IRF IRGBC20S

Previous Datasheet
Index
Next Data Sheet
IGBT Designer’s Manual
Data Sheets
The IGBT devices listed in this Designer’s
Manual represent International Rectifier’s
IGBT line as of August, 1994. The data
presented in this manual supersedes all
previous specifications.
C-2
To Order
Previous Datasheet
Index
Next Data Sheet
PD - 9.687A
IRGBC20S
Standard Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
C
• Switching-loss rating includes all "tail" losses
• Optimized for line frequency operation ( to 400 Hz)
See Fig. 1 for Current vs. Frequency curve
VCES = 600V
VCE(sat) ≤ 2.4V
G
@VGE = 15V, I C = 10A
E
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have
higher usable current densities than comparable bipolar transistors, while at
the same time having simpler gate-drive requirements of the familiar power
MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
VGE
EARV
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
19
10
76
38
±20
5.0
60
24
-55 to +150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
Junction-to-Case
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
C-3
To Order
Min.
Typ.
Max.
—
—
—
—
—
0.50
—
2.0 (0.07)
2.1
—
80
—
Units
°C/W
g (oz)
Revision 0
Previous Datasheet
Index
Next Data Sheet
IRGBC20S
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
Conditions
600
—
—
V
VGE = 0V, I C = 250µA
20
—
—
V
VGE = 0V, IC = 1.0A
— 0.75 —
V/°C VGE = 0V, I C = 1.0mA
—
1.8
2.4
IC = 10A
V GE = 15V
—
2.4
—
V
IC = 19A
See Fig. 2, 5
—
1.9
—
IC = 10A, T J = 150°C
3.0
—
5.5
VCE = VGE, IC = 250µA
—
-11
— mV/°C VCE = VGE, IC = 250µA
2.0 5.8
—
S
VCE = 100V, I C = 10A
—
—
250
µA
VGE = 0V, V CE = 600V
—
— 1000
VGE = 0V, V CE = 600V, T J = 150°C
—
— ±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
16
26
IC = 10A
2.3
4.0
nC
VCC = 400V
See Fig. 8
7.0
12
VGE = 15V
24
—
TJ = 25°C
23
—
ns
IC = 10A, V CC = 480V
820 1200
VGE = 15V, R G = 50Ω
910 1600
Energy losses include "tail"
0.24 —
3.9
—
mJ
See Fig. 9, 10, 11, 14
4.1
6.0
26
—
TJ = 150°C,
30
—
ns
IC = 10A, V CC = 480V
1100 —
VGE = 15V, R G = 50Ω
1800 —
Energy losses include "tail"
7.0
—
mJ
See Fig. 10, 14
7.5
—
nH
Measured 5mm from package
360
—
VGE = 0V
36
—
pF
VCC = 30V
See Fig. 7
5.2
—
ƒ = 1.0MHz
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
VCC=80%(V CES), VGE=20V, L=10µH,
R G= 50Ω, ( See fig. 13a )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-4
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
IRGBC20S
25
For both:
20
LO A D C U R RE NT (A )
Triangular w ave:
D u ty cycle: 50%
TJ = 125°C
T s in k = 9 0°C
G a te drive a s specified
Pow er D issipation = 13W
C lamp voltage:
80% of rated
15
S quare w av e:
60% of rated
voltage
10
5
Id e a l d io d e s
0
0.1
1
10
100
f, F re quency (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK)
100
I C , C ollecto r-to -E m itter C u rrent (A )
I C , C o lle ctor-to-E m itter C urre nt (A )
100
TJ = 25 °C
TJ = 15 0°C
10
V G E = 15 V
20 µs P UL S E W ID TH
1
1
T J = 1 50 °C
10
T J = 25 °C
1
V C C = 1 00 V
5 µ s P UL S E W IDTH
0.1
5
10
10
15
V G E , G ate -to-E m itter V olta ge (V )
V C E , C o llector-to-Em itter V oltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-5
To Order
20
Previous Datasheet
Index
Next Data Sheet
IRGBC20S
3.0
V G E = 15 V
V C E , C ollector-to-E m itter V oltage (V)
M aximum D C Collector Current (A )
20
16
12
8
4
VG E = 1 5 V
80 µs P UL S E W ID TH
I C = 20 A
2.5
2.0
I C = 10 A
1.5
I C = 5.0A
1.0
0
25
50
75
100
125
-60
150
-40
-20
0
20
40
60
80
1 00 120 140 160
TC , C ase Tem perature (°C )
T C , C ase Tem perature (°C )
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T he rm al R e sp ons e (Z thJ C )
10
1
D = 0 .5 0
0 .2 0
0 .1 0
PD M
0 .0 5
0.1
0 .0 2
0 .0 1
t
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
t2
N o te s:
1 . D u ty fa c to r D = t
0.01
0.00001
1
1
/ t
2
2 . P e a k TJ = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-6
To Order
10
Previous Datasheet
Index
Next Data Sheet
IRGBC20S
700
500
V G E , G ate-to-E m itter V oltag e (V )
600
V C E = 48 0V
I C = 10 A
16
Cies
12
400
Coes
300
200
Cres
100
8
4
0
0
1
10
0
100
4
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
4 .2
VC C
VG E
TC
IC
8
12
16
20
Q g , T o tal G a te C h a rg e (n C )
V C E , C o llector-to-Em itter V oltage (V)
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
= 48 0V
= 15V
= 25 °C
= 1 0A
T o tal S w itc hing Los se s (m J)
C, C apacitance (pF)
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
4 .0
3 .8
3 .6
R G = 50 Ω
V GE = 15 V
V CC = 4 80 V
I C = 20 A
10
I C = 10A
I C = 5.0 A
1
20
30
40
50
60
-60
R G , G ate R esistance (Ω )
-40
-20
0
20
40
60
80
100 120 140 160
TC , C ase Tem perature (°C )
W
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-7
To Order
Previous Datasheet
Index
Next Data Sheet
IRGBC20S
RG
TC
V CC
VGE
12
100
= 50 Ω
= 150°C
= 4 80 V
= 15 V
I C , C ollector-to-E m itter Current (A )
Total Sw itching Losses (m J)
15
9
6
3
VGGE E= 20 V
T J = 12 5°C
S A FE O P E RA TIN G A RE A
10
1
0
4
8
12
16
20
1
24
10
100
V C E , Collecto r-to-E m itter V oltage (V )
I C , C ollecto r-to-E m itter C urrent (A )
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following:
Appendix C: Section D - page D-5
Fig. 13a - Clamped Inductive Load Test Circuit
Fig. 13b - Pulsed Collector Current Test Circuit
Fig. 14a - Switching Loss Test Circuit
Fig. 14b - Switching Loss Waveform
Package Outline 1 - JEDEC Outline TO-220AB
C-8
To Order
Section D - page D-12
1000