IRF IRGP20B120U-E

PD- 94117
IRGP20B120U-E
INSULATED GATE BIPOLAR TRANSISTOR
UltraFast IGBT
Features
• UltraFast Non Punch Through (NPT)
Technology
• 10 µs Short Circuit capability
• Square RBSOA
• Positive VCE(on) Temperature Coefficient
• Extended lead TO-247 package
C
VCES = 1200V
VCE(on) typ. = 3.05V
G
VGE = 15V, IC = 20A, 25°C
E
Benefits
n-channel
• Benchmark efficiency above 20KHz
• Optimized for Welding, UPS, and Induction Heating
applications
• Rugged with UltraFast performance
• Low EMI
• Significantly Less Snubber required
• Excellent Current sharing in Parallel operation
• Longer leads for easier mounting
TO-247AD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EAS @ TC =25°C
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current (Fig.1)
Continuous Collector Current (Fig.1)
Pulsed Collector Current (Fig.3, Fig. CT.5)
Clamped Inductive Load Current(Fig.4, Fig. CT.2)
Gate-to-Emitter Voltage
Avalanche Energy, single pulse
IC = 25A, VCC = 50V, RGE = 25ohm
L = 200µH (Fig. CT.6)
Maximum Power Dissipation (Fig.2)
Maximum Power Dissipation (Fig.2)
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Max.
Units
1200
40
20
120
120
± 20
65
V
A
V
mJ
300
120
-55 to + 150
W
°C
300, (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case - IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Wt
ZθJC
Weight
Transient Thermal Impedance Junction-to-Case
www.irf.com
Min.
Typ.
Max.
Units
–––
–––
–––
–––
0.24
–––
0.42
–––
40
°C/W
–––
6 (0.21)
–––
g (oz)
(Fig.18)
1
03/06/01
IRGP20B120U-E
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Min.
1200
∆V(BR)CES / ∆Tj Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation
VCE(on)
VGE(th)
Voltage
Gate Threshold Voltage
∆VGE(th) / ∆Tj
Temperature Coeff. of Threshold Voltage
gfe
Forward Transconductance
ICES
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
4.0
13.6
Typ.
+1.2
3.05
3.37
4.23
3.89
4.31
5.0
- 1.2
15.7
Max. Units
V
V/°C
3.45
3.80
4.85
V
4.50
5.06
6.0
V
Conditions
Fig.
VGE = 0V,Ic =250 µA
VGE = 0V, Ic = 1 mA ( 25 -125 oC )
IC = 20A, VGE = 15V
5, 6
IC = 25A, VGE = 15V
7, 8
IC = 40A, VGE = 15V
9
IC = 20A, VGE = 15V, TJ = 125°C
10
IC = 25A, VGE = 15V, TJ = 125°C
VCE = VGE, IC = 250 µA
8,9,10,11
o
o
S
VCE = 50V, IC = 20A, PW=80µs
mV/ C VCE = VGE, IC = 1 mA (25 -125 C)
17.8
250
420 750
1482 2200
±100
VGE = 0V, VCE = 1200V
µA VGE = 0V, VCE = 1200V, TJ =125°C
VGE = 0V, VCE = 1200V, TJ =150°C
nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Parameter
Min.
Total Gate charge (turn-on)
Qge
Gate - Emitter Charge (turn-on)
Qgc
Gate - Collector Charge (turn-on)
Eon
Turn-On Switching Loss *
Eoff
Turn-Off Switching Loss *
Typ.
169
24
82
850
425
Max. Units
Conditions
I
=
20A
254
C
36
nC VCC = 600V
VGE = 15V
126
IC = 20A, VCC = 600V
1050
650
µJ VGE = 15V, Rg = 5Ω, L = 200µH
Etot
Total Switching Loss *
1275 1800
TJ = 25 C, Energy losses include tail
and diode reverse recovery
Eon
Turn-on Switching Loss *
Turn-off Switching Loss *
1350 1550
610 875
Ic = 20A, VCC = 600V
Eoff
Fig.
