PD- 94117 IRGP20B120U-E INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT Features • UltraFast Non Punch Through (NPT) Technology • 10 µs Short Circuit capability • Square RBSOA • Positive VCE(on) Temperature Coefficient • Extended lead TO-247 package C VCES = 1200V VCE(on) typ. = 3.05V G VGE = 15V, IC = 20A, 25°C E Benefits n-channel • Benchmark efficiency above 20KHz • Optimized for Welding, UPS, and Induction Heating applications • Rugged with UltraFast performance • Low EMI • Significantly Less Snubber required • Excellent Current sharing in Parallel operation • Longer leads for easier mounting TO-247AD Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EAS @ TC =25°C PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current (Fig.1) Continuous Collector Current (Fig.1) Pulsed Collector Current (Fig.3, Fig. CT.5) Clamped Inductive Load Current(Fig.4, Fig. CT.2) Gate-to-Emitter Voltage Avalanche Energy, single pulse IC = 25A, VCC = 50V, RGE = 25ohm L = 200µH (Fig. CT.6) Maximum Power Dissipation (Fig.2) Maximum Power Dissipation (Fig.2) Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. Max. Units 1200 40 20 120 120 ± 20 65 V A V mJ 300 120 -55 to + 150 W °C 300, (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case - IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Wt ZθJC Weight Transient Thermal Impedance Junction-to-Case www.irf.com Min. Typ. Max. Units ––– ––– ––– ––– 0.24 ––– 0.42 ––– 40 °C/W ––– 6 (0.21) ––– g (oz) (Fig.18) 1 03/06/01 IRGP20B120U-E Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage Min. 1200 ∆V(BR)CES / ∆Tj Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation VCE(on) VGE(th) Voltage Gate Threshold Voltage ∆VGE(th) / ∆Tj Temperature Coeff. of Threshold Voltage gfe Forward Transconductance ICES Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current 4.0 13.6 Typ. +1.2 3.05 3.37 4.23 3.89 4.31 5.0 - 1.2 15.7 Max. Units V V/°C 3.45 3.80 4.85 V 4.50 5.06 6.0 V Conditions Fig. VGE = 0V,Ic =250 µA VGE = 0V, Ic = 1 mA ( 25 -125 oC ) IC = 20A, VGE = 15V 5, 6 IC = 25A, VGE = 15V 7, 8 IC = 40A, VGE = 15V 9 IC = 20A, VGE = 15V, TJ = 125°C 10 IC = 25A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250 µA 8,9,10,11 o o S VCE = 50V, IC = 20A, PW=80µs mV/ C VCE = VGE, IC = 1 mA (25 -125 C) 17.8 250 420 750 1482 2200 ±100 VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ =125°C VGE = 0V, VCE = 1200V, TJ =150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Parameter Min. Total Gate charge (turn-on) Qge Gate - Emitter Charge (turn-on) Qgc Gate - Collector Charge (turn-on) Eon Turn-On Switching Loss * Eoff Turn-Off Switching Loss * Typ. 169 24 82 850 425 Max. Units Conditions I = 20A 254 C 36 nC VCC = 600V VGE = 15V 126 IC = 20A, VCC = 600V 1050 650 µJ VGE = 15V, Rg = 5Ω, L = 200µH Etot Total Switching Loss * 1275 1800 TJ = 25 C, Energy losses include tail and diode reverse recovery Eon Turn-on Switching Loss * Turn-off Switching