CY7C1354D 9-Mbit (256 K × 36) Pipelined SRAM with NoBL Architecture Datasheet.pdf

CY7C1354D
9-Mbit (256 K × 36) Pipelined SRAM with
NoBL™ Architecture
9-Mbit (256 K × 36) Pipelined SRAM with NoBL™ Architecture
Features
Functional Description
■
Pin-compatible and functionally equivalent to ZBT
■
Supports 200 MHz bus operations with zero wait states
❐ Available speed grade is 200 MHz
■
Internally self-timed output buffer control to eliminate the need
to use asynchronous OE
■
Fully registered (inputs and outputs) for pipelined operation
■
Byte write capability
■
Single 3.3 V power supply (VDD)
■
3.3 V or 2.5 V I/O power supply (VDDQ)
■
Fast clock-to-output times
❐ 3.2 ns (for 200 MHz device)
■
Clock enable (CEN) pin to suspend operation
■
Synchronous self-timed writes
■
Available in non Pb-free 165-ball FBGA package
■
IEEE 1149.1 JTAG-compatible boundary scan
■
Burst capability – linear or interleaved burst order
■
“ZZ” sleep mode option and stop clock option
The CY7C1354D are 3.3 V, 256 K × 36 synchronous pipelined
burst SRAM with No Bus Latency™ (NoBL logic, respectively.
They are designed to support unlimited true back-to-back
read/write operations with no wait states. The CY7C1354D are
equipped with the advanced (NoBL) logic required to enable
consecutive read/write operations with data being transferred on
every clock cycle. This feature greatly improves the throughput
of data in systems that require frequent write/read transitions.
The CY7C1354D are pin compatible and functionally equivalent
to ZBT devices.
All synchronous inputs pass through input registers controlled by
the rising edge of the clock. All data outputs pass through output
registers controlled by the rising edge of the clock. The clock
input is qualified by the clock enable (CEN) signal, which when
deasserted suspends operation and extends the previous clock
cycle.
Write operations are controlled by the byte write selects
(BWa–BWd for CY7C1354D) and a write enable (WE) input. All
writes are conducted with on-chip synchronous self-timed write
circuitry.
Three synchronous chip enables (CE1, CE2, CE3) and an
asynchronous output enable (OE) provide for easy bank
selection and output tristate control. To avoid bus contention, the
output drivers are synchronously tristated during the data portion
of a write sequence.
For a complete list of related documentation, click here.
Logic Block Diagram – CY7C1354D
A0, A1, A
ADDRESS
REGISTER 0
A1
A1'
D1
Q1
A0
A0'
BURST
D0
Q0
LOGIC
MODE
CLK
CEN
ADV/LD
C
C
WRITE ADDRESS
REGISTER 1
WRITE ADDRESS
REGISTER 2
S
E
N
S
E
ADV/LD
WRITE REGISTRY
AND DATA COHERENCY
CONTROL LOGIC
BW a
BW b
BW c
BW d
MEMORY
ARRAY
WRITE
DRIVERS
A
M
P
S
WE
O
U
T
P
U
T
R
E
G
I
S
T
E
R
S
E
INPUT
REGISTER 1
OE
CE1
CE2
CE3
S
T
E
E
R
I
N
G
INPUT
REGISTER 0
B
U
F
F
E
R
S
DQ s
DQ Pa
DQ Pb
DQ Pc
DQ Pd
E
E
READ LOGIC
SLEEP
CONTROL
ZZ
Cypress Semiconductor Corporation
Document Number: 001-88918 Rev. *A
E
O
U
T
P
U
T
D
A
T
A
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised November 18, 2014
CY7C1354D
Contents
Selection Guide ................................................................ 3
Pin Configurations ........................................................... 3
Pin Definitions .................................................................. 4
Functional Overview ........................................................ 5
Single Read Accesses ................................................ 5
Burst Read Accesses .................................................. 5
Single Write Accesses ................................................. 5
Burst Write Accesses .................................................. 6
Sleep Mode ................................................................. 6
Interleaved Burst Address Table ................................. 6
Linear Burst Address Table ......................................... 6
ZZ Mode Electrical Characteristics .............................. 6
Truth Table ........................................................................ 7
Partial Truth Table for Read/Write .................................. 8
IEEE 1149.1 Serial Boundary Scan (JTAG) .................... 9
Disabling the JTAG Feature ........................................ 9
Test Access Port (TAP) ............................................... 9
PERFORMING A TAP RESET .................................... 9
TAP REGISTERS ........................................................ 9
TAP Instruction Set ..................................................... 9
TAP Controller State Diagram ....................................... 11
TAP Controller Block Diagram ...................................... 12
