INTEGRATED CIRCUITS DATA SHEET TDA5145 Brushless DC motor drive circuit Product specification Supersedes data of March 1992 File under Integrated Circuits, IC11 Philips Semiconductors June 1994 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 FEATURES APPLICATIONS • Full-wave commutation (using push/pull drivers at the output stages) without position sensors • General purpose spindle driver e.g.: – Hard disk drive • Built-in start-up circuitry – Tape drive • Three push-pull outputs: – Optical disk drive. – output current 2.0 A (typ.) – built-in current limiter GENERAL DESCRIPTION – soft-switching outputs for low Electromagnetic Interference (EMI) The TDA5145 is a bipolar integrated circuit used to drive 3-phase brushless DC motors in full-wave mode. The device is sensorless (saving of 3 hall-sensors) using the back-EMF sensing technique to sense the rotor position. It includes bidirectional control, brake function and has a special circuit built-in to reduce the EMI (soft switching output stages). • Thermal protection • Flyback diodes • Tacho output without extra sensor • Motor brake facility • Direction control input • Reset function • Transconductance amplifier for an external control transistor. QUICK REFERENCE DATA Measured over full voltage and temperature range. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VP supply voltage note 1 4 − 18 V VVMOT input voltage to the output driver stages note 2 1.7 − 16 V VDO drop-out output voltage IO = 100 mA − 0.90 1.05 V ILIM current limiting VVMOT = 10 V; RO = 1.2 Ω 1.8 2.0 2.5 A Notes 1. An unstabilized supply can be used. 2. VVMOT = VP; +AMP IN = −AMP IN = 0 V; all outputs IO = 0 mA. ORDERING INFORMATION PACKAGE TYPE NUMBER PINS PIN POSITION MATERIAL CODE TDA5145 28 DIL plastic SOT117-1 TDA5145T 28 SOL plastic SOT136-1 June 1994 2 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 BLOCK DIAGRAM BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBB Pin numbers for both DIL and SOL packages are identical. Fig.1 Block diagram. June 1994 3 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 PINNING SYMBOL PIN(1) DESCRIPTION MOT1 1 and 2 TEST 3 test input/output driver output 1 n.c. 4 not connected MOT2 5 and 6 driver output 2 VMOT 7 and 8 input voltage for the output driver stages BRAKE 9 DIR 10 direction control input; this pin may not be left floating FG 11 frequency generator: output of the rotation speed (open collector digital output) GND2 12 ground supply return for control circuits VP 13 supply voltage CAP-CD 14 external capacitor connection for adaptive communication delay timing CAP-DC 15 external capacitor connection for adaptive communication delay timing copy CAP-ST 16 external capacitor connection for start-up oscillator CAP-TI 17 external capacitor connection for timing +AMP IN 18 non-inverting input of the transconductance amplifier −AMP IN 19 inverting input of the transconductance amplifier n.c. 20 not connected RESET 21 reset input; this pin may not be left floating, a LOW level voltage must be applied to disable this function AMP OUT 22 transconductance amplifier output (open collector) MOT3 brake input; this pin may not be left floating, a LOW level voltage must be applied to disable this function 23 and 24 driver output 3 n.c. 25 not connected MOT0 26 input from the star point of the motor coils GND1 27 and 28 ground (0 V) motor supply return for output stages Note 1. Pin numbers for both DIL and SOL packages are identical. June 1994 4 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 FUNCTIONAL DESCRIPTION The TDA5145 offers a sensorless three phase motor drive function. It is unique in its combination of sensorless motor drive and full-wave drive. The TDA5145 offers protected outputs capable of handling high currents and can be used with star or delta connected motors. It can easily be adapted for different motors and applications. The TDA5145 offers the following features: • Sensorless commutation by using the motor EMF. • Built-in start-up circuit. • Optimum commutation, independent of motor type or motor loading. • Built-in flyback diodes. • Three phase full-wave drive. • High output current (2.0 A). • Outputs protected by current limiting and thermal protection of each output transistor. • Low current consumption by adaptive base-drive. • Soft-switching