IRF IRF2907ZS

PD - 97031C
IRF2907ZS-7PPbF
Features
l
l
l
l
l
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
D
RDS(on) = 3.8mى
G
Description
Specifically designed for high current, high reliability
applications, this HEXFET® Power MOSFET utilizes the latest processing techniques and advanced
packaging technology to achieve extremely low onresistance and world -class current ratings. Additional features of this design are a 175°C junction
operating temperature, fast switching speed and
improved repetitive avalanche rating . These features combine to make this design an extremely
efficient and reliable device for use in Server &
Telecom OR'ing, Automotive and low voltage Motor
Drive Applications.
VDSS = 75V
ID = 160A
S
S (Pin 2, 3, 5, 6, 7)
G (Pin 1)
Absolute Maximum Ratings
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
180
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (See Fig. 9)
120
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Package Limited)
160
IDM
Pulsed Drain Current
700
PD @TC = 25°C
Maximum Power Dissipation
300
W
Linear Derating Factor
2.0
± 20
W/°C
V
160
mJ
VGS
EAS
c
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
EAS (tested)
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
h
d
g
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
RθCS
°C
-55 to + 175
Mounting torque, 6-32 or M3 screw
Junction-to-Case j
Parameter
Typ.
Max.
Units
–––
0.50
°C/W
–––
Case-to-Sink, Flat, Greased Surface
0.50
RθJA
Junction-to-Ambient
–––
62
RθJA
Junction-to-Ambient (PCB Mount, steady state)
–––
40
j
A
mJ
Soldering Temperature, for 10 seconds
RθJC
410
See Fig.12a,12b,15,16
ij
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
12/07/06
IRF2907ZS-7PPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆ΒVDSS/∆TJ
RDS(on) SMD
VGS(th)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
gfs
IDSS
Forward Transconductance
Drain-to-Source Leakage Current
IGSS
Min. Typ. Max. Units
–––
0.066
–––
–––
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
75
–––
–––
2.0
94
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
3.0
–––
–––
–––
–––
–––
–––
170
55
66
21
90
92
44
4.5
3.8
4.0
–––
20
250
200
-200
260
–––
–––
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
7580
970
540
3750
650
1110
–––
–––
–––
–––
–––
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 110A
V VDS = VGS, ID = 250µA
S VDS = 25V, ID = 110A
µA VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
nC ID = 110A
VDS = 60V
VGS = 10V
ns VDD = 38V
ID = 110A
RG = 2.6Ω
VGS = 10V
D
nH Between lead,
e
e
d
6mm (0.25in.)
from package
pF
G
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 60V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
160
ISM
(Body Diode)
Pulsed Source Current
–––
–––
700
showing the
integral reverse
VSD
trr
Qrr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
1.3
53
60
S
p-n junction diode.
TJ = 25°C, IS = 110A, VGS = 0V
TJ = 25°C, IF = 110A, VDD = 38V
di/dt = 100A/µs
c
A
–––
–––
–––
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C,
L=0.026mH, R G = 25Ω, IAS = 110A, VGS =10V.
Part not recommended for use above this value.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
„ Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80%
VDSS.
2
MOSFET symbol
–––
35
40
V
ns
nC
D
G
e
e
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
† This value determined from sample failure population. 100%
tested to this value in production.
‡ This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
ˆ Rθ is measured at TJ of approximately 90°C.
‰ Solder mounted on IMS substrate.
www.irf.com
IRF2907ZS-7PPbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
4.5V
10
4.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
1
0.1
1
10
100
0.1
1000
Fig 1. Typical Output Characteristics
10
100
1000
Fig 2. Typical Output Characteristics
200
Gfs, Forward Transconductance (S)
1000
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 25°C
10
T J = 175°C
1
VDS = 25V
≤60µs PULSE WIDTH
2
3
4
5
6
7
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
150
T J = 175°C
100
50
V DS = 10V
380µs PULSE WIDTH
0
0.1
1
T J = 25°C
8
0
25
50
75
100
125
150
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRF2907ZS-7PPbF
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 110A
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
100
10.0
VDS= 60V
VDS= 38V
VDS= 15V
8.0
6.0
4.0
2.0
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
50
100
150
200
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
10000
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
T J = 175°C
T J = 25°C
10
1
1000
1msec 100µsec
100
LIMITED BY PACKAGE
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
DC
0.1
0.1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10msec
1.4
0.1
1.0
10.0
100.0
VDS, Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF2907ZS-7PPbF
200
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
Limited By Package
ID, Drain Current (A)
160
120
80
40
ID = 180A
VGS = 10V
2.5
2.0
1.5
1.0
0.5
0
25
50
75
100
125
150
-60 -40 -20 0 20 40 60 80 100120140160180
175
T J , Junction Temperature (°C)
T C , Case Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
Ci= τi/Ri
Ci i/Ri
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.1072
0.000096
0.2787
0.1143
0.002614
0.013847
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF2907ZS-7PPbF
15V
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
D.U.T
RG
700
DRIVER
L
VDS
ID
24A
34A
BOTTOM 110A
600
TOP
500
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.5
4.0
3.5
3.0
2.5
2.0
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.5
VGS
1.0
3mA
-75 -50 -25 0
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
25 50 75 100 125 150 175 200
T J , Temperature ( °C )
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRF2907ZS-7PPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
100
0.01
0.05
10
0.10
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 110A
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF2907ZS-7PPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
P.W.
+
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
V DD
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
*
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF2907ZS-7PPbF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
D2Pak - 7 Pin Part Marking Information
14
www.irf.com
9
IRF2907ZS-7PPbF
D2Pak - 7 Pin Tape and Reel
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/06
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/