TAP Timing ...................................................................... 12
TAP AC Switching Characteristics ............................... 13
3.3 V TAP AC Test Conditions ....................................... 13
3.3 V TAP AC Output Load Equivalent ......................... 13
2.5 V TAP AC Test Conditions ....................................... 13
2.5 V TAP AC Output Load Equivalent ......................... 13
Document Number: 001-88918 Rev. *A
TAP DC Electrical Characteristics and
Operating Conditions ..................................................... 14
Identification Register Definitions ................................ 14
Scan Register Sizes ....................................................... 14
Instruction Codes ........................................................... 15
Boundary Scan Exit Order ............................................. 16
Maximum Ratings ........................................................... 17
Operating Range ............................................................. 17
Neutron Soft Error Immunity ......................................... 17
Electrical Characteristics ............................................... 17
Capacitance .................................................................... 18
Thermal Resistance ........................................................ 18
AC Test Loads and Waveforms ..................................... 19
Switching Characteristics .............................................. 20
Switching Waveforms .................................................... 21
Ordering Information ...................................................... 24
Ordering Code Definitions ......................................... 24
Package Diagrams .......................................................... 25
Acronyms ........................................................................ 26
Document Conventions ................................................. 26
Units of Measure ....................................................... 26
Document History Page ................................................. 27
Sales, Solutions, and Legal Information ...................... 28
Worldwide Sales and Design Support ....................... 28
Products .................................................................... 28
PSoC® Solutions ...................................................... 28
Cypress Developer Community ................................. 28
Technical Support ..................................................... 28
Page 2 of 28
CY7C1354D
Selection Guide
Description
200 MHz
Unit
Maximum access time
3.2
ns
Maximum operating current
220
mA
Maximum CMOS standby current
40
mA
Pin Configurations
Figure 1. 165-ball FBGA (13 × 15 × 1.4 mm) pinout
3
CY7C1354D (256 K × 36)
4
5
6
7
1
2
8
A
B
C
D
E
F
G
H
J
K
L
M
N
P
NC/576M
A
CE1
BWc
BWb
CE3
CE2
VDDQ
BWa
VSS
VSS
OE
VDDQ
BWd
VSS
VDD
CLK
DQPc
DQc
A
NC
DQc
CEN
WE
ADV/LD
NC/1G
VSS
VSS
VSS
VSS
VSS
VDD
DQc
DQc
VDDQ
VDD
VSS
VSS
VSS
VDD
R
MODE
9
10
11
A
A
NC
NC/18M
A
NC
VDDQ
VDDQ
NC
DQb
DQPb
DQb
VDDQ
DQb
DQb
DQc
DQc
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQb
DQb
DQc
NC
DQd
DQc
NC
DQd
VDDQ
NC
VDDQ
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDDQ
VDDQ
DQb
NC
DQa
DQb
ZZ
DQa
DQd
DQd
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQa
DQa
DQd
DQd
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQa
DQa
DQd
DQPd
DQd
NC
VDDQ
VDDQ
VDD
VSS
VSS
NC
VSS
NC
VSS
NC
VDD
VSS
VDDQ
VDDQ
DQa
NC
DQa
DQPa
A
A
TDI
A1
TDO
A
A
A
NC/288M
A
A
TMS
A0
TCK
A
A
A
A
NC/144M NC/72M
NC/36M
Document Number: 001-88918 Rev. *A
NC
Page 3 of 28
CY7C1354D
Pin Definitions
Pin Name
A0, A1, A
I/O Type
Pin Description
InputAddress inputs used to select one of the address locations. Sampled at the rising edge of the CLK.
synchronous
BWa, BWb,
InputByte write select inputs, active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on
BWc, BWd synchronous the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc controls DQc
and DQPc, BWd controls DQd and DQPd.
WE
InputWrite enable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal
synchronous must be asserted LOW to initiate a write sequence.
ADV/LD
InputAdvance/load input used to advance the on-chip address counter or load a new address. When
synchronous HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new address
can be loaded into the device for an access. After being deselected, ADV/LD should be driven LOW to
load a new address.
CLK
Inputclock
Clock input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is
only recognized if CEN is active LOW.
