PD - 94569 GB25XF120K IGBT 6PACK MODULE Features • Low VCE (on) Non Punch Through IGBT Technology • Low Diode VF • 10µs Short Circuit Capability • Square RBSOA • HEXFRED Antiparallel Diode with Ultrasoft Diode Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate • Low Stray Inductance Design VCES = 1200V IC = 25A, TC=80°C tsc > 10µs, TJ=150°C ECONO2 6PACK VCE(on) typ. = 2.35V Benefits • Benchmark Efficiency for Motor Control • Rugged Transient Performance • Low EMI, Requires Less Snubbing • Direct Mounting to Heatsink • PCB Solderable Terminals • Low Junction to Case Thermal Resistance • UL Listed Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 1200 V IC @ TC = 25°C Continuous Collector Current 40 A IC @ TC = 80°C Continuous Collector Current 25 ICM Pulsed Collector Current (Ref.Fig.C.T.5) 80 ILM Clamped Inductive Load current 80 IF @ TC = 25°C Diode Continuous Forward Current 40 IF @ TC = 80°C Diode Continuous Forward Current 25 IFM Diode Maximum Forward Current 80 VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 198 W PD @ TC = 80°C Maximum Power Dissipation 111 TJ Maximum Operating Junction Temperature TSTG Storage Temperature Range VISOL Isolation Voltage 150 °C -40 to +125 AC 2500 (1min) V Thermal and Mechanical Characteristics Min. Typ. Max. Units RθJC (IGBT) Junction-to-Case- IGBT Parameter ––– ––– 0.63 °C/W RθJC (Diode) Junction-to-Case- Diode ––– ––– 1.00 RθCS (Module) Case-to-Sink, flat, greased surface ––– 0.05 ––– Mounting Torque (M5) 2.7 ––– 3.3 N m Weight ––– 170 ––– g www.irf.com . 1 10/18/02 GB25XF120K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES Collector-to-Emitter Breakdown Voltage Min. 1200 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage Typ. Max. Units — — 0.84 — — 2.35 2.50 — 2.80 3.00 — 2.75 — Ref.Fig Conditions V VGE = 0V, IC = 500µA V/°C VGE = 0V, IC = 1mA (25°C-125°C) IC = 25A, VGE = 15V V IC = 40A, VGE = 15V — 3.40 — IC = 40A, VGE = 15V, TJ = 125°C Gate Threshold Voltage 4.0 5.0 6.0 VCE = VGE, IC = 250µA ∆VGE(th) Threshold Voltage temp. coefficient — -12 — ICES Zero Gate Voltage Collector Current — 5 40 — 500 — — 1.90 2.40 — 2.15 2.75 — 2.00 — — 2.35 — — — ±200 IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 3,4 IC = 25A, VGE = 15V, TJ = 125°C VGE(th) VFM 1,2 3,4 mV/°C VCE = VGE, IC = 1mA (25°C-125°C) µA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 125°C V IF = 25A IF = 40A 16 IF = 25A, TJ = 125°C IF = 40A, TJ = 125°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Total Gate Charge (turn-on) — 180 272 Qge Gate-to-Emitter Charge (turn-on) — 20 33 Conditions IC = 25A nC 10 VCC = 600V CT1 Qgc Gate-to-Collector Charge (turn-on) — 90 137 Eon Turn-On Switching Loss — 2220 4260 Eoff Turn-Off Switching Loss — 1850 3100 Etot Total Switching Loss — 4070 7360 TJ = 25°C Eon Turn-On Switching Loss — 3150 5120 IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH Eoff Turn-Off Switching Loss — 2720 4260 Etot Total Switching Loss — 5870 9380 td(on) Turn-On delay time — 60 80 tr Rise time — 30 45 td(off) Turn-Off delay time — 450 850 tf Fall time — 200 320 Cies Input Capacitance — 2370 — Coes Output Capacitance — 455 — Cres Reverse Transfer Capacitance — 60 — RBSOA Reverse Bias Safe Operating Area VGE = 15V IC = 25A, VCC = 600V µJ µJ TJ = 125°C ns d d — — CT4 IC = 25A, VCC = 600V 6,8 VGE = 15V, RG = 10Ω, L = 400µH CT4 TJ = 125°C WF1 WF2 VGE = 0V pF VCC = 30V 9 f = 1Mhz TJ = 150°C, IC = 80A FULL SQUARE 10 5,7 WF1,2 TJ = 150°C Short Circuit Safe Operating Area CT4 VGE = 15V, RG = 10Ω, L = 400µH RG = 10Ω, VGE = +15V to 0V SCSOA Ref.Fig µs CT2 14 CT3 VCC = 900V, VP = 1200V RG = 10Ω, VGE = +15V to 0V Irr Peak Reverse Recovery Current — 55 — A TJ = 125°C 17,18,19 VCC = 600V, IF = 25A, L = 400µH VGE = 15V, RG = 10Ω For UL Applications, TJ is limited to +125°C (See File E78996). Energy losses include "tail" and diode reverse recovery. 