
25
50
75
100
125
10
12
Figure 15A. ITRIP to Output Shutdown Time vs. Temperature
ITRIP to FAULT Indication Delay Time (µs)
ITRIP to FAULT Indication Delay Time (µs)
18
20
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
1.20
0.90
0.60
Max.
Typ.
Min.
0.30
0.00
-50
-25
0
25
50
75
100
125
10
12
Figure 16A. ITRIP to FAULT Indication Time vs.
Temperature
16
18
20
Figure 16B. ITRIP to FAULT Indication Time vs. Voltage
25.0
20.0
20.0
LIN1,2,3 to FAULT Clear Time (µs)
25.0
15.0
Max.
10.0
14
VCC Supply Voltage (V)
Temperature (°C)
LIN1,2,3 to FAULT Clear Time (µs)
16
Figure 15B. ITRIP to Output Shutdown Time vs. Voltage
1.50
Typ.
Min.
5.0
0.0
15.0
Max.
10.0
Typ.
Min.
5.0
0.0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 17A. LIN1,2,3 to FAULT Clear Time vs.
Temperature
8
14
VBIAS Supply Voltage (V)
Temperature (°C)
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage
www.irf.com
7.50
7.50
6.00
6.00
4.50
3.00
1.50
Max.
Deadtime (µs)
Deadtime (µs)
IR2130D
Typ.
Min.
4.50
Max.
3.00
1.50
0.00
Typ.
Min.
0.00
-50
-25
0
25
50
75
100
125
10
12
Figure 18A. Deadtime vs. Temperature
18
20
10.0
8.0
Amplifier Slew Rate + (V/µs)
8.0
Amplifier Slew Rate + (V/µs)
16
Figure 18B. Deadtime vs. Voltage
10.0
Typ.
6.0
Min.
4.0
2.0
Typ.
6.0
Min.
4.0
2.0
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Temperature (°C)
Figure 19A. Amplifier Slew Rate (+) vs. Temperature
Figure 19B. Amplifier Slew Rate (+) vs. Voltage
5.00
5.00
4.00
4.00
Typ.
Amplifier Slew Rate - (V/µs)
Amplifier Slew Rate - (V/µs)
14
VBIAS Supply Voltage (V)
Temperature (°C)
3.00
Min.
2.00
Typ.
3.00
Min.
2.00
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 20A. Amplifier Slew Rate (-) vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 20B. Amplifier Slew Rate (-) vs. Voltage
9
5.00
5.00
4.00
4.00
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2130D
3.00
Min.
2.00
1.00
3.00
Min.
2.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
5.00
5.00
4.00
4.00
3.00
2.00
20
2.00
Max.
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 22B. Logic “1” Input Threshold vs. Voltage
750
ITRIP Input Positive Going Threshold (mV)
750
600
14
VCC Supply Voltage (V)
Figure 22A. Logic “1” Input Threshold vs. Temperature
ITRIP Input Positive Going Threshold (mV)
18
3.00
1.00
Max.
0.00
Max.
Typ.
450
Min.
300
150
600
Max.
Typ.
450
Min.
300
150
0
0
-50
-25
0
25
50
75
100
125
Figure 23A. ITRIP Input Positive Going Threshold
Temperature
10
12
14
16
18
20
VCC Supply Voltage (V)
Temperature (°C)
10
16
Figure 20B. Logic “0” Input Threshold vs. Voltage
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
Figure 21A. Logic “0” Input Threshold vs. Temperature
1.00
14
VCC Supply Voltage (V)
Temperature (°C)
vs.
Figure 23B. ITRIP Input Positive Going Threshold
Voltage
vs.
www.irf.com
1.00
1.00
0.80
0.80
High Level Output Voltage (V)
High Level Output Voltage (V)
IR2130D
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
16
18
20
Figure 24B. High Level Output vs. Voltage
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
Figure 24A. High Level Output vs. Temperature
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 25A. Low Level Output vs. Temperature
Figure 25B. Low Level Output vs. Voltage
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
14
VBIAS Supply Voltage (V)
Temperature (°C)
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 26A. Offset Supply Leakage Current
vs. Temperature
www.irf.com
125
0
100
200
300
400
500
600
VB Boost Voltage (V)
Figure 26B. Offset Supply Leakage Current vs. Voltage
11
IR2130D
80
80
VBS Supply Current (µA)
100
VBS Supply Current (µA)
100
60
40
60
40
Max.
20
20
Max.
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
10
12
Figure 27A. VBS Supply Current vs. Temperature
8.0
8.0
VCC Supply Current (mA)
10.0
VCC Supply Current (mA)
16
18
20
Figure 27B. VBS Supply Current vs. Voltage
10.0
6.0
4.0
Max.
2.0
14
VBS Floating Supply Voltage (V)
Temperature (°C)
Typ.