CE1
InputChip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2
synchronous and CE3 to select/deselect the device.
CE2
InputChip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1
synchronous and CE3 to select/deselect the device.
CE3
InputChip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1
synchronous and CE2 to select/deselect the device.
OE
InputOutput enable, active LOW. Combined with the synchronous logic block inside the device to control
asynchronous the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted
HIGH, I/O pins are tristated, and act as input data pins. OE is masked during the data portion of a Write
sequence, during the first clock when emerging from a deselected state and when the device has been
deselected.
CEN
InputClock enable input, active LOW. When asserted LOW the clock signal is recognized by the SRAM.
synchronous When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the device,
CEN can be used to extend the previous cycle when required.
DQS
I/OBidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the
synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by
addresses during the previous clock rise of the read cycle. The direction of the pins is controlled by OE
and the internal control logic. When OE is asserted LOW, the pins can behave as outputs. When HIGH,
DQa–DQd are placed in a tristate condition. The outputs are automatically tristated during the data portion
of a write sequence, during the first clock when emerging from a deselected state, and when the device
is deselected, regardless of the state of OE.
DQPX
I/OBidirectional data parity I/O lines. Functionally, these signals are identical to DQ[a:d]. During write
synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc, and
DQPd is controlled by BWd.
MODE
Input strap pin Mode input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order. Pulled
LOW selects the linear burst order. MODE should not change states during operation. When left floating
MODE will default HIGH, to an interleaved burst order.
TDO
JTAG serial Serial data out to the JTAG circuit. Delivers data on the negative edge of TCK.
output
synchronous
TDI
JTAG serial Serial data in to the JTAG circuit. Sampled on the rising edge of TCK.
input
synchronous
TMS
Test mode This pin controls the test access port state machine. Sampled on the rising edge of TCK.
select
synchronous
Document Number: 001-88918 Rev. *A
Page 4 of 28
CY7C1354D
Pin Definitions (continued)
Pin Name
TCK
VDD
VDDQ
I/O Type
JTAG-clock
Pin Description
Clock input to the JTAG circuitry.
Power supply Power supply inputs to the core of the device.
I/O power
supply
Power supply for the I/O circuitry.
VSS
Ground
NC
–
No connects. This pin is not connected to the die.
NC/18M,
NC/36M,
NC/72M,
NC/144M,
NC/288M,
NC/576M,
NC/1G
–
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M, 288M,
576M, and 1G densities.
ZZ
Ground for the device. Should be connected to ground of the system.
InputZZ “sleep” Input. This active HIGH input places the device in a non-time-critical “sleep” condition with
asynchronous data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an
internal pull-down.
Functional Overview
The CY7C1354D are synchronous-pipelined burst NoBL
SRAMs designed specifically to eliminate wait states during
write/read transitions. All synchronous inputs pass through input
registers controlled by the rising edge of the clock. The clock
signal is qualified with the clock enable input signal (CEN). If
CEN is HIGH, the clock signal is not recognized and all internal
states are maintained. All synchronous operations are qualified
with CEN. All data outputs pass through output registers
controlled by the rising edge of the clock. Maximum access delay
from the clock rise (tCO) is 3.2 ns (200 MHz device).
Accesses can be initiated by asserting all three chip enables
(CE1, CE2, CE3) active at the rising edge of the clock. If clock
enable (CEN) is active LOW and ADV/LD is asserted LOW, the
address presented to the device will be latched. The access can
either be a read or write operation, depending on the status of
the write enable (WE). BW[d:a] can be used to conduct byte write
operations.
Write operations are qualified by the write enable (WE). All writes
are simplified with on-chip synchronous self-timed write circuitry.
Three synchronous chip enables (CE1, CE2, CE3) and an
asynchronous output enable (OE) simplify depth expansion. All
operations (reads, writes, and deselects) are pipelined. ADV/LD
should be driven LOW once the device has been deselected to
load a new address for the next operation.
Single Read Accesses
A read access is initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are all asserted active, (3) the write enable input signal
WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The
address presented to the address inputs is latched into the
address register and presented to the memory core and control
logic. The control logic determines that a read access is in
progress and enables the requested data to propagate to the
input of the output register. At the rising edge of the next clock
the requested data is allowed to propagate through the output
Document Number: 001-88918 Rev. *A
register and to the data bus within 3.2 ns (200 MHz device)
provided OE is active LOW. After the first clock of the read
access the output buffers are controlled by OE and the internal
control logic. OE must be driven LOW for the device to drive out
the requested data. During the second clock, a subsequent
operation (read/write/deselect) can be initiated. Deselecting the
device is also pipelined. Therefore, when the SRAM is
deselected at clock rise by one of the chip enable signals, its
output tristates following the next clock rise.
