PHILIPS TDA5140A

INTEGRATED CIRCUITS
DATA SHEET
TDA5140A
Brushless DC motor drive circuit
Product specification
Supersedes data of March 1992
File under Integrated Circuits, IC02
Philips Semiconductors
April 1994
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
FEATURES
APPLICATIONS
• Full-wave commutation (using push/pull drivers at the
output stages) without position sensors
• VCR
• Built-in start-up circuitry
• Fax machine
• Laser beam printer
• Three push-pull outputs:
• Blower
– 0.8 A output current (typ.)
• Automotive.
– low saturation voltage
– built-in current limiter
GENERAL DESCRIPTION
• Thermal protection
The TDA5140A is a bipolar integrated circuit used to drive
3-phase brushless DC motors in full-wave mode. The
device is sensorless (saving of 3 hall-sensors) using the
back-EMF sensing technique to sense the rotor position.
• Flyback diodes
• Tacho output without extra sensor
• Position pulse stage for phase-locked-loop control
• Transconductance amplifier for an external control
transistor.
QUICK REFERENCE DATA
Measured over full voltage and temperature range.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VP
supply voltage
note 1
4
−
18
V
VVMOT
input voltage to the output
driver stages
note 2
1.7
−
16
V
VDO
drop-out output voltage
IO = 100 mA
−
0.93
1.05
V
ILIM
current limiting
VVMOT = 10 V; RO = 3.9 Ω
0.7
0.8
1
A
Notes
1. An unstabilized supply can be used.
2. VVMOT = VP; +AMP IN = −AMP IN = 0 V; all outputs IO = 0 mA.
ORDERING INFORMATION
PACKAGE
EXTENDED TYPE NUMBER
PINS
PIN POSITION
MATERIAL
CODE
TDA5140A
18
DIL
plastic
SOT102
TDA5140AT
20
SOL
plastic
SOT163A
April 1994
2
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
BLOCK DIAGRAM
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
Fig.1 Block diagram (SOT102; DIL18).
April 1994
3
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
PINNING
PIN
DIL18
PIN
SO20
MOT1
1
1
driver output 1
TEST
2
2
test input/output
3
not connected
SYMBOL
n.c.
DESCRIPTION
MOT2
3
4
driver output 2
VMOT
4
5
input voltage for the output driver stages
PG IN
5
6
position generator: input from the position detector sensor to the position
detector stage (optional); only if an external position coil is used
PG/FG
6
7
position generator/frequency generator: output of the rotation speed and position
detector stages (open collector digital output, negative-going edge is valid)
GND2
7
8
ground supply return for control circuits
VP
8
9
positive supply voltage
CAP-CD
9
10
external capacitor connection for adaptive communication delay timing
CAP-DC
10
11
external capacitor connection for adaptive communication delay timing copy
CAP-ST
11
12
external capacitor connection for start-up oscillator
CAP-TI
12
13
external capacitor connection for timing
+AMP IN
13
14
non-inverting input of the transconductance amplifier
−AMP IN
14
15
inverting input of the transconductance amplifier
AMP OUT
15
16
transconductance amplifier output (open collector)
MOT3
16
17
driver output 3
n.c.
−
18
not connected
MOT0
17
19
input from the star point of the motor coils
GND1
18
20
ground (0 V) motor supply return for output stages
April 1994
4
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.2 Pin configuration (SOT102; DIL18).
Fig.3 Pin configuration (SOT163A; SO20L).
• Suitable for use with a wide tolerance, external PG
sensor.
FUNCTIONAL DESCRIPTION
The TDA5140A offers a sensorless three phase motor
drive function. It is unique in its combination of sensorless
motor drive and full-wave drive. The TDA5140A offers
protected outputs capable of handling high currents and
can be used with star or delta connected motors. It can
easily be adapted for different motors and applications.
The TDA5140A offers the following features:
• Built-in multiplexer that combines the internal FG and
external PG signals on one pin for easy use with a
controlling microprocessor.