17
CT 1
CT 4
WF 1
o
µJ
WF 2
12, 14
VGE = 15V, Rg = 5Ω, L = 200µH
CT 4
o
Etot
Total Switching Loss *
1960 2425
TJ = 125 C, Energy losses include tail
and diode reverse recovery
td(on)
Turn - on delay time
Ic = 20A, VCC = 600V
tr
Rise time
td(off)
Turn - off delay time
tf
Fall time
50
20
204
24
2200
210
85
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
RBSOA
Reverse bias safe operating area
65
30
230
35
ns
WF 1 & 2
13, 15
VGE = 15V, Rg = 5Ω, L = 200µH
CT 4
TJ = 125oC
WF 1
WF 2
VGE = 0V
pF
VCC = 30V
16
f = 1.0 MHz
TJ = 150oC, Ic = 120A
VCC = 1000V, VP = 1200V
FULL SQUARE
4
CT 2
Rg = 5Ω, VGE = +15V to 0V
SCSOA
Short Circuit Safe Operating Area
10
----
----
µs
TJ = 150oC
VCC = 900V, VP = 1200V
CT 3
WF 3
Rg = 5Ω, VGE = +15V to 0V
Le
Internal Emitter Inductance
13
nH Measured 5 mm from the package.
* Used Diode HF40D120ACE
2
www.irf.com
IRGP20B120U-E
F i g .2 - P o w e r D is s ip a tio n v s . C a s e
T e m p e ra tu re
F ig .1 - M a x im u m D C C o lle c to r
C u rre n t v s . C a s e T e m p e ra tu re
50
320
45
280
40
240
( W )
20
to t
25
P
30
I
C
(A )
35
200
160
120
15
80
10
40
5
0
0
0
40
80
T
C
120
160
0
40
80
(° C )
T
F i g .3 - F o rw a rd S O A
T C =2 5 °C ; T j < 1 5 0 °C
C
120
160
(°C )
F i g .4 - R e v e rs e B i a s S O A
T j = 1 5 0 °C , V GE = 1 5 V
1000
1000
PULSED
2µ s
100
10µ s
100
(A )
10
I
1m s
I
C
C
(A )
100µ s
10
1
10m s
DC
0 .1
1
1
10
V
www.irf.com
100
(V )
CE
1000
10000
1
10
V
100
(V )
1000
10000
CE
3
IRGP20B120U-E
F i g .5 - T y p i c a l IG B T O u tp u t
C h a ra c te ri s ti c s
T j= -4 0 ° C ; tp = 3 0 0 µs
F ig .6 - T y p ic a l IG B T O u tp u t
C h a ra c te ris tic s
T j= 2 5 ° C ; tp = 3 0 0 µs
60
60
V
V
V
55
50
45
V
V
GE
GE
GE
GE
= 18V
= 15V
= 12V
45
V
V
V
40
V
50
= 10V
= 8V
30
GE
= 18V
GE
= 15V
= 12V
= 10V
GE
= 8V
GE
GE
35
(A )
35
30
C
25
I
I
V
55
C
(A )
40
GE
25
20
20
15
15
10
10
5
5
0
0
0
1
2
3
V
CE
4
5
6
0
1
2
3
V
(V )
CE
4
5
6
(V )
F ig .7 - T y p ic a l IG B T O u tp u t
C h a ra c te ris tic s
T j= 1 2 5 °C ; tp = 3 0 0 µs
60
V
55
45
V
V
V
40
V
= 18V
GE
= 15V
= 12V
= 10V
GE
= 8V
GE
GE
35
30
I
C
(A )
50
GE
25
20
15
10
5
0
0
1
2
3
V
4
CE
4
5
6
(V )
www.irf.com
IRGP20B120U-E
F ig .190 - T y p ic a l V C E v s V
T j= 2 5 ° C
GE
20
18
18
16
16
14
14
12
12
(V )
20
10
8
C E
I CE =1 0 A
I CE =2 0 A
I CE =4 0 A
V
V
C E
(V )
F ig .98 - T y p ic a l V C E v s V
T j= -4 0 ° C
6
4
4
2
2
0
6
8
10
12 14
V G E (V )
16
18
20
6
18
225
16
200
14
175
12
150
(A )
250
12
14
V G E (V )
16
18
20
T j= 2 5 ° C
T j= 1 2 5 ° C
125
C
I CE =1 0 A
I CE =2 0 A
I CE =4 0 A
8
10
Fig.12
11 - Ty p. Trans fer C harac teris tic s
V C E = 20V ; tp= 20µ s
GE
20
10
8
I
(V )
F ig .110
1 - T y p ic a l V C E v s V
T j= 1 2 5 ° C
C E
I CE =1 0 A
I CE =2 0 A
I CE =4 0 A
8
6
0
V
10
GE
100
6
75
4
50
2
25
0
0
T j= 1 2 5 ° C
T j= 2 5 ° C
6
www.irf.com
8
10
12
14
V G E (V )
16
18
20
0
4
8
V
GE
12
(V )
16
20
5
IRGP20B120U-E
F ig .1
123 - T y p ic a l E n e rg y L o s s v s Ic