Loss * 1350 1550 610 875 Ic = 20A, VCC = 600V Eoff Fig. 17 CT 1 CT 4 WF 1 o µJ WF 2 12, 14 VGE = 15V, Rg = 5Ω, L = 200µH CT 4 o Etot Total Switching Loss * 1960 2425 TJ = 125 C, Energy losses include tail and diode reverse recovery td(on) Turn - on delay time Ic = 20A, VCC = 600V tr Rise time td(off) Turn - off delay time tf Fall time 50 20 204 24 2200 210 85 Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance RBSOA Reverse bias safe operating area 65 30 230 35 ns WF 1 & 2 13, 15 VGE = 15V, Rg = 5Ω, L = 200µH CT 4 TJ = 125oC WF 1 WF 2 VGE = 0V pF VCC = 30V 16 f = 1.0 MHz TJ = 150oC, Ic = 120A VCC = 1000V, VP = 1200V FULL SQUARE 4 CT 2 Rg = 5Ω, VGE = +15V to 0V SCSOA Short Circuit Safe Operating Area 10 ---- ---- µs TJ = 150oC VCC = 900V, VP = 1200V CT 3 WF 3 Rg = 5Ω, VGE = +15V to 0V Le Internal Emitter Inductance 13 nH Measured 5 mm from the package. * Used Diode HF40D120ACE 2 www.irf.com IRGP20B120U-E F i g .2 - P o w e r D is s ip a tio n v s . C a s e T e m p e ra tu re F ig .1 - M a x im u m D C C o lle c to r C u rre n t v s . C a s e T e m p e ra tu re 50 320 45 280 40 240 ( W ) 20 to t 25 P 30 I C (A ) 35 200 160 120 15 80 10 40 5 0 0 0 40 80 T C 120 160 0 40 80 (° C ) T F i g .3 - F o rw a rd S O A T C =2 5 °C ; T j < 1 5 0 °C C 120 160 (°C ) F i g .4 - R e v e rs e B i a s S O A T j = 1 5 0 °C , V GE = 1 5 V 1000 1000 PULSED 2µ s 100 10µ s 100 (A ) 10 I 1m s I C C (A ) 100µ s 10 1 10m s DC 0 .1 1 1 10 V www.irf.com 100 (V ) CE 1000 10000 1 10 V 100 (V ) 1000 10000 CE 3 IRGP20B120U-E F i g .5 - T y p i c a l IG B T O u tp u t C h a ra c te ri s ti c s T j= -4 0 ° C ; tp = 3 0 0 µs F ig .6 - T y p ic a l IG B T O u tp u t C h a ra c te ris tic s T j= 2 5 ° C ; tp = 3 0 0 µs 60 60 V V V 55 50 45 V V GE GE GE GE = 18V = 15V = 12V 45 V V V 40 V 50 = 10V = 8V 30 GE = 18V GE = 15V = 12V = 10V GE = 8V GE GE 35 (A ) 35 30 C 25 I I V 55 C (A ) 40 GE 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 V CE 4 5 6 0 1 2 3 V (V ) CE 4 5 6 (V ) F ig .7 - T y p ic a l IG B T O u tp u t C h a ra c te ris tic s T j= 1 2 5 °C ; tp = 3 0 0 µs 60 V 55 45 V V V 40 V = 18V GE = 15V = 12V = 10V GE = 8V GE GE 35 30 I C (A ) 50 GE 25 20 15 10 5 0 0 1 2 3 V 4 CE 4 5 6 (V ) www.irf.com IRGP20B120U-E F ig .190 - T y p ic a l V C E v s V T j= 2 5 ° C GE 20 18 18 16 16 14 14 12 12 (V ) 20 10 8 C E I CE =1 0 A I CE =2 0 A I CE =4 0 A V V C E (V ) F ig .98 - T y p ic a l V C E v s V T j= -4 0 ° C 6 4 4 2 2 0 6 8 10 12 14 V G E (V ) 16 18 20 6 18 225 16 200 14 175 12 150 (A ) 250 12 14 V G E (V ) 16 18 20 T j= 2 5 ° C T j= 1 2 5 ° C 125 C I CE =1 0 A I CE =2 0 A I CE =4 0 A 8 10 Fig.12 11 - Ty p. Trans fer C harac teris tic s V C E = 20V ; tp= 20µ s GE 20 10 8 I (V ) F ig .110 1 - T y p ic a l V C E v s V T j= 1 2 5 ° C C E I CE =1 0 A I CE =2 0 A I CE =4 0 A 8 6 0 V 10 GE 100 6 75 4 50 2 25 0 0 T j= 1 2 5 ° C T j= 2 5 ° C 6 www.irf.com 8 10 12 14 V G E (V ) 16 18 20 0 4 8 V GE 12 (V ) 16 20 5 IRGP20B120U-E