• Uncommitted operational transconductance amplifier
(OTA), with a high output current, for use as a control
amplifier.
• Sensorless commutation by using the motor EMF.
• Built-in start-up circuit.
• Optimum commutation, independent of motor type or
motor loading.
• Built-in flyback diodes.
• Three phase full-wave drive.
• High output current (0.8 A).
• Outputs protected by current limiting and thermal
protection of each output transistor.
• Low current consumption by adaptive base-drive.
• Accurate frequency generator (FG) by using the
motor EMF.
• Amplifier for external position generator (PG) signal.
April 1994
5
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
−
18
V
−0.3
VP + 0.5
V
−0.5
17
V
AMP OUT and PG/FG
GND
VP
V
MOT1, MOT2 and MOT3
−1
VVMOT + VDHF
V
VI
input voltage CAP-ST, CAP-TI,
CAP-CD and CAP-DC
−
2.5
V
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
0
+70
°C
Ptot
total power dissipation
see Figs 4 and 5
−
−
W
Ves
electrostatic handling
see “Handling”
−
500
V
VP
supply voltage
VI
input voltage; all pins except
VMOT
VVMOT
VMOT input voltage
VO
output voltage
VI < 18 V
MBD535
MBD536
3
3
P tot
P tot
(W)
(W)
2.28
2
2
1.38
1.05
1
0
0
50
0
50 70
100
150
50
200
T amb ( oC)
Fig.4 Power derating curve (SOT102; DIL18).
0
50 70
100
150
T amb ( oC)
200
Fig.5 Power derating curve (SOT163A; SO20L).
HANDLING
Every pin withstands the ESD test in accordance with “MIL-STD-883C class 2”. Method 3015 (HBM 1500 Ω, 100 pF)
3 pulses + and 3 pulses − on each pin referenced to ground.
April 1994
6
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
CHARACTERISTICS
VP = 14.5 V; Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
VP
supply voltage
note 1
4
−
18
V
IP
supply current
note 2
−
3.7
5
mA
VVMOT
input voltage to the output driver
stages
see Fig.1
1.7
−
16
V
130
140
150
°C
−
TSD − 30 −
K
−0.5
−
VVMOT
V
−
0
µA
Thermal protection
TSD
local temperature at
temperature sensor causing
shut-down
∆T
reduction in temperature before
switch-on
after shut-down
MOT0; centre tap
VI
input voltage
II
input bias current
0.5 V < VI < VVMOT − 1.5 V −10
note 3
VCSW
comparator switching level
±20
±30
±40
mV
∆VCSW
variation in comparator
switching levels
−3
0
+3
mV
Vhys
comparator input hysteresis
−
75
−
µV
IO = 100 mA
−
0.93
1.05
V
IO = 500 mA
−
1.65
1.80
V
MOT1, MOT2 and MOT3
VDO
drop-out output voltage
∆VOL
variation in saturation voltage
between lower transistors
IO = 100 mA
−
−
180
mV
∆VOH
variation in saturation voltage
between upper transistors
IO = −100 mA
−
−
180
mV
ILIM
current limiting
VVMOT = 10 V; RO = 6.8 Ω 0.7
0.8
1
A
VDHF
diode forward voltage (diode DH) IO = −500 mA; notes 4
and 5; see Fig.1
−
−
1.5
V
VDLF
diode forward voltage (diode DL)
IO = 500 mA; notes 4 and
5; see Fig.1
−1.5
−
−
V
IDM
peak diode current
note 5
−
−
1
A
input voltage
−0.3
−
VP − 1.7
V
differential mode voltage without
'latch-up'
−
−
±VP
V
+AMP IN and −AMP IN
VI
Ib
input bias current
−
−
650
nA
CI
input capacitance
−
4
−
pF
Voffset
input offset voltage
−
−
10
mV
April 1994
7
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
SYMBOL
PARAMETER
TDA5140A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
AMP OUT (open collector)
II
output sink current
Vsat
saturation voltage
VO
output voltage
II = 40 mA
RL = 330 Ω; CL = 50 pF
40
−
−
mA
−
1.5
2.1
V
−0.5
−
+18
V
SR
slew rate
−
60
−
mA/µs
Gtr
transfer gain
0.3
−
−
S
VI
input voltage