pulse output for low radiation. • Accurate frequency generator (FG) by using the motor EMF. • Direction of rotation controlled by one pin. • Uncommitted operational transconductance amplifier (OTA), with a high output current, for use as a control amplifier. Fig.2 Pin configuration. • Brake function. LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT − 18 V −0.3 VP + 0.5 V −0.5 17 V AMP OUT and FG GND VP V MOT0, MOT1, MOT2 and MOT3 −1 VVMOT + VDHF V VP supply voltage VI input voltage; all pins except VMOT VVMOT VMOT input voltage VO output voltage VI < 18 V VI input voltage CAP-ST, CAP-TI, CAP-CD and CAP-DC − 2.5 V Tstg storage temperature −55 +150 °C Tamb operating ambient temperature 0 +70 °C Ptot total power dissipation see Figs 3 and 4 − − W Ves electrostatic handling see Chapter “Handling” − 2000 V June 1994 5 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 MBD866 6 MBD557 3 handbook, halfpage P tot P tot (W) (W) 2 4 1.62 3.08 1.75 1 2 0 0 50 0 50 100 70 50 150 200 Tamb ( oC) Fig.3 Power derating curve (SOT117-1; DIL28). 0 50 100 150 T amb ( oC) 200 Fig.4 Power derating curve (SOT136-1; SO28L). HANDLING Every pin withstands the ESD test according to “MIL-STD-883C class 2”. Method 3015 (HBM 1500 Ω, 100 pF) 3 pulses + and 3 pulses − on each pin referenced to ground. CHARACTERISTICS VP = 14.5 V; Tamb = 25 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supply VP supply voltage note 1 4 − 18 V IP supply current note 2 − 6.8 7.8 mA VVMOT input voltage to the output driver stages see Fig.1 1.7 − 16 V 130 140 150 °C − TSD − 30 − K Thermal protection TSD local temperature at temperature sensor causing shut-down ∆T reduction in temperature before switch-on June 1994 after shut-down 6 Philips Semiconductors Product specification Brushless DC motor drive circuit SYMBOL PARAMETER TDA5145 CONDITIONS MIN. TYP. MAX. UNIT MOT0; centre tap VI input voltage −0.5 − VVMOT V II input bias current 0.5 V < VI < VVMOT − 1.5 V −10 − − µA VCSW comparator switching level note 3 ±20 ±25 ±30 mV ∆VCSW variation in comparator switching levels − − 3 mV Vhys comparator input hysteresis − 75 − µV MOT1, MOT2 and MOT3; see Fig.5 VDO drop-out output voltage IO = 100 mA − 0.9 1.05 V IO = 1000 mA − 1.6 1.85 V ∆VOL variation in saturation voltage between lower transistors IO = 100 mA − − 180 mV ∆VOH variation in saturation voltage between upper transistors IO = −100 mA − − 180 mV ILIM current limiting VVMOT = 10 V; RO = 1.2 Ω 1.8 2.0 2.5 A tr rise time switching output VVMOT = 15 V; see Fig.6 5 10 15 µs tf fall time switching output VVMOT = 15 V; see Fig.6 10 15 20 µs VDHF diode forward voltage (diode DH) IO = −500 mA; notes 4 and 5; see Fig.1 − − 1.5 V VDLF diode forward voltage (diode DL) IO = 500 mA; notes 4 and 5; see Fig.1 −1.5 − − V IDM peak diode current note 5 − − 2.5 A input voltage −0.3 − VP − 1.7 V differential mode voltage without ‘latch-up’ − − ±VP V Ib input bias current − − 650 nA CI input capacitance − 4 − pF Voffset input offset voltage − − 10 mV 40 − − mA +AMP IN and −AMP IN VI AMP OUT (open collector) Isink output sink current Vsat saturation voltage VO output voltage SR slew rate Gtr transfer gain II = 40 mA RL = 330 Ω; CL = 50 pF − 1.5 2.1 V −0.5 − +18 V − 60 − mA/µs 0.3 − − S 2.0 − − V DIR VIH HIGH level input voltage 4 V < VP < 18 V VIL LOW level input voltage 4 V < VP < 18 V − − 0.8 V IIL LOW level input current − −20 − µA IIH HIGH level input current − 20 − µA June 1994 7 Philips Semiconductors Product specification Brushless DC motor drive circuit SYMBOL PARAMETER TDA5145 CONDITIONS MIN. TYP. MAX. UNIT RESET VIH HIGH level input voltage reset mode; 4 V < VP < 18 V 2.0 − − V VIL LOW level input voltage normal mode; 4 V < VP < 18 V − − 0.8 V IIL LOW level input current VI = 2.0 V − −20 − µA IIH HIGH level input current VI = 0.8 V − 20 − µA VIH HIGH level input voltage brake mode; 4 V < VP < 18 V 2.0 − − V VIL LOW level input voltage normal mode; 4 V < VP < 18 V − − 0.8 V IIL LOW level input current VI = 2.0 V − −20 − µA IIH HIGH level input current VI = 0.8 V − 20 − µA IO = 1.6 mA − − 0.4 V VP − − V µs BRAKE FG (open collector) VOL LOW level output voltage VOH(max) maximum HIGH level output voltage − 0.5 − ratio of FG frequency and commutation frequency − 1:2 − duty factor − 50 − % Isink output sink current 1.5 2.0 2.5 µA