Burst Read Accesses
The CY7C1354D has an on-chip burst counter that enables the
user the ability to supply a single address and conduct up to four
reads without reasserting the address inputs. ADV/LD must be
driven LOW to load a new address into the SRAM, as described
in Single Read Accesses. The sequence of the burst counter is
determined by the MODE input signal. A LOW input on MODE
selects a linear burst mode, a HIGH selects an interleaved burst
sequence. Both burst counters use A0 and A1 in the burst
sequence, and wrap around when incremented sufficiently. A
HIGH input on ADV/LD increments the internal burst counter
regardless of the state of chip enables inputs or WE. WE is
latched at the beginning of a burst cycle. Therefore, the type of
access (read or write) is maintained throughout the burst
sequence.
Single Write Accesses
Write accesses are initiated when the following conditions are
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,
and CE3 are all asserted active, and (3) the write signal WE is
asserted LOW. The address presented to A0–A16 is loaded into
the address register. The write signals are latched into the
control logic block.
On the subsequent clock rise the data lines are automatically
tristated regardless of the state of the OE input signal. This
enables the external logic to present the data on DQ and DQP
(DQa,b,c,d/DQPa,b,c,d for CY7C1354D). In addition, the address
for the subsequent access (read/write/deselect) is latched into
Page 5 of 28
CY7C1354D
the address register if the appropriate control signals are
asserted.
be driven in each cycle of the burst write to write the correct bytes
of data.
On the next clock rise the data presented to DQ and DQP
(DQa,b,c,d/DQPa,b,c,d for CY7C1354D or a subset for byte write
operations, see the table Partial Truth Table for Read/Write on
page 8 for details) inputs is latched into the device and the write
is complete.
The data written during the write operation is controlled by BW
(BWa,b,c,d for CY7C1354D) signals. The CY7C1354D provides
byte write capability that is described in the Write Cycle
Description table. Asserting the write enable input (WE) with the
selected byte write select (BW) input will selectively write to only
the desired bytes. Bytes not selected during a byte write
operation remain unaltered. A synchronous self-timed write
mechanism is provided to simplify the write operations. Byte
write capability is included to greatly simplify read/modify/write
sequences, which can be reduced to simple byte write operations.
Sleep Mode
Because the CY7C1354D is common I/O devices, data should
not be driven into the device while the outputs are active. The
output enable (OE) can be deasserted HIGH before presenting
data to the DQ and DQP (DQa,b,c,d/DQPa,b,c,d for CY7C1354D )
inputs. Doing so will tristate the output drivers. As a safety
precaution, DQ and DQP (DQa,b,c,d/DQPa,b,c,d for CY7C1354D )
are automatically tristated during the data portion of a write cycle,
regardless of the state of OE.
The ZZ input pin is an asynchronous input. Asserting ZZ places
the SRAM in a power conservation ‘sleep’ mode. Two clock
cycles are required to enter into or exit from this ‘sleep’ mode.
While in this mode, data integrity is guaranteed. Accesses
pending when entering the “sleep” mode are not considered valid
nor is the completion of the operation guaranteed. The device
must be deselected prior to entering the “sleep” mode. CE1, CE2,
and CE3, must remain inactive for the duration of tZZREC after the
ZZ input returns LOW.