T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ;
R g=22 Ω ; V GE =15V
F ig .113
4 - T y p ic a l S w itc h in g T im e v s Ic
T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ;
R g=22 Ω ; V GE =15V
6000
1000
E on
5000
4000
t (n S )
E n e rg y (µ J
tdoff
3000
E off
100
tr
tdon
2000
tf
1000
0
10
0
10
20
30
40
50
0
10
I C (A )
20
30
40
50
I C (A )
F i g .1
156 - T y p i c a l S w i tc h i n g T i m e v s R g
T j= 1 2 5 °C ; L = 2 0 0 µ H ; V C E = 6 0 0 V ;
I C E = 2 0 A ; V GE = 1 5 V
F ig .1
145 - T y p ic a l E n e rg y L o s s v s R g
T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ;
I CE =2 0 A ; V GE =1 5 V
3000
1000
2800
E on
tdoff
2600
2400
1800
1600
E off
1400
t ( n S )
E n e rg y (u J
2200
2000
tdon
100
1200
tr
1000
tf
800
600
400
200
0
10
0
5
10 15 20 25 30 35 40 45 50 55
R g (o h m s )
6
0
5
10 15 20 25 30 35 40 45 50 55
R g (o h m s )
www.irf.com
IRGP20B120U-E
F i g .2
162 - T y p i c a l C a p a c i ta n c e v s V
V G E = 0 V ; f= 1 M H z
F i g .2
173 - T y p . G a te C h a rg e v s . V
I C = 2 0 A ; L = 6 0 0 µH
CE
10000
16
600V
14
C
ie s
800V
12
1000
C
G E
(V )
10
oes
8
V
C a p a c Ita n c e (p
GE
6
100
4
C
re s
2
0
10
0
20
40
V
60
CE
80
0
100
40
Q
(V )
G
80
120
160
200
, T o ta l G a te C h a rg e (n C )
F ig .218
4 - N o rm a liz e d T ra n s ie n t T h e rm a l Im p e d a n c e , J u n c tio n -to -C a s e
θ
10
1
D = 0.5
0 .2
0 .1
0 .1
0 .0 5
P
DM
0 .0 2
t1
0 .0 1
0 .0 1
t2
N o te s :
1 . D u ty fa c to r D = t 1 / t 2
2 . P e a k T J = P D M x Z thJC + T
S IN G L E
P U LS E
C
0 .0 0 1
0 .0 0 0 0 1
0 .0 0 0 1 0
0 .0 0 1 0 0
0 .0 1 0 0 0
0 .1 0 0 0 0
1 .0 0 0 0 0
1 0 .0 0 0 0 0
t 1 , R e c ta n g u la r P u ls e D u ra tio n (s e c )
www.irf.com
7
IRGP20B120U-E
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
L
L
VCC
DUT
0
80 V
+
-
DUT
1000V
Rg
1K
Fig. CT.3 - S.C. SOA Circuit
Driver
DC
Fig. CT.4 - Switching Loss Circuit
DIODE CLAMP
L
900V
DUT
DUT /
DRIVER
VCC
Rg
Fig. CT.5 - Resistive Load Circuit
Fig. CT.6 - Unclamped Inductive Load
Circuit
R = VCC
ICM
L
DUT
VCC
Rg
DUT
VCC
Rg
8
www.irf.com
IRGP20B120U-E
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
1000
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125°C using Fig. CT.4
25
800
80
600
60
9 0 % IC E
800
20
600
400
(A
E
T E S T C UR R E NT
IC
E
VC
(A
E
IC
10
VC
400
40
t r
(V
f
(V
t
E
9 0 % te s t c u r r e n t
15
200
5% VCE
20
1 0 % te s t c u r r e n t
200
5
5 % VCE
5 % IC E
0
0
0
0
Eon Loss
E of f L o s s
-2 0 0
-5
-0 .2
0 .0
0 .2
0 .4
0 .6
-2 0 0
0 .8
-2 0
-0 .2
-0 .1
0 .0
t i m e (µ s )
0 .1
0 .2
0 .3
t i m e (µ s )
1000
200
800
150
600
100
400
50
200
0
E
IC
VC
E
250
( V
1200
( A
Fig. WF.3- Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
0
-5 0
-1 0
0
10
20
30
t i m e (µ s )
www.irf.com
9
IRGP20B120U-E
TO-247AD Case Outline and Dimensions
DRG. No:
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/01
10
www.irf.com