6.0
4.0
Max.
2.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
1.25
1.25
1.00
1.00
0.75
Max.
Typ.
0.25
0.00
18
20
0.75
0.50
Max.
Typ.
0.25
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 29A. Logic “1” Input Current vs. Temperature
12
16
Figure 28B. VCC Supply Current vs. Voltage
Logic "1" Input Bias Current (mA)
Logic "1" Input Bias Current (mA)
Figure 28A. VCC Supply Current vs. Temperature
0.50
14
VCC Supply Voltage (V)
Temperature (°C)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 29A. Logic “1” Input Current vs. Voltage
www.irf.com
1.25
1.25
1.00
1.00
Logic "0" Input Bias Current (mA)
Logic "0" Input Bias Current (mA)
IR2130D
0.75
0.50
Max.
0.25
0.75
0.50
Max.
0.25
Typ.
Typ.
0.00
0.00
-50
-25
0
25
50
75
100
10
125
12
500
500
400
400
300
Max.
100
18
20
300
200
Max.
100
Typ.
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 31A. “High” ITRIP Current vs. Temperature
Figure 31B. “High” ITRIP Current vs. Voltage
250
500
200
400
"Low" ITRIP Bias Current (µA)
"Low" ITRIP Bias Current (nA)
16
Figure 30B. Logic “0” Input Current vs. Voltage
"High" ITRIP Bias Current (µA)
"High" ITRIP Bias Current (µA)
Figure 30A. Logic “0” Input Current vs. Temperature
200
14
VCC Supply Voltage (V)
Temperature (°C)
150
100
Max.
50
300
200
100
0
Max.
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 32A. “Low” ITRIP Current vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 32B. “Low” ITRIP Current vs. Voltage
13
IR2130D
10.0
10.0
9.0
VBS Undervoltage Lockout - (V)
11.0
VBS Undervoltage Lockout + (V)
11.0
Max.
Typ.
8.0
Min.
7.0
9.0
Max.
8.0
Typ.
Min.
7.0
6.0
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Figure 33. VBS Undervoltage (+) vs. Temperature
100
125
10.0
Max.
Typ.
Min.
8.0
7.0
Max.
9.0
Typ.
8.0
Min.
7.0
6.0
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
25
50
75
100
125
Temperature (°C)
Figure 35. VCC Undervoltage (+) vs. Temperature
Figure 36. VCC Undervoltage (-) vs. Temperature
250
250
200
200
FAULT- Low On Resistance (ohms)
FAULT- Low On Resistance (ohms)
75
11.0
VCC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
9.0
50
Figure 34. VBS Undervoltage (-) vs. Temperature
11.0
10.0
25
Temperature (°C)
Temperature (°C)
150
100
Max.
50
150
100
Max.
Typ.
50
Typ.
0
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 37A. FAULT Low On Resistance vs. Temperature
14
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 37B. FAULT Low On Resistance vs. Voltage
www.irf.com
500
500
400
400
Output Source Current (mA)
Output Source Current (mA)
IR2130D
Typ.
300
Min.
200
300
200
Typ.
100
100
Min.
0
0
-50
-25
0
25
50
75
100
10
125
12
Figure 38A. Output Source Current vs. Temperature
18
20
750
625
Output Sink Current (mA)
Typ.
600
Output Sink Current (mA)
16
Figure 38B. Output Source Current vs. Voltage
750
Min.
450
300
150
500
375
Typ.
250
Min.
125
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 39A. Output Sink Current vs. Temperature
Figure 39B. Output Sink Current vs. Voltage
50
50
40
40
Amplifier Input Offset Voltage (mV)
Amplifier Input Offset Voltage (mV)
14
VBIAS Supply Voltage (V)
Temperature (°C)
Max.
30
20
10
0
30
Max.
20
10
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 40A. Amplifier Input Offset vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 40B. Amplifier Input Offset vs. Voltage
15
IR2130D
8.0
8.0
CA- Input Bias Current (nA)
10.0
CA- Input Bias Current (nA)
10.0
6.0
Max.
4.0
2.0
6.0
Max.
4.0
2.0
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Figure 41A. CA- Input Current vs. Temperature
16
18
20
Figure 41B. CA- Input Current vs. Voltage
100
100
80
Typ.
60
Min.
80
Amplifier CMRR (dB)
Amplifier CMRR (dB)
14
VCC Supply Voltage (V)
Temperature (°C)
40
20
60
Typ.
Min.
40
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 42A. Amplifier CMRR vs. Temperature
Figure 42B. Amplifier CMRR vs. Voltage
100
100
80
80
Typ.
60
Min.
Amplifier PSRR (dB)
Amplifier PSRR (dB)
Typ.
60
Min.