2 www.irf.com CT4 GB25XF120K 50 50 45 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 ICE (A) ICE (A) 35 45 25 20 30 25 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 2 VCE (V) 18 16 16 14 14 ICE = 12.5A ICE = 25A VCE (V) VCE (V) 20 18 ICE = 50A 8 5 6 Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 20 10 4 VCE (V) Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 12 3 12 ICE = 50A 8 6 6 4 4 2 2 0 ICE = 12.5A ICE = 25A 10 0 5 10 15 VGE (V) Fig. 3 - Typical VCE vs. VGE TJ = 25°C www.irf.com 20 5 10 15 20 VGE (V) Fig. 4 - Typical VCE vs. VGE TJ = 125°C 3 GB25XF120K 7000 1000 tdOFF 6000 EON 4000 Swiching Time (ns) Energy (µJ) 5000 EOFF 3000 2000 tF 100 tdON 1000 tR 0 0 20 40 10 60 0 IC (A) 20 40 60 IC (A) Fig. 5 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V RG= 10Ω; VGE= 15V Fig. 6 - Typ. Switching Time vs. IC TJ = 125°C; L=400µH; VCE= 600V RG= 10Ω; VGE= 15V 5000 10000 4500 4000 EON Swiching Time (ns) Energy (µJ) 3500 3000 EOFF 2500 2000 1500 1000 tdOFF tF tdON 100 1000 tR 500 0 10 0 10 20 30 40 RG (Ω) Fig. 7 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V ICE= 25A; VGE= 15V 4 50 0 10 20 30 40 50 RG (Ω) Fig. 8 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V ICE= 25A; VGE= 15V www.irf.com GB25XF120K 10000 16 14 Cies 400V 600V 1000 10 VGE (V) Capacitance (pF) 12 Coes 8 6 100 4 Cres 2 0 10 0 20 40 60 80 0 100 50 100 150 200 Q G , Total Gate Charge (nC) VCE (V) Fig. 10 - Typical Gate Charge vs. VGE ICE = 25A; L = 600µH Fig. 9- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 60 250 200 IC (A) Ptot (W) 40 150 100 20 50 0 0 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 11 - Maximum DC Collector Current vs. Case Temperature www.irf.com 0 50 100 150 200 T C (°C) Fig. 12 - Power Dissipation vs. Case Temperature 5 GB25XF120K 100 1000 100 IC (A) IC (A) 20 µs 10 100 µs 10 1 ms 1 10 ms DC 0.1 1 1 10 100 1000 10000 10 100 VCE (V) Fig. 13 - Forward SOA TC = 25°C; TJ ≤ 150°C 10000 Fig. 14 - Reverse Bias SOA TJ = 150°C; VGE =15V 350 50 300 TJ = 25°C 45 TJ = 125°C 40 250 25°C 125°C 35 30 200 IF (A) ICE (A) 1000 VCE (V) 150 25 20 15 100 10 50 5 0 0 0 5 10 15 VGE (V) Fig. 15 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 6 20 0.0 1.0 2.0 3.0 4.0 VF (V) Fig. 16 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com GB25XF120K 80 70 RG = 4.7 Ω 70 60 60 RG = 10 Ω 50 IRR (A) IRR (A) 50 RG = 22 Ω 40 40 30 30 20 20 10 10 0 0 0 10 20 30 40 50 60 0 5 10 IF (A) 15 20 25 RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 25A 70 60 IRR (A) 50 40 30 20 10 0 500 1000 1500 2000 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 25A; TJ = 125°C www.irf.com 7 GB25XF120K 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.10 0.05 0.1 0.01 0.02 0.01 τJ R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ Ri (°C/W) 0.117 τi (sec) 0.000572 0.397 0.116 0.025837 0.060132 τ3 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.01 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci i/Ri R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.235 0.00549 0.527 0.238 0.02117 0.049021 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 21. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 8 www.irf.com GB25XF120K 900 800 45 900 40 800 tf 700 600 30 600 70 60 20 300 15 5% V CE 200 10 V CE (V) 400 500 50 400 90% test current 300 30 10% test current 200 5% ICE 100 0 5 100 0 0 5% V CE Eon Loss Eof f Loss -100 -0.60 -5 -0.10 0.40 0.90 1.40 Time(µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4 www.irf.com -100 9.40 40 ICE (A) 25 ICE (A) V CE (V) 700 80 tr TEST CURRENT 90% ICE 500 35 90 9.60 9.80 20 10 0 -10 10.00 10.20 10.40 Time (µs) Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4 9 GB25XF120K L L VCC DUT 80 V DUT 0 1000V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver D C L - 5V 900V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com GB25XF120K Econo2 6Pack Package Outline Dimensions are shown in millimeters (inches) 0.25 [.0098] CONVEX Econo2 6Pack Part Marking Information Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/02 www.irf.com 11