Interleaved Burst Address Table
(MODE = Floating or VDD)
First
Address
A1, A0
00
01
10
11
Second
Address
A1, A0
01
00
11
10
Burst Write Accesses
Linear Burst Address Table
The CY7C1354D has an on-chip burst counter that enables the
user the ability to supply a single address and conduct up to four
write operations without reasserting the address inputs. ADV/LD
must be driven LOW to load the initial address, as described in
Single Write Accesses on page 5. When ADV/LD is driven HIGH
on the subsequent clock rise, the chip enables (CE1, CE2, and
CE3) and WE inputs are ignored and the burst counter is incremented. The correct BW (BWa,b,c,d for CY7C1354D) inputs must
(MODE = GND)
First
Address
A1, A0
00
01
10
11
Second
Address
A1, A0
01
10
11
00
Third
Address
A1, A0
10
11
00
01
Fourth
Address
A1, A0
11
10
01
00
Third
Address
A1, A0
10
11
00
01
Fourth
Address
A1, A0
11
00
01
10
ZZ Mode Electrical Characteristics
Parameter
IDDZZ
tZZS
tZZREC
tZZI
tRZZI
Description
Sleep mode standby current
Device operation to ZZ
ZZ recovery time
ZZ active to sleep current
ZZ Inactive to exit sleep current
Document Number: 001-88918 Rev. *A
Test Conditions
ZZ  VDD 0.2 V
ZZ VDD  0.2 V
ZZ  0.2 V
This parameter is sampled
This parameter is sampled
Min
–
–
2tCYC
–
0
Max
50
2tCYC
–
2tCYC
–
Unit
mA
ns
ns
ns
ns
Page 6 of 28
CY7C1354D
Truth Table
The Truth Table for CY7C1354D follows. [1, 2, 3, 4, 5, 6, 7]
Operation
Address
Used
CE ZZ ADV/LD WE BWx OE CEN CLK
DQ
Deselect cycle
None
H
L
L
X
X
X
L
L–H
Tri-state
Continue deselect cycle
None
X
L
H
X
X
X
L
L–H
Tri-state
Read cycle (begin burst)
External
L
L
L
H
X
L
L
L–H
Data out (Q)
Next
X
L
H
X
X
L
L
L–H
Data out (Q)
Read cycle (continue burst)
NOP/dummy read (begin burst)
Dummy read (continue burst)
Write cycle (begin burst)
External
L
L
L
H
X
H
L
L–H
Tri-state
Next
X
L
H
X
X
H
L
L–H
Tri-state
External
L
L
L
L
L
X
L
L–H
Data in (D)
Write cycle (continue burst)
Next
X
L
H
X
L
X
L
L–H
Data in (D)
NOP/WRITE ABORT (begin burst)
None
L
L
L
L
H
X
L
L–H
Tri-state
WRITE ABORT (continue burst)
Next
X
L
H
X
H
X
L
L–H
Tri-state
IGNORE CLOCK EDGE (stall)
SLEEP MODE
Current
X
L
X
X
X
X
H
L–H
–
None
X
H
X
X
X
X
X
X
Tri-state
Notes
1. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWX = L signifies at least one byte write select is active, BWX = valid signifies
that the desired byte write selects are asserted, see Write Cycle Description table for details.
2. Write is defined by WE and BWX. See Write Cycle Description table for details.
3. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.
4. The DQ and DQP pins are controlled by the current cycle and the OE signal.
5. CEN = H inserts wait states.
6. Device will power up deselected and the I/Os in a tri-state condition, regardless of OE.
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQPX = tri-state when OE is
inactive or when the device is deselected, and DQs = data when OE is active.
Document Number: 001-88918 Rev. *A
Page 7 of 28
CY7C1354D
Partial Truth Table for Read/Write
The Partial Truth Table for Read/Write for CY7C1354D follows. [8, 9, 10, 11]
Function (CY7C1354D)
Read
WE
H
BWd
X
BWc
X
BWb
X
BWa
X
Write– no bytes written
L
H
H
H
H
Write byte a –(DQa and DQPa)
L
H
H
H
L
Write byte b – (DQb and DQPb)
L
H
H
L
H
Write bytes b, a
L
H
H
L
L
Write byte c –(DQc and DQPc)
L
H
L
H
H
Write bytes c, a
L
H
L
H
L
Write bytes c, b
L
H
L
L
H
Write bytes c, b, a
L
H
L
L
L
Write byte d –(DQd and DQPd)
L
L
H
H
H
Write bytes d, a
L
L
H
H
L
Write bytes d, b
L
L
H
L
H
Write bytes d, b, a
L
L
H
L
L
Write bytes d, c
L
L
L
H
H
Write bytes d, c, a
L
L
L
H
L
Write bytes d, c, b
L
L
L
L
H
Write all bytes
L
L
L
L
L
Notes
8. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one byte write select is active, BWx = valid signifies
that the desired byte write selects are asserted, see Write Cycle Description table for details.
9. Write is defined by WE and BWX. See Write Cycle Description table for details.
10. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.
11. Table only lists a partial listing of the byte write combinations. Any combination of BWX is valid. Appropriate write will be done based on which byte write is active.