−0.3
−
+5
V
Ib
input bias current
−
−
650
nA
RI
input resistance
5
−
30
kΩ
VCWS
comparator switching level
86
−
107
mV
Vhys
comparator input hysteresis
−
±8
−
mV
−
−
0.4
V
VP
−
−
V
−
0.5
−
µs
ratio of PG/FG frequency and
commutation frequency
−
1:2
−
δ
duty factor
−
50
−
%
tPL
pulse width LOW
5
7
18
µs
PG IN
PG/FG (open collector)
VOL
LOW level output voltage
VOH(max)
maximum HIGH level output
voltage
tTHL
HIGH-to-LOW transition time
IO = 1.6 mA
CL = 50 pF; RL = 10 kΩ
after a PG IN pulse
CAP-ST
Isink
output sink current
1.5
2.0
2.5
µA
Isource
output source current
−2.5
−2.0
−1.5
µA
VSWL
LOW level switching voltage
−
0.20
−
V
VSWH
HIGH level switching voltage
−
2.20
−
V
Isink
output sink current
−
28
−
µA
Isource
output source current
CAP-TI
0.05 V < VCAP-TI < 0.3 V
−
−57
−
µA
0.3 V < VCAP-TI < 2.2 V
−
−5
−
µA
VSWL
LOW level switching voltage
−
50
−
mV
VSWM
MIDDLE level switching voltage
−
0.30
−
V
VSWH
HIGH level switching voltage
−
2.20
−
V
April 1994
8
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
SYMBOL
PARAMETER
TDA5140A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
CAP-CD
Isink
output sink current
10.6
16.2
22
µA
Isource
output source current
−5.3
−8.1
−11
µA
Isink/Isource
ratio of sink to source current
1.85
2.05
2.25
VIL
LOW level input voltage
850
875
900
mV
VIH
HIGH level input voltage
2.3
2.4
2.55
V
CAP-DC
Isink
output sink current
10.1
15.5
20.9
µA
Isource
output source current
−20.9
−15.5
−10.1
µA
Isink/Isource
ratio of sink to source current
0.9
1.025
1.15
VIL
LOW level input voltage
850
875
900
mV
VIH
HIGH level input voltage
2.3
2.4
2.55
V
Notes
1. An unstabilized supply can be used.
2. VVMOT = VP, all other inputs at 0 V; all outputs at VP; IO = 0 mA.
3. Switching levels with respect to MOT1, MOT2 and MOT3.
4. Drivers are in the high-impedance OFF-state.
5. The outputs are short-circuit protected by limiting the current and the IC temperature.
APPLICATION INFORMATION
(1) Value selected for 3 Hz start-up oscillator frequency.
Fig.6 Application diagram without use of the operational transconductance amplifier (OTA).
April 1994
9
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Because of high inductive loading the output stages
contain flyback diodes. The output stages are also
protected by a current limiting circuit and by thermal
protection of the six output transistors.
Introduction (see Fig.7)
Full-wave driving of a three phase motor requires three
push-pull output stages. In each of the six possible states
two outputs are active, one sourcing (H) and one sinking
(L). The third output presents a high impedance (Z) to the
motor which enables measurement of the motor
back-EMF in the corresponding motor coil by the EMF
comparator at each output. The commutation logic is
responsible for control of the output transistors and
selection of the correct EMF comparator. In Table 1 the
sequence of the six possible states of the outputs has
been depicted.
The detected zero-crossings are used to provide speed
information. The information has been made available on
the PG/FG output pin. This is an open collector output and
provides an output signal with a frequency that is half the
commutation frequency. A VCR scanner also requires a
PG phase sensor. This circuit has an interface for a simple
pick-up coil. A multiplexer circuit is also provided to
combine the FG and PG signals in time.