Isource output source current −2.5 −2.0 −1.5 µA VSWL LOW level switching voltage − 0.20 − V VSWH HIGH level switching voltage − 2.20 − V tTHL δ HIGH-to-LOW transition time CL = 50 pF; RL = 10 kΩ CAP-ST CAP-TI Isink output sink current Isource output source current − 28 − µA 0.2 V < VCAP-TI < 0.3 V − −57 − µA 0.3 V < VCAP-TI < 2.2 V − −5 − µA VSWL LOW level switching voltage − 50 − mV VSWM MIDDLE level switching voltage − 0.30 − V VSWH HIGH level switching voltage − 2.20 − V Isink output sink current 10.6 16.2 22 µA Isource output source current −5.3 −8.1 −11 µA CAP-CD Isink/Isource ratio of sink to source current 1.85 2.05 2.25 VIL LOW level input voltage 850 875 900 mV VIH HIGH level input voltage 2.3 2.4 2.55 V June 1994 8 Philips Semiconductors Product specification Brushless DC motor drive circuit SYMBOL PARAMETER TDA5145 CONDITIONS MIN. TYP. MAX. UNIT CAP-DC Isink output sink current 10.1 15.5 20.9 µA Isource output source current −20.9 −15.5 −10.1 µA 0.9 1.025 1.15 Isink/Isource ratio of sink to source current VIL LOW level input voltage 850 875 900 mV VIH HIGH level input voltage 2.3 2.4 2.55 V Notes 1. An unstabilized supply can be used. 2. VVMOT = VP, all other inputs at 0 V; all outputs at VP; IO = 0 mA. 3. Switching levels with respect to MOT1, MOT2 and MOT3. 4. Drivers are in the high-impedance OFF-state. 5. The outputs are short-circuit protected by limiting the current and the IC temperature. Fig.5 Switching levels with respect to MOT1, MOT2 and MOT3. Fig.6 Output transition time measurement. June 1994 9 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 APPLICATION INFORMATION (1) Value selected for 3 Hz start-up oscillator frequency. Fig.7 Application diagram without use of the operational transconductance amplifier (OTA). Introduction (see Fig.8) Table 1 Output states. Full-wave driving of a three phase motor requires three push-pull output stages. In each of the six possible states two outputs are active, one sourcing (H) and one sinking (L). The third output presents a high impedance (Z) to the motor, which enables measurement of the motor back-EMF in the corresponding motor coil by the EMF comparator at each output. The commutation logic is responsible for control of the output transistors and selection of the correct EMF comparator. In Table 1 the sequence of the six possible states of the outputs has been depicted. MOT2(1) MOT3(1) 1 Z L H 2 H L Z 3 H Z L 4 Z H L 5 L H Z 6 L Z H Note 1. H = HIGH state; L = LOW state; Z = high-impedance OFF-state. The zero-crossing in the motor EMF (detected by the comparator selected by the commutation logic) is used to calculate the correct moment for the next commutation, that is, the change to the next output state. The delay is calculated (depending on the motor loading) by the adaptive commutation delay block. The detected zero-crossings are used to provide speed information. The information has been made available on the FG output pin. This is an open collector output and provides an output signal with a frequency that is half the commutation frequency. Because of high inductive loading the output stages contain flyback diodes. The output stages are also protected by a current limiting circuit and by thermal protection of the six output transistors. June 1994 MOT1(1) STATE The system will only function when the EMF voltage from the motor is present. Therefore, a start oscillator is 10 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 provided that will generate commutation pulses when no zero-crossings in the motor voltage are available. 1 f osc = ----------------------------------Kt × I × p 2π ----------------------J where: A timing function is incorporated into the device for internal timing and for timing of the reverse rotation detection. The TDA5145 also contains an uncommitted transconductance amplifier (OTA) that can be used as a control amplifier. The output is capable of directly driving an external power transistor. Kt = torque constant (N.m/A) I = current (A) p = number of magnetic pole-pairs J = inertia J (kg.m2) The TDA5145 is designed for systems with low current consumption: use of I2L logic, adaptive base drive for the output transistors (patented). Example: J = 72 × 10−6 kg.m2, K = 25 × 10−3 N.m/A, p = 6 and I = 0.5 A; this gives fosc = 5 Hz. If the damping