IRF GB25XF120K

PD - 94569
GB25XF120K
IGBT 6PACK MODULE
Features
• Low VCE (on) Non Punch Through IGBT Technology
• Low Diode VF
• 10µs Short Circuit Capability
• Square RBSOA
• HEXFRED Antiparallel Diode with Ultrasoft Diode
Reverse Recovery Characteristics
• Positive VCE (on) Temperature Coefficient
• Ceramic DBC Substrate
• Low Stray Inductance Design
VCES = 1200V
IC = 25A, TC=80°C
tsc > 10µs, TJ=150°C
ECONO2 6PACK
VCE(on) typ. = 2.35V
Benefits
• Benchmark Efficiency for Motor Control
• Rugged Transient Performance
• Low EMI, Requires Less Snubbing
• Direct Mounting to Heatsink
• PCB Solderable Terminals
• Low Junction to Case Thermal Resistance
• UL Listed 
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
1200
V
IC @ TC = 25°C
Continuous Collector Current
40
A
IC @ TC = 80°C
Continuous Collector Current
25
ICM
Pulsed Collector Current (Ref.Fig.C.T.5)
80
ILM
Clamped Inductive Load current
80
IF @ TC = 25°C
Diode Continuous Forward Current
40
IF @ TC = 80°C
Diode Continuous Forward Current
25
IFM
Diode Maximum Forward Current
80
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
198
W
PD @ TC = 80°C
Maximum Power Dissipation
111
TJ
Maximum Operating Junction Temperature
TSTG
Storage Temperature Range
VISOL
Isolation Voltage
150
°C
-40 to +125
AC 2500 (1min)
V
Thermal and Mechanical Characteristics
Min.
Typ.
Max.
Units
RθJC (IGBT)
Junction-to-Case- IGBT
Parameter
–––
–––
0.63
°C/W
RθJC (Diode)
Junction-to-Case- Diode
–––
–––
1.00
RθCS (Module)
Case-to-Sink, flat, greased surface
–––
0.05
–––
Mounting Torque (M5)
2.7
–––
3.3
N m
Weight
–––
170
–––
g
www.irf.com
.
1
10/18/02
GB25XF120K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
Collector-to-Emitter Breakdown Voltage
Min.
1200
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
VCE(on)
Collector-to-Emitter Voltage
Typ. Max. Units
—
—
0.84
—
—
2.35
2.50
—
2.80
3.00
—
2.75
—
Ref.Fig
Conditions
V VGE = 0V, IC = 500µA
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
IC = 25A, VGE = 15V
V
IC = 40A, VGE = 15V
—
3.40
—
IC = 40A, VGE = 15V, TJ = 125°C
Gate Threshold Voltage
4.0
5.0
6.0
VCE = VGE, IC = 250µA
∆VGE(th)
Threshold Voltage temp. coefficient
—
-12
—
ICES
Zero Gate Voltage Collector Current
—
5
40
—
500
—
—
1.90
2.40
—
2.15
2.75
—
2.00
—
—
2.35
—
—
—
±200
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
3,4
IC = 25A, VGE = 15V, TJ = 125°C
VGE(th)
VFM
1,2
3,4
mV/°C VCE = VGE, IC = 1mA (25°C-125°C)
µA VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 125°C
V
IF = 25A
IF = 40A
16
IF = 25A, TJ = 125°C
IF = 40A, TJ = 125°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Qg
Total Gate Charge (turn-on)
—
180
272
Qge
Gate-to-Emitter Charge (turn-on)
—
20
33
Conditions
IC = 25A
nC
10
VCC = 600V
CT1
Qgc
Gate-to-Collector Charge (turn-on)
—
90
137
Eon
Turn-On Switching Loss
—
2220
4260
Eoff
Turn-Off Switching Loss
—
1850
3100
Etot
Total Switching Loss
—
4070
7360
TJ = 25°C
Eon
Turn-On Switching Loss
—
3150
5120
IC = 25A, VCC = 600V
VGE = 15V, RG = 10Ω, L = 400µH
Eoff
Turn-Off Switching Loss
—
2720
4260
Etot
Total Switching Loss
—
5870
9380
td(on)
Turn-On delay time
—
60
80
tr
Rise time
—
30
45
td(off)
Turn-Off delay time
—
450
850
tf
Fall time
—
200
320
Cies
Input Capacitance
—
2370
—
Coes
Output Capacitance
—
455
—
Cres
Reverse Transfer Capacitance
—
60
—
RBSOA
Reverse Bias Safe Operating Area
VGE = 15V
IC = 25A, VCC = 600V
µJ
µJ
TJ = 125°C
ns
d
d
—
—
CT4
IC = 25A, VCC = 600V
6,8
VGE = 15V, RG = 10Ω, L = 400µH
CT4
TJ = 125°C
WF1
WF2
VGE = 0V
pF
VCC = 30V
9
f = 1Mhz
TJ = 150°C, IC = 80A
FULL SQUARE
10
5,7
WF1,2
TJ = 150°C
Short Circuit Safe Operating Area
CT4
VGE = 15V, RG = 10Ω, L = 400µH
RG = 10Ω, VGE = +15V to 0V
SCSOA
Ref.Fig
µs
CT2
14
CT3
VCC = 900V, VP = 1200V
RG = 10Ω, VGE = +15V to 0V
Irr
Peak Reverse Recovery Current
—
55
—
A
TJ = 125°C
17,18,19
VCC = 600V, IF = 25A, L = 400µH
VGE = 15V, RG = 10Ω
 For UL Applications, TJ is limited to +125°C (See File E78996).
