ROHM UML12N

EML12 / UML12N
Transistors
General purpose transistor
(isolated transistor and diode)
EML12 / UML12N
2SC4617and RB521S-30 are housed independently in a EMT5 or UMT5 package.
zExternal dimensions (Unit : mm)
zApplications
DC / DC converter
Motor driver
EMT5
1.6
0.5
1.0
0.5 0.5
zFeatures
1) Tr : Low VCE(sat)
Di : Low VF
2) Small package
(5) (4)
1.6
1.2
1pin mark
(1) (2) (3)
0.13
0.22
Each lead has same dimensions
zStructure
NPN Silicon epitaxial planar transistor
Schottky barrier diode
ROHM : EMT5
The following characteristics apply to both Di1 and Tr2.
UMT5
Abbreviated symbol : L12
2.0
1.3
0.9
0.65 0.65
zEquivalent circuit (EML12 / UML12N)
(4)
(1) (2) (3)
0.2
Tr2
0.15
0.1Min.
1pin mark
Di1
2.1
(5) (4)
1.25
(5)
0.7
Each lead has same dimensions
(1)
(2)
Abbreviated symbol : L12
(3)
ROHM : UMT5
EIAJ : SC-88A
zPackaging specifications
Type
Package
Marking
Code
Basic ordering unit (pieces)
EML12
EMT5
L12
T2R
8000
UML12N
UMT5
L12
TR
3000
Rev.A
1/4
EML12 / UML12N
Transistors
zAbsolute maximum ratings (Ta=25°C)
Di1
Parameter
Symbol
IO
Average revtified forward current
Forward current surge peak (60Hz, 1∞) IFSM
VR
Reverse voltage (DC)
Tj
Junction temperature
Limits
200
1
30
125
Unit
mA
A
V
°C
Tr2
Symbol
Limits
Unit
Collector-base voltage
VCBO
60
V
Collector-emitter voltage
VCEO
50
V
Emitter-base voltage
VEBO
7
V
Collector current
IC
150
mA
Power dissipation
PD
120
mW
Junction temperature
Tj
150
°C
Parameter
∗
∗
Each terminal mount on a recommended.
Di1 / DTr2
Parameter
Symbol
Limits
Unit
Pd
150
mW
Tstg
−55 to +125
°C
Power dissipation
Storage temperature
∗
∗ Each terminal mount on a recommended.
zElectrical characteristics (Ta=25°C)
Di1
Parameter
Forward voltage
Reverse current
Symbol
VF
IR
Min.
−
−
Typ.
0.40
4.0
Max.
0.50
30
Unit
V
µA
Conditions
IF=200mA
VR=10V
Tr2
Parameter
Symbol Min. Typ. Max. Unit
Conditions
Collector-base breakdown voltage
BVCBO
60
−
−
V
IC=50µA
Collector-emitter breakdown voltage
BVCEO
50
−
−
V
IC=1mA
Emitter-base breakdown voltage
BVEBO
7
−
−
V
IE=50µA
ICBO
−
−
0.1
µA
VCB=60V
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
IEBO
−
−
0.1
µA
VEB=7V
VCE (sat)
−
−
0.4
V
IC/IB=50mA/5mA
hFE
180
−
390
−
VCE=6V, IC=1mA
fT
−
180
−
MHz
VCE=12V, IE=−2mA, f=100MHz
Cob
−
PF
VCB=12V, IE=0A, f=1MHz
2
3.5
Rev.A
2/4
EML12 / UML12N
Transistors
zElectrical characteristic curves
Di1
Ta=125℃
10 Ta=75℃
1
Ta=-25℃
0.1
Ta=25℃
0.01
Ta=75℃
1000
100
Ta=25℃
10
10
Ta=-25℃
1
f=1MHz
CAPACITANCE BETWEEN
TERMINALS:Ct(pF)
10000
Ta=125℃
100
REVERSE CURRENT:IR(uA)
FORWARD CURRENT:IF(mA)
100
100000
1000
0.1
0.01
0.001
0
100
200
300
400
FORWARD VOLTAGE:VF(mV)
VF-IF CHARACTERISTICS
0
500
10
20
REVERSE VOLTAGE:VR(V)
VR-IR CHARACTERISTICS
1
30
0
5
10
15
REVERSE VOLTAGE:VR(V)
VR-Ct CHARACTERISTICS
20
Tr2
COLLECTOR CURRENT : IC (mA)
10
2
1
25˚C
−55˚C
5
0.5
0.2
0.1
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
80
0.30mA
60
0.20mA
40
0.10mA
20
0.05mA
0.4
0.8
1.2
DC CURRENT GAIN : hFE
Ta=100˚C
100
50
10
0.2
VCE=5V
25˚C
200
−55˚C
100
50
20
20
0.5
1
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.4 DC current gain vs. collector
current ( I )
27µA
8
10
0.2
0.5
1
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.5 DC current gain vs. collector
current ( II )
24µA
21µA
18µA
6
15µA
12µA
4
9µA
6µA
2
3µA
IB=0A
4
8
12
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.3 Grounded emitter output
characteristics ( II )
Fig.2 Grounded emitter output
characteristics ( I )
500
VCE=5V
3V
1V
2.0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Ta=25˚C
200
1.6
30µA
Ta=25˚C
0
0
IB=0A
0
Fig.1 Grounded emitter propagation
characteristics
DC CURRENT GAIN : hFE
0.15mA
0
1.6
BASE TO EMITTER VOLTAGE : VBE (V)
500
0.25mA
10
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
20
0.50mA
mA
0.45mA
0.40
0.35mA
Ta=25˚C
COLLECTOR CURRENT : IC (mA)
100
VCE=6V
Ta=100˚C
COLLECTOR CURRENT : IC (mA)
50
Ta=25˚C
0.5
0.2
0.1
IC/IB=50
0.05
20
10
0.02
0.01
0.2
0.5
1
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.6 Collector-emitter saturation
voltage vs. collector current
Rev.A
3/4
EML12 / UML12N
0.2
IC/IB=50
20
10
0.1
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
200
100
50
−0.5
−1
−2
−5
−10
−20
−50 −100
EMITTER CURRENT : IE (mA)
Fig.10 Gain bandwidth product vs.
emitter current
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
TRANSITION FREQUENCY : fT (MHz)
Ta=25˚C
VCE=6V
IC/IB=10
0.2
0.1
Ta=100˚C
25˚C
−55˚C
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
20
10
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
5
2
Co
b
1
0.2
0.5
1
2
5
10
20
50
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.11 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
0.5
IC/IB=50
Ta=100˚C
25˚C
−55˚C
0.2
0.1
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
50 100
COLLECTOR CURRENT : IC (mA)
Fig.9 Collector-emitter saturation
voltage vs. collector current ( III )
Fig.8 Collector-emitter saturation
voltage vs. collector current ( II )
Fig.7 Collector-emitter saturation
voltage vs. collector current ( I )
500
0.5
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Ta=25˚C
BASE COLLECTOR TIME CONSTANT : Cc rbb' (ps)
0.5
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Transistors
Ta=25˚C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Fig.12 Base-collector time constant vs.
emitter current
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1