The system will only function when the EMF voltage from
the motor is present. Therefore, a start oscillator is
provided that will generate commutation pulses when no
zero-crossings in the motor voltage are available.
Table 1 Output states.
STATE
MOT1(1)
MOT2(1)
MOT3(1)
1
Z
L
H
2
H
L
Z
3
H
Z
L
4
Z
H
L
5
L
H
Z
6
L
Z
H
A timing function is incorporated into the device for internal
timing and for timing of the reverse rotation detection.
The TDA5140A also contains an uncommitted
transconductance amplifier (OTA) that can be used as a
control amplifier. The output is capable of directly driving
an external power transistor.
The TDA5140A is designed for systems with low current
consumption: use of I2L logic, adaptive base drive for the
output transistors (patented), possibility of using a pick-up
coil without bias current.
Note
1. H = HIGH state;
L = LOW state;
Z = high impedance OFF-state.
The zero-crossing in the motor EMF (detected by the
comparator selected by the commutation logic) is used to
calculate the correct moment for the next commutation,
that is, the change to the next output state. The delay is
calculated (depending on the motor loading) by the
adaptive commutation delay block.
April 1994
10
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
TDA5140A
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BB
BB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
Fig.7 Typical application of the TDA5140A as a scanner driver, with use of OTA.
April 1994
11
BB
BB
BB
BB
BB
BB
BB
BB
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Example: J = 72 × 10-6 kg.m2, K = 25 × 10-3 N.m/A, p = 6
and I = 0.5 A; this gives fosc = 5 Hz. If the damping is high
then a start frequency of 2 Hz can be chosen or t = 500 ms,
thus C = 0.5/2 = 0.25 µF, (choose 220 nF).
Adjustments
The system has been designed in such a way that the
tolerances of the application components are not critical.
However, the approximate values of the following
components must still be determined:
THE ADAPTIVE COMMUTATION DELAY (CAP-CD AND
CAP-DC)
• The start capacitor; this determines the frequency of the
start oscillator.
In this circuit capacitor CAP-CD is charged during one
commutation period, with an interruption of the charging
current during the diode pulse. During the next
commutation period this capacitor (CAP-CD) is discharged
at twice the charging current. The charging current is
8.1 µA and the discharging current 16.2 µA; the voltage
range is from 0.9 to 2.2 V. The voltage must stay within this
range at the lowest commutation frequency of interest, fC1:
• The two capacitors in the adaptive commutation delay
circuit; these are important in determining the optimum
moment for commutation, depending on the type and
loading of the motor.
• The timing capacitor; this provides the system with its
timing signals.
THE START CAPACITOR (CAP-ST)
–6
8.1 × 10
6231
C = -------------------------- = ------------- (C in nF)
f × 1.3
f c1
This capacitor determines the frequency of the start
oscillator. It is charged and discharged, with a current of
2 µA, from 0.05 to 2.2 V and back to 0.05 V. The time
taken to complete one cycle is given by:
If the frequency is lower, then a constant commutation
delay after the zero-crossing is generated by the discharge
from 2.2 to 0.9 V at 16.2 µA.
tstart = (2.15 × C) s (with C in µF)
maximum delay = (0.076 × C) ms (with C in nF)
The start oscillator is reset by a commutation pulse and so
is only active when the system is in the start-up mode. A
pulse from the start oscillator will cause the outputs to
change to the next state (torque in the motor). If the
movement of the motor generates enough EMF the
TDA5140A will run the motor. If the amount of EMF
generated is insufficient, then the motor will move one step
only and will oscillate in its new position. The amplitude of
the oscillation must decrease sufficiently before the arrival
of the next start pulse, to prevent the pulse arriving during
the wrong phase of the oscillation. The oscillation of the
motor is given by:
1
f osc = ----------------------------------Kt × I × p
2π ----------------------J
where:
Example: nominal commutation frequency = 900 Hz and
the lowest usable frequency = 400 Hz, so:
6231
CAP-CD = ------------- = 15.6 (choose 18 nF)
400
The other capacitor, CAP-DC, is used to repeat the same
delay by charging and discharging with 15.5 µA. The same
value can be chosen as for CAP-CD. Figure 8 illustrates
typical voltage waveforms.