F ig .1 123 - T y p ic a l E n e rg y L o s s v s Ic T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ; R g=22 Ω ; V GE =15V F ig .113 4 - T y p ic a l S w itc h in g T im e v s Ic T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ; R g=22 Ω ; V GE =15V 6000 1000 E on 5000 4000 t (n S ) E n e rg y (µ J tdoff 3000 E off 100 tr tdon 2000 tf 1000 0 10 0 10 20 30 40 50 0 10 I C (A ) 20 30 40 50 I C (A ) F i g .1 156 - T y p i c a l S w i tc h i n g T i m e v s R g T j= 1 2 5 °C ; L = 2 0 0 µ H ; V C E = 6 0 0 V ; I C E = 2 0 A ; V GE = 1 5 V F ig .1 145 - T y p ic a l E n e rg y L o s s v s R g T j= 1 2 5 ° C ; L = 2 0 0 µH ; V C E = 6 0 0 V ; I CE =2 0 A ; V GE =1 5 V 3000 1000 2800 E on tdoff 2600 2400 1800 1600 E off 1400 t ( n S ) E n e rg y (u J 2200 2000 tdon 100 1200 tr 1000 tf 800 600 400 200 0 10 0 5 10 15 20 25 30 35 40 45 50 55 R g (o h m s ) 6 0 5 10 15 20 25 30 35 40 45 50 55 R g (o h m s ) www.irf.com IRGP20B120U-E F i g .2 162 - T y p i c a l C a p a c i ta n c e v s V V G E = 0 V ; f= 1 M H z F i g .2 173 - T y p . G a te C h a rg e v s . V I C = 2 0 A ; L = 6 0 0 µH CE 10000 16 600V 14 C ie s 800V 12 1000 C G E (V ) 10 oes 8 V C a p a c Ita n c e (p GE 6 100 4 C re s 2 0 10 0 20 40 V 60 CE 80 0 100 40 Q (V ) G 80 120 160 200 , T o ta l G a te C h a rg e (n C ) F ig .218 4 - N o rm a liz e d T ra n s ie n t T h e rm a l Im p e d a n c e , J u n c tio n -to -C a s e θ 10 1 D = 0.5 0 .2 0 .1 0 .1 0 .0 5 P DM 0 .0 2 t1 0 .0 1 0 .0 1 t2 N o te s : 1 . D u ty fa c to r D = t 1 / t 2 2 . P e a k T J = P D M x Z thJC + T S IN G L E P U LS E C 0 .0 0 1 0 .0 0 0 0 1 0 .0 0 0 1 0 0 .0 0 1 0 0 0 .0 1 0 0 0 0 .1 0 0 0 0 1 .0 0 0 0 0 1 0 .0 0 0 0 0 t 1 , R e c ta n g u la r P u ls e D u ra tio n (s e c ) www.irf.com 7 IRGP20B120U-E Fig. CT.1 - Gate Charge Circuit (turn-off) Fig. CT.2 - RBSOA Circuit L L VCC DUT 0 80 V + - DUT 1000V Rg 1K Fig. CT.3 - S.C. SOA Circuit Driver DC Fig. CT.4 - Switching Loss Circuit DIODE CLAMP L 900V DUT DUT / DRIVER VCC Rg Fig. CT.5 - Resistive Load Circuit Fig. CT.6 - Unclamped Inductive Load Circuit R = VCC ICM L DUT VCC Rg DUT VCC Rg 8 www.irf.com IRGP20B120U-E Fig. WF.1 - Typ. Turn-off Loss Waveform @ Tj=125°C using Fig. CT.4 1000 Fig. WF.2 - Typ. Turn-on Loss Waveform @ Tj=125°C using Fig. CT.4 25 800 80 600 60 9 0 % IC E 800 20 600 400 (A E T E S T C UR R E NT IC E VC (A E IC 10 VC 400 40 t r (V f (V t E 9 0 % te s t c u r r e n t 15 200 5% VCE 20 1 0 % te s t c u r r e n t 200 5 5 % VCE 5 % IC E 0 0 0 0 Eon Loss E of f L o s s -2 0 0 -5 -0 .2 0 .0 0 .2 0 .4 0 .6 -2 0 0 0 .8 -2 0 -0 .2 -0 .1 0 .0 t i m e (µ s ) 0 .1 0 .2 0 .3 t i m e (µ s ) 1000 200 800 150 600 100 400 50 200 0 E IC VC E 250 ( V 1200 ( A Fig. WF.3- Typ. S.C. Waveform @ TC=150°C using Fig. CT.3 0 -5 0 -1 0 0 10 20 30 t i m e (µ s ) www.irf.com 9 IRGP20B120U-E TO-247AD Case Outline and Dimensions DRG. No: Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/01 10 www.irf.com