is high then a start frequency of 2 Hz can be chosen or t = 500 ms, thus C = 0.5/2 = 0.25 µF (choose 220 nF). Adjustments The system has been designed in such a way that the tolerances of the application components are not critical. However, the approximate values of the following components must still be determined: THE ADAPTIVE COMMUTATION DELAY (CAP-CD AND CAP-DC) In this circuit capacitor CAP-CD is charged during one commutation period, with an interruption of the charging current during the diode pulse. During the next commutation period this capacitor (CAP-CD) is discharged at twice the charging current. The charging current is 8.1 µA and the discharging current 16.2 µA; the voltage range is from 0.9 to 2.2 V. The voltage must stay within this range at the lowest commutation frequency of interest, fC1: • The start capacitor; this determines the frequency of the start oscillator. • The two capacitors in the adaptive commutation delay circuit; these are important in determining the optimum moment for commutation, depending on the type and loading of the motor. • The timing capacitor; this provides the system with its timing signals. –6 8.1 × 10 6231 C = -------------------------- = ------------- (C in nF) f × 1.3 f C1 THE START CAPACITOR (CAP-ST) This capacitor determines the frequency of the start oscillator. It is charged and discharged, with a current of 2 µA, from 0.05 to 2.2 V and back to 0.05 V. The time taken to complete one cycle is given by: tstart = (2.15 × C) s (with C in µF) If the frequency is lower, then a constant commutation delay after the zero-crossing is generated by the discharge from 2.2 to 0.9 V at 16.2 µA; maximum delay = (0.076 × C) ms (with C in nF) Example: nominal commutation frequency = 900 Hz and the lowest usable frequency = 400 Hz; so: 6231 CAP-CD = ------------- = 15.6 (choose 18 nF) 400 The start oscillator is reset by a commutation pulse and so is only active when the system is in the start-up mode. A pulse from the start oscillator will cause the outputs to change to the next state (torque in the motor). If the movement of the motor generates enough EMF the TDA5145 will run the motor. If the amount of EMF generated is insufficient, then the motor will move one step only and will oscillate in its new position. The amplitude of the oscillation must decrease sufficiently before the arrival of the next start pulse, to prevent the pulse arriving during the wrong phase of the oscillation. The oscillation of the motor is given by: June 1994 The other capacitor, CAP-DC, is used to repeat the same delay by charging and discharging with 15.5 µA. The same value can be chosen as for CAP-CD. Figure 9 illustrates typical voltage waveforms. 11 Philips Semiconductors Product specification Brushless DC motor drive circuit BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBB BBBBBB BBBBBB BBBBBB TDA5145 BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB Fig.8 Typical application of the TDA5145 as a scanner driver, with use of OTA. June 1994 12 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 Fig.9 CAP-CD and CAP-DC typical voltage waveforms in normal running mode. time is made too long, then the motor may run in the wrong direction (with little torque). THE TIMING CAPACITOR (CAP-TI) Capacitor CAP-TI is used for timing the successive steps within one commutation period; these steps include some internal delays. The capacitor is charged, with a current of 57 µA, from 0.2 to 0.3 V. Above this level it is charged, with a current of 5 µA, up to 2.2 V only if the selected motor EMF remains in the wrong polarity (watchdog function). At the end, or, if the motor voltage becomes positive, the capacitor is discharged with a current of 28 µA. The watchdog time is the time taken to charge the capacitor, with a current of 5 µA, from 0.3 to 2.2 V. The most important function is the watchdog time in which the motor EMF has to recover from a negative diode-pulse back to a positive EMF voltage (or vice versa). A watchdog timer is a guarding function that only becomes active when the expected event does not occur within a predetermined time. To ensure that the internal delays are covered CAP-TI must have a minimum value of 2 nF. For the watchdog function a value for CAP-TI of 10 nF is recommended. The EMF usually recovers