40
20
20
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 43A. Amplifier PSRR vs. Temperature
16
40
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 43B. Amplifier PSRR vs. Voltage
www.irf.com
6.00
6.00
5.70
5.70
5.40
Amplifier High Level Output Voltage (V)
Amplifier High Level Output Voltage (V)
IR2130D
Max.
Typ.
5.10
Min.
4.80
4.50
5.40
Max.
Typ.
5.10
Min.
4.80
4.50
-50
-25
0
25
50
75
100
125
10
12
Figure 44A. Amplifier High Level Output vs. Temperature
18
20
100
Amplifier Low Level Output Voltage (mV)
Amplifier Low Level Output Voltage (mV)
16
Figure 44B. Amplifier High Level Output vs. Voltage
100
80
60
40
Max.
20
0
80
60
40
Max.
20
0
-50
-25
0
25
50
75
100
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Temperature (°C)
Figure 45A. Amplifier Low Level Output vs. Temperature
Figure 45B. Amplifier Low Level Output vs. Voltage
10.0
10.0
8.0
8.0
Amplifier Output Source Current (mA)
Amplifier Output Source Current (mA)
14
VCC Supply Voltage (V)
Temperature (°C)
6.0
Typ.
4.0
Min.
2.0
6.0
4.0
Typ.
2.0
Min.
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 46A. Amplifier Output Source Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 46B. Amplifier Output Source Current vs. Voltage
17
5.00
5.00
4.00
4.00
Amplifier Output Sink Current (mA)
Amplifier Output Sink Current (mA)
IR2130D
3.00
Typ.
2.00
Min.
1.00
0.00
3.00
2.00
Typ.
Min.
1.00
0.00
-50
-25
0
25
50
75
100
125
10
12
16
18
20
Figure 47B. Amplifier Output Sink Current vs. Voltage
15.0
15.0
12.0
12.0
Output High Short Circuit Current (mA)
Output High Short Circuit Current (mA)
Figure 47A. Amplifier Output Sink Current vs. Temperature
9.0
Max.
6.0
14
VCC Supply Voltage (V)
Temperature (°C)
Typ.
3.0
9.0
6.0
Max.
3.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
16
18
20
Figure 48B. Amplifier Output High Short Circuit Current
vs. Voltage
15.0
15.0
12.0
12.0
Output Low Short Circuit Current (mA)
Output Low Short Circuit Current (mA)
Figure 48A. Amplifier Output High Short Circuit Current vs.
Temperature
9.0
6.0
14
VCC Supply Voltage (V)
Temperature (°C)
Max.
Typ.
3.0
9.0
6.0
Max.
3.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 49A. Amplifier Output Low Short Circuit Current vs.
Temperature
18
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 49B. Amplifier Output Low Short Circuit Current vs.
Voltage
www.irf.com
IR2130D
50
50
480V
480V
45
40
320V
35
160V
30
0V
Junction Temperature (°C)
Junction Temperature (°C)
45
25
40
320V
35
160V
30
0V
25
20
1E+2
1E+3
1E+4
20
1E+2
1E+5
1E+3
Frequency (Hz)
1E+4
1E+5
Frequency (Hz)
Figure 50. IR2130 TJ vs. Frequency (IRF820)
RGATE = 33W, VCC = 15V
Figure 51. IR2130 T J vs. Frequency (IRF830)
RGATE = 20W, VCC = 15V
100
140
480V
120
320V
60
480V
320V
40
Junction Temperature (°C)
Junction Temperature (°C)
80
100
80
160V
60
0V
160V
40
0V
20
1E+2
1E+3
1E+4
20
1E+2
1E+5
1E+3
Frequency (Hz)
1E+4
1E+5
Frequency (Hz)
Figure 52. IR2130 TJ vs. Frequency (IRF840)
RGATE = 15W, VCC = 15V
Figure 53. IR2130 T J vs. Frequency (IRF450)
RGATE = 10W, VCC = 15V
0.0
VS Offset Supply Voltage (V)
-3.0
Typ.
-6.0
-9.0
-12.0
-15.0
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 54. Maximum VS Negative Offset vs. VBS Supply
Voltage
www.irf.com
19
IR2130D
Functional Block Diagram
Lead Definitions
Lead
Symbol Description
HIN1,2,3
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
LIN1,2,3
Logic inputs for low side gate driver output (LO1,2,3), out of phase
FAULT
VCC
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic
Low side and logic fixed supply
ITRIP
Input for over-current shutdown
CAO
Output of current amplifier
CA-
Negative input of current amplifier
VSS
Logic ground
VB1,2,3
High side floating supplies
HO1,2,3
High side gate drive outputs
VS1,2,3
High side floating supply returns
LO1,2,3
Low side gate drive outputs
VS0
Low side return and positive input of current amplifier
20
www.irf.com
IR2130D
Case Outline and dimensions - MO038AB
LEAD ASSIGNMENT
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 3/00
www.irf.com
21