Document Number: 001-88918 Rev. *A
Page 8 of 28
CY7C1354D
IEEE 1149.1 Serial Boundary Scan (JTAG)
The CY7C1354D incorporates a serial boundary scan test
access port (TAP) in the BGA package. This part operates in
accordance with IEEE Standard 1149.1-1900, but does not have
the set of functions required for full 1149.1 compliance. These
functions from the IEEE specification are excluded because their
inclusion places an added delay in the critical speed path of the
SRAM. Note that the TAP controller functions in a manner that
does not conflict with the operation of other devices using 1149.1
fully compliant TAPs. The TAP operates using JEDEC-standard
3.3 V or 2.5 V I/O logic levels.
The CY7C1354D contains a TAP controller, instruction register,
boundary scan register, bypass register, and ID register.
Disabling the JTAG Feature
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(VSS) to prevent clocking of the device. TDI and TMS are
internally pulled up and may be unconnected. They may
alternately be connected to VDD through a pull up resistor. TDO
should be left unconnected. Upon power-up, the device comes
up in a reset state which does not interfere with the operation of
the device.
Test Access Port (TAP)
Test Clock (TCK)
The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.
Test Mode Select (TMS)
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to leave
this ball unconnected if the TAP is not used. The ball is pulled up
internally, resulting in a logic HIGH level.
Test Data-In (TDI)
The TDI ball is used to serially input information into the registers
and can be connected to the input of any of the registers. The
register between TDI and TDO is chosen by the instruction that
is loaded into the TAP instruction register. For information on
loading the instruction register, see TAP Controller State
Diagram on page 11. TDI is internally pulled up and can be
unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) of any register.
Test Data-Out (TDO)
The TDO output ball is used to serially clock data-out from the
registers. The output is active depending upon the current state
of the TAP state machine (see Instruction Codes on page 15).
The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.
Performing a TAP Reset
A RESET is performed by forcing TMS HIGH (VDD) for five rising
edges of TCK. This RESET does not affect the operation of the
SRAM and may be performed while the SRAM is operating.
Document Number: 001-88918 Rev. *A
At power-up, the TAP is reset internally to ensure that TDO
comes up in a high Z state.
TAP Registers
Registers are connected between the TDI and TDO balls and
enable data to be scanned into and out of the SRAM test circuitry.
Only one register can be selected at a time through the
instruction register. Data is serially loaded into the TDI ball on the
rising edge of TCK. Data is output on the TDO ball on the falling
edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO balls as shown in the TAP Controller Block Diagram on
page 12. Upon power up, the instruction register is loaded with
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as described
in the previous section.
When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary “01” pattern to enable
fault isolation of the board-level serial test data path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between the
TDI and TDO balls. This enables data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW (VSS)
when the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all the input and
bidirectional balls on the SRAM.
The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR state
and is then placed between the TDI and TDO balls when the
controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to
capture the contents of the I/O ring.
The Boundary Scan Exit Order on page 16 and Boundary Scan
Exit Order on page 20 show the order in which the bits are
connected. Each bit corresponds to one of the bumps on the
SRAM package. The MSB of the register is connected to TDI and
the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in Identification Register Definitions on
page 14.
TAP Instruction Set
Overview
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the Instruction
Page 9 of 28
CY7C1354D
Codes table. Three of these instructions are listed as
RESERVED and should not be used. The other five instructions
are described in detail in this section.
The TAP controller used in this SRAM is not fully compliant to the
1149.1 convention because some of the mandatory 1149.1
instructions are not fully implemented.
The TAP controller cannot be used to load address data or
control signals into the SRAM and cannot preload the I/O buffers.
The SRAM does not implement the 1149.1 commands EXTEST
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;
rather, it performs a capture of the I/O ring when these
instructions are executed.
Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO balls. To execute
the instruction once it is shifted in, the TAP controller needs to be
moved into the Update-IR state.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with all 0s.
EXTEST is not implemented in this SRAM TAP controller, and
therefore this device is not compliant to 1149.1. The TAP
controller does recognize an all-0 instruction.
When an EXTEST instruction is loaded into the instruction
register, the SRAM responds as if a SAMPLE/PRELOAD
instruction has been loaded. There is one difference between the
two instructions. Unlike the SAMPLE/PRELOAD instruction,
EXTEST places the SRAM outputs in a high Z state.