Kt = torque constant (N.m/A)
I = current (A)
p = number of magnetic pole-pairs
J = inertia J (kg.m2)
April 1994
12
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.8 CAP-CD and CAP-DC typical voltage waveforms in normal running mode.
time is made too long, then the motor may run in the wrong
direction (with little torque).
THE TIMING CAPACITOR (CAP-TI)
Capacitor CAP-TI is used for timing the successive steps
within one commutation period; these steps include some
internal delays.
The capacitor is charged, with a current of 57 µA, from
0.2 to 0.3 V. Above this level it is charged, with a current of
5 µA, up to 2.2 V only if the selected motor EMF remains
in the wrong polarity (watchdog function). At the end, or, if
the motor voltage becomes positive, the capacitor is
discharged with a current of 28 µA. The watchdog time is
the time taken to charge the capacitor, with a current of
5 µA, from 0.3 to 2.2 V.
The most important function is the watchdog time in which
the motor EMF has to recover from a negative diode-pulse
back to a positive EMF voltage (or vice versa). A watchdog
timer is a guarding function that only becomes active when
the expected event does not occur within a predetermined
time.
To ensure that the internal delays are covered CAP-TI
must have a minimum value of 2 nF. For the watchdog
function a value for CAP-TI of 10 nF is recommended.
The EMF usually recovers within a short time if the motor
is running normally (<<ms). However, if the motor is
motionless or rotating in the reverse direction, then the
time can be longer (>>ms).
To ensure a good start-up and commutation, care must be
taken that no oscillations occur at the trailing edge of the
flyback pulse. Snubber networks at the outputs should be
critically damped.
A watchdog time must be chosen so that it is long enough
for a motor without EMF (still) and eddy currents that may
stretch the voltage in a motor winding; however, it must be
short enough to detect reverse rotation. If the watchdog
April 1994
Typical voltage waveforms are illustrated by Fig.9.
13
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it
is possible that the motor may run in the reverse direction (synchronously with little torque).
Fig.9 Typical CAP-TI and VMOT1 voltage waveforms in normal running mode.
The accuracy of the FG output signal (jitter) is very good.
This accuracy depends on the symmetry of the motor's
electromagnetic construction, which also effects the
satisfactory functioning of the motor itself.
Other design aspects
There are other design aspects concerning the application
of the TDA5140A besides the commutation function. They
are:
Example: A 3-phase motor with 6 magnetic pole-pairs at
1500 rpm and with a full-wave drive has a commutation
frequency of 25 × 6 × 6 = 900 Hz, and generates a tacho
signal of 450 Hz.
• Generation of the tacho signal FG
• A built-in interface for a PG sensor
• General purpose operational transconductance
amplifier (OTA)
• Possibilities of motor control
PG SIGNAL
• Reliability.
The accuracy of the PG signal in applications such as VCR
must be high (phase information). This accuracy is
obtained by combining the accurate FG signal with the PG
signal by using a wide tolerance external PG sensor. The
external PG signal (PG IN) is only used as an indicator to
select a particular FG pulse. This pulse differs from the
other FG pulses in that it has a short LOW-time of 18 µs
after a HIGH-to-LOW transition. All other FG pulses have
a 50% duty factor (see Fig.10).
FG SIGNAL
The FG signal is generated in the TDA5140A by using the
zero-crossing of the motor EMF from the three motor
windings. Every zero-crossing in a (star connected) motor
winding is used to toggle the FG output signal. The FG
frequency is therefore half the commutation frequency.
All transitions indicate the detection of a zero-crossing
(except for PG). The negative-going edges are called FG
pulses because they generate an interrupt in a controlling
microprocessor.
