PD - 95823A IRF6620 HEXFET® Power MOSFET l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses l Low Switching Losses l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Compatible with Existing Surface Mount Techniques VDSS RDS(on) max Qg(typ.) 20V 2.7mΩ@VGS = 10V 3.6mΩ@VGS = 4.5V 28nC DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details) SQ SX ST MQ MX MT Description The IRF6620 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6620 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6620 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6620 offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C EAS IAR TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V c Pulsed Drain Current Power Dissipation Power Dissipation Power Dissipation Single Pulse Avalanche Energy Avalanche Current Linear Derating Factor Operating Junction and Storage Temperature Range g g c d Max. Units 20 ±20 150 27 22 220 2.8 1.8 89 39 22 0.017 -40 to + 150 V A W mJ A W/°C °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB fj gj hj ij Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Notes through are on page 2 www.irf.com 1 4/2/04 IRF6620 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance ––– 20 Typ. Max. Units ––– ––– ––– 16 ––– ––– 2.1 2.7 2.8 3.6 V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 27A e VGS = 4.5V, ID = 22A e VGS(th) Gate Threshold Voltage 1.55 ––– 2.45 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.8 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 gfs Qg Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 110 ––– ––– Total Gate Charge ––– 28 42 Conditions VGS = 0V, ID = 250µA VDS = VGS, ID = 250µA VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 22A Qgs1 Pre-Vth Gate-to-Source Charge ––– 9.5 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 3.5 ––– Qgd Gate-to-Drain Charge ––– 8.8 ––– ID = 22A Qgodr ––– 6.2 ––– See Fig. 17 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 12 ––– Qoss Output Charge ––– 16 ––– td(on) Turn-On Delay Time ––– 18 ––– tr Rise Time ––– 80 ––– td(off) Turn-Off Delay Time ––– 20 ––– tf Fall Time ––– 6.6 ––– Ciss Input Capacitance ––– 4130 ––– Coss Output Capacitance ––– 1160 ––– Crss Reverse Transfer Capacitance ––– 560 ––– VDS = 10V nC nC VGS = 4.5V VDS = 10V, VGS = 0V VDD = 16V, VGS = 4.5Ve ID = 22A ns Clamped Inductive Load pF VDS = 10V VGS = 0V ƒ = 1.0MHz Diode Characteristics Min. Typ. Max. Units IS Continuous Source Current Parameter ––– ––– 3.5 Conditions ISM (Body Diode) Pulsed Source Current ––– ––– 220 showing the integral reverse VSD (Body Diode)c Diode Forward Voltage ––– 0.8 1.0 V p-n junction diode. TJ = 25°C, IS = 22A, VGS = 0V e trr Reverse Recovery Time ––– 23 35 ns Qrr Reverse Recovery Charge ––– 13 20 nC MOSFET symbol A D G S TJ = 25°C, IF = 22A di/dt = 100A/µs e Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.16mH, RG = 25Ω, IAS = 22A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. 2 Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. www.irf.com IRF6620 1000 1000 100 BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 2.7V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM 2.7V 10 ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1.5 100.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000.0 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics T J = 150°C 10.0 T J = 25°C 1.0 VDS = 10V ≤ 60µs PULSE WIDTH 0.1 2.5 3.0 3.5 4.0 4.5 5.0 ID = 27A VGS = 10V 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 100000 20 40 60 80 100 120 140 160 Fig 4. Normalized On-Resistance vs. Temperature 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 20A C oss = C ds + C gd 10000 Ciss Coss 1000 0 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V Crss VDS= 20V VDS= 10V 10 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 20 40 60 80 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6620 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 T J = 150°C 10.0 1.0 T J = 25°C OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 100µsec 1 VGS = 0V 10msec 0.1 0.1 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 150 VGS(th) Gate threshold Voltage (V) 2.5 120 ID , Drain Current (A) 1msec Tc = 25°C Tj = 150°C Single Pulse 90 60 30 2.0 ID = 250µA 1.5 0 1.0 25 50 75 100 125 150 -75 -50 -25 T J , Junction Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 1 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) R4 R4 SINGLE PULSE ( THERMAL RESPONSE ) τi (sec) 1.28011 0.000322 8.72556 0.164798 21.75 2.2576 13.251 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com 12 160 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRF6620 ID = 27A 10 8 6 T J = 125°C 4 2 T J = 25°C 0 2.0 4.0 6.0 8.0 ID 7.2A 8.4A BOTTOM 22A TOP 120 80 40 0 10.0 25 50 VGS, Gate-to-Source Voltage (V) 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS Fig 14a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 13b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. tr td(off) Fig 14b. Switching Time Waveforms Id Vds 50KΩ 12V tf Vgs .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 15. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 16. Gate Charge Waveform 5 IRF6620 D.U.T Driver Gate Drive + + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. VDD + Re-Applied Voltage - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode InductorCurent Current Inductor VDD Forward Drop ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 1 3 5 4 7 6 2 www.irf.com IRF6620 DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS Note: Controlling dimensions are in mm METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.72 E 0.68 0.72 F 0.68 1.42 G 1.38 0.84 H 0.80 0.42 J 0.38 K 0.88 1.01 2.41 L 2.28 0.70 M 0.59 0.08 N 0.03 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.023 0.001 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.028 0.003 DirectFET Part Marking www.irf.com 7 IRF6620 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel, order IRF6618TR1 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX CODE MAX MIN MIN MAX MAX A 12.992 6.9 N.C 330.0 177.77 N.C N.C N.C B 0.795 0.75 N.C 20.2 19.06 N.C N.C N.C C 0.504 0.53 0.50 12.8 13.5 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 3.937 2.31 100.0 58.72 N.C N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.488 0.47 12.4 11.9 N.C 0.567 12.01 14.4 H 0.469 0.47 11.9 11.9 N.C 0.606 12.01 15.4 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04 8 www.irf.com