IDCODE
The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO balls and enables
the IDCODE to be shifted out of the device when the TAP
controller enters the Shift-DR state.
The IDCODE instruction is loaded into the instruction register
upon power up or whenever the TAP controller is given a test
logic reset state.
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan register to
be connected between the TDI and TDO balls when the TAP
Document Number: 001-88918 Rev. *A
controller is in a Shift-DR state. It also places all SRAM outputs
into a High-Z state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register.
The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because there
is a large difference in the clock frequencies, it is possible that
during the Capture-DR state, an input or output undergo a
transition. The TAP may then try to capture a signal while in
transition (metastable state). This does not harm the device, but
there is no guarantee as to the value that will be captured.
Repeatable results may not be possible.
To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller’s capture setup plus hold
times (tCS and tCH). The SRAM clock input might not be captured
correctly if there is no way in a design to stop (or slow) the clock
during a SAMPLE/PRELOAD instruction. If this is an issue, it is
still possible to capture all other signals and simply ignore the
value of the CK and CK# captured in the boundary scan register.
After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.
PRELOAD enables an initial data pattern to be placed at the
latched parallel outputs of the boundary scan register cells prior
to the selection of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases can
occur concurrently when required - that is, while data captured
is shifted out, the preloaded data can be shifted in.
BYPASS
When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO balls. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
Page 10 of 28
CY7C1354D
TAP Controller State Diagram
1
TEST-LOGIC
RESET
0
0
RUN-TEST/
IDLE
1
SELECT
DR-SCA N
1
SELECT
IR-SCAN
0
1
0
1
CAPTURE-DR
CAPTURE-IR
0
0
SHIFT-DR
0
SHIFT-IR
1
1
EXIT1-IR
0
1
0
PAUSE-DR
0
PAUSE-IR
1
0
1
EXIT2-DR
0
EXIT2-IR
1
1
UPDATE-DR
1
0
1
EXIT1-DR
0
1
0
UPDATE-IR
1
0
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.
Document Number: 001-88918 Rev. *A
Page 11 of 28
CY7C1354D
TAP Controller Block Diagram
0
Bypass Register
2 1 0
Selection
Circuitry
TDI
Selection
Circuitry
Instruction Register
TDO
31 30 29 . . . 2 1 0
Identification Register
x . . . . . 2 1 0
Boundary Scan Register
TCK
TAP CONTROLLER
TM S
TAP Timing
1
2
Test Clock
(TCK )
3
t TH
t TM SS
t TM SH
t TDIS
t TDIH
t
TL
4
5
6
t CY C
Test M ode Select
(TM S)
Test Data-In
(TDI)
t TDOV
t TDOX
Test Data-Out
(TDO)
DON’T CA RE
Document Number: 001-88918 Rev. *A
UNDEFINED
Page 12 of 28
CY7C1354D
TAP AC Switching Characteristics
Over the Operating Range
Parameter [12, 13]
Description
Min
Max
Unit
Clock
tTCYC
TCK clock cycle time
50
–
ns
tTF
TCK clock frequency
–
20
MHz
tTH
TCK clock HIGH time
20
–
ns
tTL
TCK clock LOW time
20
–
ns
tTDOV
TCK clock LOW to TDO valid
–
10
ns
tTDOX
TCK clock LOW to TDO invalid
0
–
ns
tTMSS
TMS setup to TCK clock rise
5
–
ns
tTDIS
TDI setup to TCK clock rise
5
–
ns
tCS
Capture setup to TCK rise
5
–
ns
tTMSH
TMS hold after TCK clock rise
5
–
ns
tTDIH
TDI hold after clock rise
5
–
ns
tCH
Capture hold after clock rise
5
–
ns
Output Times
Setup Times
Hold Times
3.3 V TAP AC Test Conditions
2.5 V TAP AC Test Conditions
Input pulse levels ...............................................VSS to 3.3 V
Input rise and fall times ...................................................1 ns
Input pulse levels ............................................... VSS to 2.5 V
Input rise and fall time ....................................................1 ns
Input timing reference levels ......................................... 1.5 V
Input timing reference levels ....................................... 1.25 V
Output reference levels ................................................ 1.5 V
Output reference levels .............................................. 1.25 V
Test load termination supply voltage ............................ 1.5 V
Test load termination supply voltage .......................... 1.25 V
3.3 V TAP AC Output Load Equivalent
2.5 V TAP AC Output Load Equivalent
1.5V
1.25V
50Ω
TDO
50Ω
TDO
Z O= 50Ω
20pF
Z O= 50Ω
20pF
Notes
12. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.
