UML2N : Transistors

UML2N
Transistors
Low-frequency transistor
(isolated transistor and diode)
UML2N
zFeatures
1) The 2SC2412K and a diode are housed independently
in a UMT package.
zExternal dimensions (Unit : mm)
UMT5
2.0
1.3
0.9
0.65 0.65
zEquivalent circuit
0.7
(1)
2.1
(2)
1.25
(6) (4)
(3)
1pin mark
Tr
Di
0.2
0.15
0.1Min.
(1) (2) (3)
Each lead has same dimensions
(4)
(5)
zPackaging specifications
Part No.
UML2N
Package
UMT5
L2
TR
Marking
Code
Basic ordering unit (pieces)
3000
zAbsolute maximum ratings (Ta=25°C)
Tr
Symbol
Limits
Unit
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
VCBO
VCEO
60
50
6
0.15
V
V
V
A
Collector power dissipation
Junction temperature
Storage temperature
Pc
Tj
Tstg
0.15
150
−55 to +150
W
°C
°C
Symbol
Limits
Unit
VR
VRM
80
80
0.1
0.3
V
V
A
A
Parameter
VEBO
IC
Di
Parameter
DC reverse voltage
Peak reverse voltage
Mean rectifying current
Peak forward voltage
Surge current
Junction temperature
Storage temperature
Specified I/O frequencies
IO
IFM
Isurge
4
A
Tj
Tstg
f
150
−55 to +150
100
°C
°C
MHz
Rev.A
1/4
UML2N
Transistors
zElectrical characteristics (Ta=25°C)
Tr
Parameter
Collector-emitter breakdown voltage
Collector-base breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Symbol
Min.
Typ.
Max.
Unit
BVCEO
BVCBO
50
60
BVEBO
hFE
6
−
−
−
120
−
−
−
−
−
−
−
−
−
−
0.1
0.1
0.4
560
V
V
V
µA
µA
V
−
fT
Cob
−
−
180
2
−
3.5
MHz
pF
ICBO
IEBO
VCE(sat)
Transition frequency
Output capacitance
Conditions
IC=1mA
IC=50µA
IE=50µA
VCB=60V
VEB=5V
IC/IB=50mA/5mA
VCE=6V, IC=1mA
VCE=12V, IE=−2mA, f=100MHz
VCB=12V, IE=0A, f=1MHz
Di
Parameter
Symbol
Min.
Typ.
Max.
Unit
VF
IR
−
−
−
−
1.2
0.1
V
µA
IF=100mA
VR=70V
CT
−
−
−
−
3.5
4
pF
ns
VR=6V, f=1MHz
VR=6V, IF=5mA, RL=50Ω
Forward voltage
Reverse current
Capacitance between terminals
Reverse recovery time
trr
Conditions
zElectrical characteristic curves
Tr
COLLECTOR CURRENT : IC (mA)
20
10
1
0.5
0.2
0.30mA
0.25mA
60
0.20mA
0.15mA
40
0.10mA
20
0.05mA
Fig.1
0.4
0.8
1.2
Fig.2
500
DC CURRENT GAIN : hFE
Ta=100°C
100
50
20
10
0.2
0.5 1
2
5
10 20
50 100 200
VCE=5V
25°C
200
−55°C
100
50
20
10
0.2
0.5 1
27µA
8
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
Fig.4 DC current gain vs.
collector current ( Ι )
Fig.5 DC current gain vs.
collector current ( ΙΙ )
24µA
21µA
6
18µA
15µA
12µA
4
9µA
6µA
2
3µA
2.0
4
IB=0A
12
8
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Grounded emitter output
characteristics ( Ι )
Ta=25°C
VCE=5V
3V
1V
1.6
30µA
Ta=25°C
0
0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Grounded emitter propagation
characteristics
200
10
IB=0A
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
BASE TO EMITTER VOLTAGE : VBE (V)
DC CURRENT GAIN : hFE
80
0
0.1
0
500
0.50mA
mA
0.45 A
0.40m
0.35mA
Ta=25°C
Fig.3
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
2
25°C
−55°C
5
Ta=100°C
COLLECTOR CURRENT : IC (mA)
VCE=6V
COLLECTOR CURRENT : IC (mA)
100
50
Grounded emitter output
characteristics ( ΙΙ )
0.5
Ta=25°C
0.2
IC/IB=50
20
10
0.1
0.05
0.02
0.01
0.2
0.5 1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig. 6 Collector-emitter saturation
voltage vs. collector current
Rev.A
2/4
UML2N
IC/IB=10
0.2
Ta=100°C
25°C
−55°C
0.1
0.05
0.02
0.01
0.2
0.5 1
2
5
10
20
50 100 200
0.5
IC/IB=50
Ta=100°C
25°C
−55°C
0.2
0.1
0.05
0.02
0.01
0.5 1
0.2
COLLECTOR CURRENT : IC (mA)
5
Co
b
1
0.2
0.5
1
2
5
10
20
50
BASE COLLECTOR TIME CONSTANT : Cc·rbb' (ps)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE : Cib (pF)
Ta=25°C
f=1MHz
IE=0A
IC=0A
2
10
20
200
100
50
−0.5 −1
50 100
−2
−5
−10 −20
−50 −100
EMITTER CURRENT : IE (mA)
Fig.9 Gain bandwidth product vs.
emitter current
Ta=25°C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.10
5
Fig.8 Collector-emitter saturation
voltage vs. collector current (ΙΙ)
20
Cib
2
Ta=25°C
VCE=6V
500
COLLECTOR CURRENT : IC (mA)
Fig.7 Collector-emitter saturation
voltage vs. collector current ( Ι )
10
TRANSITION FREQUENCY : fT (MHz)
0.5
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Transistors
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
Fig.11 Base-collector time constant
vs. emitter current
50
Ta=100°C
REVERSE CURRENT : IR (nA)
FORWARD CURRENT : IF (mA)
1000
20
10
5
Ta=85°C
50°C
25°C
2
1
0°C
−30°C
0.5
0.2
0.1
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
FORWARD VOLTAGE : VF (V)
Fig.12 Forward characteristics
75°C
100
50°C
10
25°C
1
0°C
−25°C
0.1
0.01
0
10
20
30
40
50
60
70
80
REVERSE VOLTAGE : VR (V)
Fig.13 Reverse characteristics
CAPACITANCE BETWEEN TERMINALS : CT (pF)
Di
f=1MHz
4
2
N Type
0
0
2
4
6
8
10 12 14 16 18 20
REVERSE VOLTAGE : VR (V)
Fig.14 Capacitance between
terminals characteristics
Rev.A
3/4
UML2N
Transistors
0.01µF
VR=6V
9
D.U.T.
8
5Ω
7
PULSE GENERATOR
OUTPUT 50Ω
6
50Ω
SAMPLING
OSCILLOSCOPE
5
4
3
INPULSE
2
N Type
1
1
2
3
4
5
6
7
8
9
10
100ns
FORWARD CURRENT : IF (mA)
Fig.15 Reverse recovery time
OUTPULSE
trr
0
0.1IR
0
0
IR
REVERSE RECOVERY TIME : trr (ns)
10
Fig.16 Reverse recovery time (trr) mesurement circuit
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1