UML1N Transistors Low-frequency transistor UML1N zFeatures 1) The 2SA1037AK and a diode are housed independently in a UMT package. zExternal dimensions (Unit : mm) UMT5 2.0 1.3 0.9 0.65 0.65 0.7 zEquivalent circuit (2) (1) (2) (3) (1) 1pin mark 0.2 0.15 0.1Min. (3) 2.1 1.25 (6) (4) Di Tr Each lead has same dimensions (4) (5) zPackaging specifications Type Package Marking Code Basic ordering unit(pieces) FML10 SMT5 L10 TR 3000 zAbsolute maximum ratings (Ta=25°C) Tr Parameter Symbol Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current VCBO VCEO Collector power dissipatio Junction temperature Storage temperature Pc Tj Tstg VEBO IC Limits −60 −50 −6 −0.15 0.15 150 −55 to +150 Unit V V V A W °C °C Di Parameter DC reverse voltage Peak reverse voltage Mean rectifying current Peak forward voltage Surge current Junction temperature Storage temperature Specified I/O frequencies Symbol Limits Unit VR VRM 80 80 V V IO IFM 0.1 0.3 A A Isurge Tj Tstg f 4 150 −55 to +150 100 A °C °C MHz Rev.A 1/3 UML1N Transistors zElectrical characteristics (Ta=25°C) Tr Typ. Max. Unit Collector-emitter breakdown voltage Collector-base breakdown voltage Parameter Symbol BVCEO BVCBO −50 −60 − − − − V V Emitter-base breakdown voltage Collector cutoff current BVEBO −6 Emitter cutoff current Collector-emitter saturation voltage DC current transfer ratio Min. ICBO − − − − −0.1 IEBO VCE(sat) − − − − hFE 120 − Conditions IC= −1mA IC= −50µA V IE= −50µA VCB= −60V −0.1 µA µA −0.5 560 V − Transition frequency fT − 140 − MHz Output capacitance Cob − 4 5 pF VEB= −5V IC/IB= −50mA/ −5mA VCE= −6V, IC= −1mA VCE= −12V, IE= 2mA, f= 100MHz VCB= −12V, IE= 0A, f= 1MHz Di Parameter Symbol Min. Typ. Max. Unit VF IR − − − − − − − − 1.2 0.1 3.5 4 V µA pF ns Forward voltage Reverse current Capacitance between terminals Reverse recovery time CT trr Conditions IF=100mA VR=70V VR=6V, f=1MHz VR=6V, IF=5mA, RL=50Ω zElectrical characteristic curves Tr −10 −5 −2 −1 −0.5 −0.2 −0.1 −0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6 −21.0 −6 −17.5 −14.0 −4 −10.5 −7.0 −2 −0.4 −0.8 −1.2 −1.6 25˚C 100 50 −60 −500 −450 −400 −350 −300 −250 −200 −150 −40 −100 −20 −50µA IB=0 IB=0 −2.0 Ta=100˚C 200 −80 Ta=25˚C −3.5µA 500 DC CURRENT GAIN : hFE DC CURRENT GAIN : hFE −24.5 0 −40˚C 200 100 50 −1 −2 −3 −4 −5 COLLECTOR TO EMITTER VOLTAGE : VCE (V) Fig.3 Grounded emitter output characteristics (ΙΙ) Fig.2 Grounded emitter output characteristics (Ι) VCE= −5V −3V −1V Ta=25˚C −28.0 COLLECTOR TO MITTER VOLTAGE : VCE (V) Fig.1 Grounded emitter propagation characteristics 500 −31.5 −8 0 BASE TO EMITTER VOLTAGE : VBE (V) −100 −35.0 Ta=25˚C COLLECTOR CURRENT : IC (mA) −10 VCE= −6V Ta=100˚C 25˚C −40˚C COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) −20 COLLECTOR CURRENT : IC (mA) COLLECTOR CURRENT : Ic (mA) −50 −1 Ta=25˚C −0.5 −0.2 IC/IB=50 −0.1 20 10 −0.05 −0.2 −0.5 −1 −2 −5 −10 −20 −50 −100 COLLECTOR CURRENT : IC (mA) Fig.4 DC current gain vs. collector current (Ι) −0.2 −0.5 −1 −2 VCE= −6V −5 −10 −20 −50 −100 COLLECTOR CURRENT : IC (mA) Fig.5 DC current gain vs. collector current (ΙΙ) −0.2 −0.5 −1 −2 −5 −10 −20 −50 −100 COLLECTOR CURRENT : IC (mA) Fig.6 Collector-emitter saturation voltage vs. collector current (Ι) Rev.A 2/3 UML1N Transistors −0.5 −0.2 Ta=100˚C 25˚C −40˚C −0.1 −0.05 −0.2 −0.5 −1 −2 −5 −10 −20 Ta=25˚C VCE= −12V 500 200 100 50 −50 −100 0.5 COLLECTOR CURRENT : IC (mA) 1 2 5 10 20 50 100 EMITTER CURRENT : IE (mA) Fig.7 Collector-emitter saturation voltage vs. collector current (ΙΙ) 20 COLLECTOR OUTPUT CAPACITANCE : Cob (pF) EMITTER INPUT CAPACITANCE : Cib (pF) 1000 lC/lB=10 TRANSITION FREQUENCY : fT (MHz) COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) −1 Ta=25˚C f=1MHz IE=0A IC=0A Cib 10 Co b 5 2 −0.5 −1 −2 −5 −10 −20 COLLECTOR TO BASE VOLTAGE : VCB (V) EMITTER TO BASE VOLTAGE : VEB (V) Fig.9 Collector output capacitance vs. collector-base voltage Emitter inputcapacitance vs. emitter-base voltage Fig.8 Gain bandwidth product vs. emitter current Ta=100°C 1000 REVERSE CURRENT : IR (nA) 20 10 5 Ta=85ºC 50ºC 25ºC 2 1 0ºC −30ºC 0.5 75°C 100 50°C 10 25°C 1 0°C −25°C 0.1 0.2 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 FORWARD VOLTAGE : VF 1.6 1.4 (V) Fig.10 Forward characteristics 0.01 0 10 20 30 40 50 60 80 2 N Type 0 0 2 4 6 8 10 12 14 16 18 20 REVERSE VOLTAGE : VR (V) REVERSE VOLTAGE : VR (V) Fig.11 Reverse characteristics Fig.12 Capacitance between terminals characteristics 0.01µF 10 D.U.T. VR=6V 9 8 5Ω PULSE GENERATOR OUTPUT 50Ω 7 50Ω SAMPLING OSCILLOSCOPE 6 5 4 INPUT 3 2 N Type 1 0 0 1 2 3 4 5 6 7 FORWARD CURRENT : IF 8 9 100ns 10 (mA) Fig.13 Reverse recovery time OUTPUT trr 0 IR REVERSE RECOVERY TIME : trr (ns) 70 f=1MHz 4 0.1IR FORWARD CURRENT : IF (mA) 50 CAPACITANCE BETWEEN TERMINALS : CT (pF) Di Fig.14 Reverse recovery time (trr) measurement circuit Rev.A 3/3 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1