UML2N Transistors Low-frequency transistor (isolated transistor and diode) UML2N zFeatures 1) The 2SC2412K and a diode are housed independently in a UMT package. zExternal dimensions (Unit : mm) UMT5 2.0 1.3 0.9 0.65 0.65 zEquivalent circuit 0.7 (1) 2.1 (2) 1.25 (6) (4) (3) 1pin mark Tr Di 0.2 0.15 0.1Min. (1) (2) (3) Each lead has same dimensions (4) (5) zPackaging specifications Part No. UML2N Package UMT5 L2 TR Marking Code Basic ordering unit (pieces) 3000 zAbsolute maximum ratings (Ta=25°C) Tr Symbol Limits Unit Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current VCBO VCEO 60 50 6 0.15 V V V A Collector power dissipation Junction temperature Storage temperature Pc Tj Tstg 0.15 150 −55 to +150 W °C °C Symbol Limits Unit VR VRM 80 80 0.1 0.3 V V A A Parameter VEBO IC Di Parameter DC reverse voltage Peak reverse voltage Mean rectifying current Peak forward voltage Surge current Junction temperature Storage temperature Specified I/O frequencies IO IFM Isurge 4 A Tj Tstg f 150 −55 to +150 100 °C °C MHz Rev.A 1/4 UML2N Transistors zElectrical characteristics (Ta=25°C) Tr Parameter Collector-emitter breakdown voltage Collector-base breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Symbol Min. Typ. Max. Unit BVCEO BVCBO 50 60 BVEBO hFE 6 − − − 120 − − − − − − − − − − 0.1 0.1 0.4 560 V V V µA µA V − fT Cob − − 180 2 − 3.5 MHz pF ICBO IEBO VCE(sat) Transition frequency Output capacitance Conditions IC=1mA IC=50µA IE=50µA VCB=60V VEB=5V IC/IB=50mA/5mA VCE=6V, IC=1mA VCE=12V, IE=−2mA, f=100MHz VCB=12V, IE=0A, f=1MHz Di Parameter Symbol Min. Typ. Max. Unit VF IR − − − − 1.2 0.1 V µA IF=100mA VR=70V CT − − − − 3.5 4 pF ns VR=6V, f=1MHz VR=6V, IF=5mA, RL=50Ω Forward voltage Reverse current Capacitance between terminals Reverse recovery time trr Conditions zElectrical characteristic curves Tr COLLECTOR CURRENT : IC (mA) 20 10 1 0.5 0.2 0.30mA 0.25mA 60 0.20mA 0.15mA 40 0.10mA 20 0.05mA Fig.1 0.4 0.8 1.2 Fig.2 500 DC CURRENT GAIN : hFE Ta=100°C 100 50 20 10 0.2 0.5 1 2 5 10 20 50 100 200 VCE=5V 25°C 200 −55°C 100 50 20 10 0.2 0.5 1 27µA 8 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : IC (mA) Fig.4 DC current gain vs. collector current ( Ι ) Fig.5 DC current gain vs. collector current ( ΙΙ ) 24µA 21µA 6 18µA 15µA 12µA 4 9µA 6µA 2 3µA 2.0 4 IB=0A 12 8 16 20 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Grounded emitter output characteristics ( Ι ) Ta=25°C VCE=5V 3V 1V 1.6 30µA Ta=25°C 0 0 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Grounded emitter propagation characteristics 200 10 IB=0A 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 BASE TO EMITTER VOLTAGE : VBE (V) DC CURRENT GAIN : hFE 80 0 0.1 0 500 0.50mA mA 0.45 A 0.40m 0.35mA Ta=25°C Fig.3 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) 2 25°C −55°C 5 Ta=100°C COLLECTOR CURRENT : IC (mA) VCE=6V COLLECTOR CURRENT : IC (mA) 100 50 Grounded emitter output characteristics ( ΙΙ ) 0.5 Ta=25°C 0.2 IC/IB=50 20 10 0.1 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 COLLECTOR CURRENT : IC (mA) Fig. 6 Collector-emitter saturation voltage vs. collector current Rev.A 2/4 UML2N IC/IB=10 0.2 Ta=100°C 25°C −55°C 0.1 0.05 0.02 0.01 0.2 0.5 1 2 5 10 20 50 100 200 0.5 IC/IB=50 Ta=100°C 25°C −55°C 0.2 0.1 0.05 0.02 0.01 0.5 1 0.2 COLLECTOR CURRENT : IC (mA) 5 Co b 1 0.2 0.5 1 2 5 10 20 50 BASE COLLECTOR TIME CONSTANT : Cc·rbb' (ps) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) Ta=25°C f=1MHz IE=0A IC=0A 2 10 20 200 100 50 −0.5 −1 50 100 −2 −5 −10 −20 −50 −100 EMITTER CURRENT : IE (mA) Fig.9 Gain bandwidth product vs. emitter current Ta=25°C f=32MHZ VCB=6V 200 100 50 20 10 −0.2 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.10 5 Fig.8 Collector-emitter saturation voltage vs. collector current (ΙΙ) 20 Cib 2 Ta=25°C VCE=6V 500 COLLECTOR CURRENT : IC (mA) Fig.7 Collector-emitter saturation voltage vs. collector current ( Ι ) 10 TRANSITION FREQUENCY : fT (MHz) 0.5 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Transistors −0.5 −1 −2 −5 −10 EMITTER CURRENT : IE (mA) Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage Fig.11 Base-collector time constant vs. emitter current 50 Ta=100°C REVERSE CURRENT : IR (nA) FORWARD CURRENT : IF (mA) 1000 20 10 5 Ta=85°C 50°C 25°C 2 1 0°C −30°C 0.5 0.2 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 FORWARD VOLTAGE : VF (V) Fig.12 Forward characteristics 75°C 100 50°C 10 25°C 1 0°C −25°C 0.1 0.01 0 10 20 30 40 50 60 70 80 REVERSE VOLTAGE : VR (V) Fig.13 Reverse characteristics CAPACITANCE BETWEEN TERMINALS : CT (pF) Di f=1MHz 4 2 N Type 0 0 2 4 6 8 10 12 14 16 18 20 REVERSE VOLTAGE : VR (V) Fig.14 Capacitance between terminals characteristics Rev.A 3/4 UML2N Transistors 0.01µF VR=6V 9 D.U.T. 8 5Ω 7 PULSE GENERATOR OUTPUT 50Ω 6 50Ω SAMPLING OSCILLOSCOPE 5 4 3 INPULSE 2 N Type 1 1 2 3 4 5 6 7 8 9 10 100ns FORWARD CURRENT : IF (mA) Fig.15 Reverse recovery time OUTPULSE trr 0 0.1IR 0 0 IR REVERSE RECOVERY TIME : trr (ns) 10 Fig.16 Reverse recovery time (trr) mesurement circuit Rev.A 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1