EML12 / UML12N Transistors General purpose transistor (isolated transistor and diode) EML12 / UML12N 2SC4617and RB521S-30 are housed independently in a EMT5 or UMT5 package. zExternal dimensions (Unit : mm) zApplications DC / DC converter Motor driver EMT5 1.6 0.5 1.0 0.5 0.5 zFeatures 1) Tr : Low VCE(sat) Di : Low VF 2) Small package (5) (4) 1.6 1.2 1pin mark (1) (2) (3) 0.13 0.22 Each lead has same dimensions zStructure NPN Silicon epitaxial planar transistor Schottky barrier diode ROHM : EMT5 The following characteristics apply to both Di1 and Tr2. UMT5 Abbreviated symbol : L12 2.0 1.3 0.9 0.65 0.65 zEquivalent circuit (EML12 / UML12N) (4) (1) (2) (3) 0.2 Tr2 0.15 0.1Min. 1pin mark Di1 2.1 (5) (4) 1.25 (5) 0.7 Each lead has same dimensions (1) (2) Abbreviated symbol : L12 (3) ROHM : UMT5 EIAJ : SC-88A zPackaging specifications Type Package Marking Code Basic ordering unit (pieces) EML12 EMT5 L12 T2R 8000 UML12N UMT5 L12 TR 3000 Rev.A 1/4 EML12 / UML12N Transistors zAbsolute maximum ratings (Ta=25°C) Di1 Parameter Symbol IO Average revtified forward current Forward current surge peak (60Hz, 1∞) IFSM VR Reverse voltage (DC) Tj Junction temperature Limits 200 1 30 125 Unit mA A V °C Tr2 Symbol Limits Unit Collector-base voltage VCBO 60 V Collector-emitter voltage VCEO 50 V Emitter-base voltage VEBO 7 V Collector current IC 150 mA Power dissipation PD 120 mW Junction temperature Tj 150 °C Parameter ∗ ∗ Each terminal mount on a recommended. Di1 / DTr2 Parameter Symbol Limits Unit Pd 150 mW Tstg −55 to +125 °C Power dissipation Storage temperature ∗ ∗ Each terminal mount on a recommended. zElectrical characteristics (Ta=25°C) Di1 Parameter Forward voltage Reverse current Symbol VF IR Min. − − Typ. 0.40 4.0 Max. 0.50 30 Unit V µA Conditions IF=200mA VR=10V Tr2 Parameter Symbol Min. Typ. Max. Unit Conditions Collector-base breakdown voltage BVCBO 60 − − V IC=50µA Collector-emitter breakdown voltage BVCEO 50 − − V IC=1mA Emitter-base breakdown voltage BVEBO 7 − − V IE=50µA ICBO − − 0.1 µA VCB=60V Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Transition frequency Output capacitance IEBO − − 0.1 µA VEB=7V VCE (sat) − − 0.4 V IC/IB=50mA/5mA hFE 180 − 390 − VCE=6V, IC=1mA fT − 180 − MHz VCE=12V, IE=−2mA, f=100MHz Cob − PF VCB=12V, IE=0A, f=1MHz 2 3.5 Rev.A 2/4 EML12 / UML12N Transistors zElectrical characteristic curves Di1 Ta=125℃ 10 Ta=75℃ 1 Ta=-25℃ 0.1 Ta=25℃ 0.01 Ta=75℃ 1000 100 Ta=25℃ 10 10 Ta=-25℃ 1 f=1MHz CAPACITANCE BETWEEN TERMINALS:Ct(pF) 10000 Ta=125℃ 100 REVERSE CURRENT:IR(uA) FORWARD CURRENT:IF(mA) 100 100000 1000 0.1 0.01 0.001 0 100 200 300 400 FORWARD VOLTAGE:VF(mV) VF-IF CHARACTERISTICS 0 500 10 20 REVERSE VOLTAGE:VR(V) VR-IR CHARACTERISTICS 1 30 0 5 10 15 REVERSE VOLTAGE:VR(V) VR-Ct CHARACTERISTICS 20 Tr2 COLLECTOR CURRENT : IC (mA) 10 2 1 25˚C −55˚C 5 0.5 0.2 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 80 0.30mA 60 0.20mA 40 0.10mA 20 0.05mA 0.4 0.8 1.2 DC CURRENT GAIN : hFE Ta=100˚C 100 50 10 0.2 VCE=5V 25˚C 200 −55˚C 100 50 20 20 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) Fig.4 DC current gain vs. collector current ( I ) 27µA 8 10 0.2 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) Fig.5 DC current gain vs. collector current ( II ) 24µA 21µA 18µA 6 15µA 12µA 4 9µA 6µA 2 3µA IB=0A 4 8 12 16 20 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.3 Grounded emitter output characteristics ( II ) Fig.2 Grounded emitter output characteristics ( I ) 500 VCE=5V 3V 1V 2.0 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Ta=25˚C 200 1.6 30µA Ta=25˚C 0 0 IB=0A 0 Fig.1 Grounded emitter propagation characteristics DC CURRENT GAIN : hFE 0.15mA 0 1.6 BASE TO EMITTER VOLTAGE : VBE (V) 500 0.25mA 10 COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) 20 0.50mA mA 0.45mA 0.40 0.35mA Ta=25˚C COLLECTOR CURRENT : IC (mA) 100 VCE=6V Ta=100˚C COLLECTOR CURRENT : IC (mA) 50 Ta=25˚C 0.5 0.2 0.1 IC/IB=50 0.05 20 10 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) Fig.6 Collector-emitter saturation voltage vs. collector current Rev.A 3/4 EML12 / UML12N 0.2 IC/IB=50 20 10 0.1 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) 200 100 50 −0.5 −1 −2 −5 −10 −20 −50 −100 EMITTER CURRENT : IE (mA) Fig.10 Gain bandwidth product vs. emitter current COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) TRANSITION FREQUENCY : fT (MHz) Ta=25˚C VCE=6V IC/IB=10 0.2 0.1 Ta=100˚C 25˚C −55˚C 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) 20 10 Ta=25˚C f=1MHz IE=0A IC=0A Cib 5 2 Co b 1 0.2 0.5 1 2 5 10 20 50 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.11 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage 0.5 IC/IB=50 Ta=100˚C 25˚C −55˚C 0.2 0.1 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 COLLECTOR CURRENT : IC (mA) Fig.9 Collector-emitter saturation voltage vs. collector current ( III ) Fig.8 Collector-emitter saturation voltage vs. collector current ( II ) Fig.7 Collector-emitter saturation voltage vs. collector current ( I ) 500 0.5 COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) Ta=25˚C BASE COLLECTOR TIME CONSTANT : Cc rbb' (ps) 0.5 COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) COLLECTOR SATURATION VOLTAGE : VCE (sat) (V) Transistors Ta=25˚C f=32MHZ VCB=6V 200 100 50 20 10 −0.2 −0.5 −1 −2 −5 −10 EMITTER CURRENT : IE (mA) Fig.12 Base-collector time constant vs. emitter current Rev.A 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1