April 1994
For more information also see “application note
EIE/AN 93014”.
14
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.10 Timing and the FG and PG IN signals.
The special PG pulse is derived from the negative-going
zero-crossing from the MOT3 output (pin 16). The external
PG signal (PG IN on pin 5) must sense a positive-going
voltage (>80 mV) within 1.5 to 7.5 commutation periods
before the negative-going zero-crossing in MOT3
(see Fig.10).
2.2 kΩ
PG IN
The voltage requirements of the PG IN input are such that
an inexpensive pick-up coil can be used as a sensor
(see Fig.11).
22 nF
GND2
MBD696
Example: If p = 6, then one revolution contains 6 × 6 = 36
commutations. The tolerance is 6 periods, that is 60
degrees (mechanically) or 6.67 ms at 1500 rpm.
If a PG sensor is not used, the PG IN input must be
grounded, this will result in a 50% duty factor FG signal.
April 1994
Fig.11 Pick-up coil as PG sensor.
15
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
THE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
RELIABILITY
The OTA is an uncommitted amplifier with a high output
current (40 mA) that can be used as a control amplifier.
The common mode input range includes ground (GND)
and rises to VP − 1.7 V. The high sink current enables the
OTA to drive a power transistor directly in an analog
control amplifier.
It is necessary to protect high current circuits and the
output stages are protected in two ways:
Although the gain is not extremely high (0.3 S), care must
be taken with the stability of the circuit if the OTA is used
as a linear amplifier as no frequency compensation has
been provided.
• Thermal protection of the six output transistors is
achieved by each transistor having a thermal sensor
that is active when the transistor is switched on. The
transistors are switched off when the local temperature
becomes too high.
• Current limiting of the 'lower' output transistors. The
'upper' output transistors use the same base current as
the conducting 'lower' transistor (+15%). This means
that the current to and from the output stages is limited.
The convention for the inputs (inverting or not) is the same
as for a normal operational amplifier: with a resistor (as
load) connected from the output (AMP OUT) to the positive
supply, a positive-going voltage is found when the
non-inverting input (+AMP IN) is positive with respect to
the inverting input (−AMP IN). Confusion is possible
because a 'plus' input causes less current, and so a
positive voltage.
It is possible, that when braking, the motor voltage (via the
flyback diodes and the impedance on VMOT) may cause
higher currents than allowed (>0.6 A). These currents
must be limited externally.
MOTOR CONTROL
DC motors can be controlled in an analog manner using
the OTA.
For the control an external transistor is required. The OTA
can supply the base current for this transistor and act as a
control amplifier (see Fig.7).
April 1994
16
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
PACKAGE OUTLINES
seating plane
22.00
21.35
8.25
7.80
3.7
max 4.7
max
3.9
3.4
0.51
min
0.85
max
2.54
(8x)
0.53
max
0.254 M
0.32 max
7.62
1.4 max
9.5
8.3
MSA259
18
10
6.48
6.14
1
9
Dimensions in mm.
Fig.12 18-pin dual in-line; plastic (SOT102).
April 1994
17
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
13.0
12.6
handbook, full pagewidth
7.6
7.4
10.65
10.00
0.1 S
S
A
0.9 (4x)
0.4
20
11
2.45
2.25
1.1
1.0
0.3
0.1
2.65
2.35
0.32
0.23
pin 1
index
1
1.1
0.5
10
detail A
1.27
0.49
0.36
0.25 M
(20x)
Dimensions in mm.
Fig.13 20-pin small-outline; plastic (SO20L; SOT163A).
April 1994
18
0 to 8
o
MBC234 - 1
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
SOLDERING
BY SOLDER PASTE REFLOW
Plastic dual in-line packages
Reflow soldering requires the solder paste (a suspension
of fine solder particles, flux and binding agent) to be
applied to the substrate by screen printing, stencilling or
pressure-syringe dispensing before device placement.