‚ Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
CT4
GB25XF120K
50
50
45
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
40
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
40
35
ICE (A)
ICE (A)
35
45
25
20
30
25
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
18
16
16
14
14
ICE = 12.5A
ICE = 25A
VCE (V)
VCE (V)
20
18
ICE = 50A
8
5
6
Fig. 2 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
20
10
4
VCE (V)
Fig. 1 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
12
3
12
ICE = 50A
8
6
6
4
4
2
2
0
ICE = 12.5A
ICE = 25A
10
0
5
10
15
VGE (V)
Fig. 3 - Typical VCE vs. VGE
TJ = 25°C
www.irf.com
20
5
10
15
20
VGE (V)
Fig. 4 - Typical VCE vs. VGE
TJ = 125°C
3
GB25XF120K
7000
1000
tdOFF
6000
EON
4000
Swiching Time (ns)
Energy (µJ)
5000
EOFF
3000
2000
tF
100
tdON
1000
tR
0
0
20
40
10
60
0
IC (A)
20
40
60
IC (A)
Fig. 5 - Typ. Energy Loss vs. IC
TJ = 125°C; L=400µH; VCE= 600V
RG= 10Ω; VGE= 15V
Fig. 6 - Typ. Switching Time vs. IC
TJ = 125°C; L=400µH; VCE= 600V
RG= 10Ω; VGE= 15V
5000
10000
4500
4000
EON
Swiching Time (ns)
Energy (µJ)
3500
3000
EOFF
2500
2000
1500
1000
tdOFF
tF
tdON
100
1000
tR
500
0
10
0
10
20
30
40
RG (Ω)
Fig. 7 - Typ. Energy Loss vs. RG
TJ = 125°C; L=400µH; VCE= 600V
ICE= 25A; VGE= 15V
4
50
0
10
20
30
40
50
RG (Ω)
Fig. 8 - Typ. Switching Time vs. RG
TJ = 125°C; L=400µH; VCE= 600V
ICE= 25A; VGE= 15V
www.irf.com
GB25XF120K
10000
16
14
Cies
400V
600V
1000
10
VGE (V)
Capacitance (pF)
12
Coes
8
6
100
4
Cres
2
0
10
0
20
40
60
80
0
100
50
100
150
200
Q G , Total Gate Charge (nC)
VCE (V)
Fig. 10 - Typical Gate Charge vs. VGE
ICE = 25A; L = 600µH
Fig. 9- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
60
250
200
IC (A)
Ptot (W)
40
150
100
20
50
0
0
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 11 - Maximum DC Collector Current vs.
Case Temperature
www.irf.com
0
50
100
150
200
T C (°C)
Fig. 12 - Power Dissipation vs. Case
Temperature
5
GB25XF120K
100
1000
100
IC (A)
IC (A)
20 µs
10
100 µs
10
1 ms
1
10 ms
DC
0.1
1
1
10
100
1000
10000
10
100
VCE (V)
Fig. 13 - Forward SOA
TC = 25°C; TJ ≤ 150°C
10000
Fig. 14 - Reverse Bias SOA
TJ = 150°C; VGE =15V
350
50
300
TJ = 25°C
45
TJ = 125°C
40
250
25°C
125°C
35
30
200
IF (A)
ICE (A)
1000
VCE (V)
150
25
20
15
100
10
50
5
0
0
0
5
10
15
VGE (V)
Fig. 15 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
6
20
0.0
1.0
2.0
3.0
4.0
VF (V)
Fig. 16 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
GB25XF120K
80
70
RG = 4.7 Ω
70
60
60
RG = 10 Ω
50
IRR (A)
IRR (A)
50
RG = 22 Ω
40
40
30
30
20
20
10
10
0
0
0
10
20
30
40
50
60
0
5
10
IF (A)
15
20
25
RG (Ω)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 125°C
Fig. 18 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 25A
70
60
IRR (A)
50
40
30
20
10
0
500
1000
1500
2000
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 600V; VGE= 15V;
ICE= 25A; TJ = 125°C
www.irf.com
7
GB25XF120K
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.10
0.05
0.1
0.01
0.02
0.01
τJ
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
Ri (°C/W)
0.117
τi (sec)
0.000572
0.397
0.116
0.025837
0.060132
τ3
Ci= τi/Ri
Ci i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.01
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
Ci= τi/Ri
Ci i/Ri
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.235
0.00549
0.527
0.238
0.02117
0.049021
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
Fig 21. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
8
www.irf.com
GB25XF120K
900
800
45
900
40
800
tf
700
600
30
600
70
60
20
300
15
5% V CE
200
10
V CE (V)
400
500
50
400
90% test current
300
30
10% test current
200
5% ICE
100
0
5
100
0
0
5% V CE
Eon Loss
Eof f Loss
-100
-0.60
-5
-0.10
0.40
0.90
1.40
Time(µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 125°C using Fig. CT.4
www.irf.com
-100
9.40
40
ICE (A)
25
ICE (A)
V CE (V)
700
80
tr
TEST CURRENT
90% ICE
500
35
90
9.60
9.80
20
10
0
-10
10.00 10.20 10.40
Time (µs)
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 125°C using Fig. CT.4
9
GB25XF120K
L
L
VCC
DUT
80 V
DUT
0
1000V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
D
C
L
- 5V
900V
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
GB25XF120K
Econo2 6Pack Package Outline
Dimensions are shown in millimeters (inches)
0.25 [.0098] CONVEX
Econo2 6Pack Part Marking Information
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/02
www.irf.com
11