within a short time if the motor is running normally (<<ms). However, if the motor is motionless or rotating in the reverse direction, then the time can be longer (>>ms). To ensure a good start-up and commutation, care must be taken that no oscillations occur at the trailing edge of the flyback pulse. Snubber networks at the outputs should be critically damped. A watchdog time must be chosen so that it is long enough for a motor without EMF (still) and eddy currents that may stretch the voltage in a motor winding; however, it must be short enough to detect reverse rotation. If the watchdog June 1994 Typical voltage waveforms are illustrated by Fig.10. 13 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it is possible that the motor may run in the reverse direction (synchronously with little torque). Fig.10 Typical CAP-TI and VMOT1 voltage waveforms in normal running mode. frequency of 25 × 6 × 6 = 900 Hz, and generates a tacho signal of 450 Hz. Other design aspects There are other design aspects concerning the application of the TDA5145 besides the commutation function. They are: THE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) The OTA is an uncommitted amplifier with a high output current (40 mA) that can be used as a control amplifier. The common mode input range includes ground (GND) and rises to VP − 1.7 V. The high sink current enables the OTA to drive a power transistor directly in an analog control amplifier. • Generation of the tacho signal FG • General purpose operational transconductance amplifier (OTA) • Motor control • Direction function • Brake function Although the gain is not extremely high (0.3 S), care must be taken with the stability of the circuit if the OTA is used as a linear amplifier as no frequency compensation has been provided. • Reliability. FG SIGNAL The convention for the inputs (inverting or not) is the same as for a normal operational amplifier: with a resistor (as load) connected from the output (AMP OUT) to the positive supply, a positive-going voltage is found when the non-inverting input (+AMP IN) is positive with respect to the inverting input (−AMP IN). Confusion is possible because a ‘plus’ input causes less current, and so a positive voltage. The FG signal is generated in the TDA5145 by using the zero-crossing of the motor EMF from the three motor windings. Every zero-crossing in a (star connected) motor winding is used to toggle the FG output signal. The FG frequency is therefore half the commutation frequency. All transitions indicate the detection of a zero-crossing. The accuracy of the FG output signal depends on the symmetry of the motor's electromagnetic construction, which also effects the satisfactory functioning of the motor itself. Example: a 3-phase motor with 6 magnetic pole-pairs at 1500 rpm and with a full-wave drive has a commutation June 1994 14 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 forced at a LOW voltage level and the current limitation is done internally by the sink drivers. MOTOR CONTROL DC motors can be controlled in an analog manner using the OTA. RESET FUNCTION For the analog control an external transistor is required. The OTA can supply the base current for this transistor and act as a control amplifier (see Fig.8). If the voltage at pin 21 is >2.0 V, the output states are shown in Table 2. Table 2 DIRECTION FUNCTION Output states if VRESET > 2.0 V. STATE(1) DRIVER OUTPUT If the voltage at pin 10 is <0.8 V, the motor is running in one direction (depending on the motor connections). If the voltage at pin 10 >2.0 V, the motor is running in the other direction. MOT1 Z MOT2 L MOT3 H BRAKE FUNCTION Note If the voltage at pin 9 is >2.0 V, the motor brakes. In that condition, the 3 outputs MOT1, MOT2 and MOT3 are 1. Z = high-impedance OFF-state; L = LOW state; H = HIGH state. Table 3 Switching sequence after a reset pulse. DIR(1) RESET(1) MOT1(1) MOT2(1) DIR(1) H H Z L H reset H L Z L H H L H L Z normal direction mode sequence H L H Z L H L Z H L H L L H Z H L L Z H L H H L Z reset L L H L Z L L Z L H reverse direction mode sequence L L L Z H L L L H Z L L Z H L L L H Z L Note 1. Z = high-impedance OFF-state; L = LOW state; H = HIGH state. June 1994 15 FUNCTION Philips Semiconductors Product specification Brushless DC motor drive circuit Table 4 TDA5145 