PD - 96277B IRF9204PbF Features l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l P-Channel l Fully Avalanche Rated l Lead-Free HEXFET® Power MOSFET D VDSS = -40V RDS(on) = 16mΩ G ID = -74A Description S This HEXFET® Power MOSFET utilizes advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. D G The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. D S TO-220AB IRF9204PbF G D S G a te D r a in S o u rce Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) -74 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) -53 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) -56 c Units A -300 IDM Pulsed Drain Current PD @TC = 25°C Power Dissipation 143 W Linear Derating Factor 0.95 W/°C ± 20 V 270 mJ VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range c d g 502 See Fig.17a, 17b, 14, 15 A mJ -55 to + 175 °C Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw h i 300 (1.6mm from case ) y y 10 lbf in (1.1N m) Thermal Resistance Parameter j RθJC Junction-to-Case RθCS Case-to-Sink, Flat, Greased Surface RθJA Junction-to-Ambient www.irf.com i i Typ. Max. ––– 1.05 0.50 ––– ––– 62 Units °C/W 1 05/23/11 IRF9204PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs IDSS IGSS Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance LS Internal Source Inductance Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units -40 ––– ––– ––– -1.0 29 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.03 ––– ––– -2.0 ––– ––– ––– ––– ––– 149 27 31 27 383 139 153 ––– ––– 16 23 -3.0 ––– -25 -250 -100 100 224 ––– ––– ––– ––– ––– ––– ––– 4.5 ––– ––– 7.5 ––– ––– ––– ––– ––– ––– ––– 7676 654 539 1747 598 797 ––– ––– ––– ––– ––– ––– Conditions V VGS = 0V, ID = -250μA V/°C Reference to 25°C, ID = -1mA VGS = -10V, ID = -37A mΩ VGS = -4.5V, ID = -30A V VDS = VGS, ID = -100μA S VDS = -10V, ID = -37A VDS = -40V, VGS = 0V μA VDS = -40V, VGS = 0V, TJ = 125°C VGS = -20V nA VGS = 20V ID = -37A nC VDS = -32V VGS = -10V VDD = -20V ID = -37A ns RG = 7.5 Ω VGS = -10V e e e e nH pF Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = -25V D G S ƒ = 1.0KHz VGS = 0V, VDS = 1.0V, ƒ = 1.0KHz VGS = 0V, VDS = -32V, ƒ = 1.0KHz VGS = 0V, VDS = 0V to -32V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time c Notes: Min. Typ. Max. Units ––– ––– -74 ––– ––– -300 A Conditions MOSFET symbol D showing the G integral reverse S p-n junction diode. TJ = 25°C, IS = -37A, VGS = 0V TJ = 25°C, IF = -37A, VDD = -20V e ––– ––– -1.3 V ––– 51 77 ns ––– 377 566 nC di/dt = 100A/μs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) e Repetitive rating; pulse width limited by Limited by TJmax , see Fig.17a, 17b, 14, 15 for typical repetitive Limited by TJmax, starting TJ = 25°C, L = 0.399mH This value determined from sample failure population. 100% max. junction temperature. (See fig. 11). RG = 25Ω, IAS = -37A, VGS =-10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 avalanche performance. tested to this value in production. This is only applied to TO-220AB pakcage. Rθ is measured at TJ approximately 90°C www.irf.com IRF9204PbF 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1000 ≤60μs PULSE WIDTH Tj = 25°C VGS -15V -10V -4.5V -4.0V -3.5V -3.0V -2.8V -2.5V 100 10 1 BOTTOM 10 -2.5V -2.5V ≤60μs PULSE WIDTH Tj = 175°C 0.1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 60 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 100 T J = 175°C 1 T J = 25°C VDS = -25V ≤60μs PULSE WIDTH 50 TJ = 25°C 40 T J = 175°C 30 20 V DS = -5V 10 380μs PULSE WIDTH 0 0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0 20 40 60 80 100 ID,Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current 1.6 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ISD, Reverse Drain Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 VGS -15V -10V -4.5V -4.0V -3.5V -3.0V -2.8V -2.5V T J = 175°C 100 10 T J = 25°C 1 VGS = 0V 1.4 ID = -37A VGS = -10V 1.2 1.0 0.8 0.6 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VSD, Source-to-Drain Voltage (V) Fig 5. Typical Source-Drain Diode Forward Voltage www.irf.com -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) Fig 6. Normalized On-Resistance Vs. Temperature 3 IRF9204PbF 100000 14.0 VGS = 0V, f = 1 KHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd ID= -37A 10000 Ciss Coss 1000 12.0 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) C oss = C ds + C gd Crss VDS= -32V VDS= -20V 10.0 8.0 6.0 4.0 2.0 0.0 100 1 10 0 100 20 40 60 80 100 120 140 160 180 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance Vs. Drain-to-Source Voltage Fig 8. Typical Gate Charge Vs. Gate-to-Source Voltage 80 1000 100μsec 100 1msec 10msec 10 LIMITED BY PACKAGE DC 1 Tc = 25°C Tj = 175°C Single Pulse Limited By Package 70 ID, Drain Current (A) ID, Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 60 50 40 30 20 10 0 0.1 0 1 10 25 100 50 75 100 125 150 175 T C , Case Temperature (°C) VDS, Drain-to-Source Voltage (V) Fig 9. Maximum Safe Operating Area Fig 10. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 0.0001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRF9204PbF 3.0 ID -9.66A -16.7A BOTTOM -37A VGS(th) , Gate threshold Voltage (V) EAS , Single Pulse Avalanche Energy (mJ) 1200 TOP 1000 800 600 400 200 2.5 2.0 ID = 1.0A ID = 1.0mA ID = 250uA ID = 150uA 1.5 ID = 100uA 1.0 0 25 50 75 100 125 150 -75 -50 -25 175 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. Drain Current Fig 13. Threshold Voltage Vs. Temperature 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = -37A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRF9204PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + VDD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 17a. Unclamped Inductive Test Circuit Current Regulator Same Type as D.U.T. Fig 17b. Unclamped Inductive Waveforms Id Vds Vgs 50KΩ .2μF 12V .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 18a. Gate Charge Test Circuit VDS V GS RG Qgodr Fig 18b. Gate Charge Waveform RD VDS 90% D.U.T. + - VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 19a. Switching Time Test Circuit 6 Qgd 10% VGS td(on) tr t d(off) tf Fig 19b. Switching Time Waveforms www.irf.com IRF9204PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS SEMBLY LINE "C" Note: "P" in as s embly line position indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101N. Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/2011 www.irf.com 7