BY DIP OR WAVE
The maximum permissible temperature of the solder is
260 °C; this temperature must not be in contact with the
joint for more than 5 s. The total contact time of successive
solder waves must not exceed 5 s.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt, infrared, and
vapour-phase reflow. Dwell times vary between 50 and
300 s according to method. Typical reflow temperatures
range from 215 to 250 °C.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified storage maximum. If the printed-circuit board has
been pre-heated, forced cooling may be necessary
immediately after soldering to keep the temperature within
the permissible limit.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 min at 45 °C.
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE-HEATED SOLDER TOOL)
REPAIRING SOLDERED JOINTS
Fix the component by first soldering two, diagonally
opposite, end pins. Apply the heating tool to the flat part of
the pin only. Contact time must be limited to 10 s at up to
300 °C. When using proper tools, all other pins can be
soldered in one operation within 2 to 5 s at between 270
and 320 °C. (Pulse-heated soldering is not recommended
for SO packages.)
Apply the soldering iron below the seating plane (or not
more than 2 mm above it). If its temperature is below
300 °C, it must not be in contact for more than 10 s; if
between 300 and 400 °C, for not more than 5 s.
Plastic small-outline packages
BY WAVE
For pulse-heated solder tool (resistance) soldering of VSO
packages, solder is applied to the substrate by dipping or
by an extra thick tin/lead plating before package
placement.
During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the
adhesive, the component can be soldered. The adhesive
can be applied by screen printing, pin transfer or syringe
dispensing.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder bath is
10 s, if allowed to cool to less than 150 °C within 6 s.
Typical dwell time is 4 s at 250 °C.
A modified wave soldering technique is recommended
using two solder waves (dual-wave), in which a turbulent
wave with high upward pressure is followed by a smooth
laminar wave. Using a mildly-activated flux eliminates the
need for removal of corrosive residues in most
applications.
April 1994
19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
April 1994
20
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
NOTES
April 1994
21
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
NOTES
April 1994
22
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
NOTES
April 1994
23
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil.
P.O. Box 7383 (01064-970).
Tel. (011)821-2327, Fax. (011)829-1849
Canada: INTEGRATED CIRCUITS:
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 601 Milner Ave,
SCARBOROUGH, ONTARIO, M1B 1M8,
Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621,
Tel. (571)217 4609, Fax. (01)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20095 HAMBURG ,
Tel. (040)3296-0, Fax. (040)3296 213
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: 15/F Philips Ind. Bldg., 24-28 Kung Yip St.,
KWAI CHUNG, N.T. Tel. (0)4245 121, Fax. (0)4806 960
India: Philips Components Division,
A Block Shivsagar Estate Worli,
Dr. Annie Besant Rd., Bombay 400 018
Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950,
Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: Viale F. Testi, 327, 20162 MILANO,
Tel. (02)6752.3358, Fax. (02)6752.3350
Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200,
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN,
Tel. (040)78 37 49, Fax. (040)78 83 99
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Philips Semiconductors
Pakistan: Philips Markaz, M.A. Jinnah Rd., KARACHI 3,
Tel. (021)577 039, Fax. (021)569 1832
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex,
Tel. (01)683 121, Fax. (01)658 013
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: 195-215 Main Road, Martindale,
P.O. Box 7430,JOHANNESBURG 2000,
Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 7730
Taiwan: 23-30F, 66, Chung Hsiao West Road, Sec. 1,
P.O. Box 22978, TAIPEI 10446,
Tel. (2)382 4443, Fax. (2)382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna - Trad Road Km. 3
Prakanong, BANGKOK 10260,
Tel. (2)399-3280 to 9, (2)398-2083, Fax. (2)398-2080
Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL,
Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,
Philips House, Torrington Place, LONDON, WC1E 7HD,
Tel. (071)436 41 44, Fax. (071)323 03 42
United States: INTEGRATED CIRCUITS:
811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,
Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BAF-1,
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,
Telex 35000 phtcnl, Fax. +31-40-724825
SCD30
© Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
9397 728 20011