Priority of function. RELIABILITY BRAKE(1) TEST(1) RESET(1) L L L normal L L H reset L H L test It is necessary to protect high current circuits and the output stages are protected in two ways: FUNCTION L H H test H L L brake H L H brake H H L brake H H H brake • Current limiting of the ‘lower’ output transistors. The ‘upper’ output transistors use the same base current as the conducting ‘lower’ transistor (+15%). This means that the current to and from the output stages is limited. • Thermal protection of the six output transistors is achieved by each transistor having a thermal sensor that is active when the transistor is switched on. The transistors are switched off when the local temperature becomes too high. Note 1. L = LOW state; H = HIGH state. June 1994 16 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 PACKAGE OUTLINES 15.80 15.24 seating plane 36.0 35.0 handbook, full pagewidth 4.0 5.1 max max 3.9 3.4 0.51 min 1.7 max 0.53 max 2.54 (13x) 0.254 M 0.32 max 15.24 1.7 max 17.15 15.90 28 15 14.1 13.7 1 14 Dimensions in mm. Fig.11 Plastic dual in-line package; 28 leads (600 mil) (SOT117-1; DIP28). June 1994 17 MSA264 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 18.1 17.7 handbook, full pagewidth 7.6 7.4 A 10.65 10.00 0.1 S S 0.9 (4x) 0.4 28 15 2.45 2.25 1.1 1.0 0.3 0.1 2.65 2.35 0.32 0.23 pin 1 index 1 1.1 0.5 14 detail A 1.27 0.49 0.36 0.25 M (28x) Dimensions in mm. Fig.12 Plastic small outline package; 28 leads; large body (SOT136-1; SO28L). June 1994 18 0 to 8o MBC236 - 1 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 SOLDERING REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL) Plastic small-outline packages During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.) Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C. For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement. BY WAVE A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications. Plastic dual in-line packages BY DIP OR WAVE The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s. BY SOLDER PASTE REFLOW The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C. REPAIRING SOLDERED JOINTS Apply a low voltage soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C. June 1994 19 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. June 1994 20 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 NOTES June 1994 21 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 NOTES June 1994 22 Philips Semiconductors Product specification Brushless DC motor drive circuit TDA5145 NOTES June 1994 23 Philips Semiconductors – a worldwide company Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2327, Fax. (011)829-1849 Canada: INTEGRATED CIRCUITS: Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213. Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: PHILIPS HONG KONG Ltd., Components Div., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729 India: Philips INDIA Ltd, Components Dept, Shivsagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200 Italy: PHILIPS COMPONENTS S.r.l., Viale F. Testi, 327, 20162 MILANO, Tel. (02)6752.3302, Fax. (02)6752 3300. Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: Philips Components, 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811 Philips Semiconductors Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341 Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546. Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: PHILIPS PORTUGUESA, S.A., Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)14163160/4163333, Fax. (01)14163174/4163366. Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: S.A. PHILIPS Pty Ltd., Components Division, 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494. Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382. Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319. Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0 212)279 2770, Fax. (0212)269 3094 United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42 United States: INTEGRATED CIRCUITS: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601 For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825 SCD31 © Philips Electronics N.V. 1994 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 373061/1500/02/pp24 Document order number: Date of release: June 1994 9397 735 50011