13. Test conditions are specified using the load in TAP AC test Conditions. tR/tF = 1 ns.
Document Number: 001-88918 Rev. *A
Page 13 of 28
CY7C1354D
TAP DC Electrical Characteristics and Operating Conditions
(0 °C < TA < +70 °C; VDD = 3.3 V ± 0.165 V unless otherwise noted)
Parameter [14]
Description
Test Conditions
Output HIGH voltage
VOH1
Min
Max
Unit
IOH = –4.0 mA, VDDQ = 3.3 V
2.4
–
V
IOH = –1.0 mA, VDDQ = 2.5 V
2.0
–
V
VDDQ = 3.3 V
2.9
–
V
VDDQ = 2.5 V
2.1
–
V
VDDQ = 3.3 V
–
0.4
V
VDDQ = 2.5 V
–
0.4
V
VDDQ = 3.3 V
–
0.2
V
VOH2
Output HIGH voltage
IOH = –100 µA
VOL1
Output LOW voltage
IOL = 8.0 mA
VOL2
Output LOW voltage
VIH
Input HIGH voltage
VIL
Input LOW voltage
IX
Input load current
IOL = 100 µA
VDDQ = 2.5 V
–
0.2
V
VDDQ = 3.3 V
2.0
VDD + 0.3
V
VDDQ = 2.5 V
1.7
VDD + 0.3
V
VDDQ = 3.3 V
–0.3
0.8
V
VDDQ = 2.5 V
–0.3
0.7
V
–5
5
µA
GND < VIN < VDDQ
Identification Register Definitions
Instruction Field
CY7C1354D
Revision number (31:29)
000
Cypress device ID (28:12) [15]
01011001000100110
Cypress JEDEC ID (11:1)
00000110100
ID register presence (0)
1
Description
Reserved for version number.
Reserved for future use.
Allows unique identification of SRAM vendor.
Indicate the presence of an ID register.
Scan Register Sizes
Register Name
Bit Size (× 36)
Instruction
3
Bypass
1
ID
32
Boundary scan order (165-ball FBGA package)
61
Notes
14. All voltages referenced to VSS (GND).
15. Bit #24 is “1” in the Register Definitions for both 2.5 V and 3.3 V versions of this device.
Document Number: 001-88918 Rev. *A
Page 14 of 28
CY7C1354D
Instruction Codes
Code
Description
EXTEST
Instruction
000
Captures the input/output ring contents. Places the boundary scan register between the TDI
and TDO. Forces all SRAM outputs to high Z state.
IDCODE
001
Loads the ID register with the vendor ID code and places the register between TDI and TDO.
This operation does not affect SRAM operation.
SAMPLE Z
010
Captures the input/output contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM output drivers to a high Z state.
RESERVED
011
Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD
100
Captures the input/output ring contents. Places the boundary scan register between TDI and
TDO. Does not affect the SRAM operation.
RESERVED
101
Do Not Use: This instruction is reserved for future use.
RESERVED
110
Do Not Use: This instruction is reserved for future use.
BYPASS
111
Places the bypass register between TDI and TDO. This operation does not affect SRAM
operation.
Document Number: 001-88918 Rev. *A
Page 15 of 28
CY7C1354D
Boundary Scan Exit Order
(256 K × 36)
Bit #
165-ball ID
Bit #
165-ball ID
1
B6
31
R9
2
B7
32
P9
3
A7
33
R8
4
B8
34
P8
5
A8
35
R6
6
A9
36
P6
7
B10
37
R4
8
A10
38
P4
9
C11
39
R3
10
E10
40
P3
11
F10
41
R1
12
G10
42
N1
13
D10
43
L2
14
D11
44
K2
15
E11
45
J2
16
F11
46
M2
17
G11
47
M1
18
H11
48
L1
19
J10
49
K1
20
K10
50
J1
21
L10
51
Not Bonded (Preset to 1)
22
M10
52
G2
23
J11
53
F2
24
K11
54
E2
25
L11
55
D2
26
M11
56
G1
27
N11
57
F1
28
R11
58
E1
29
R10
59
D1
30
P10
60
C1
61
B2
Document Number: 001-88918 Rev. *A
Page 16 of 28
CY7C1354D
Maximum Ratings
Operating Range
Exceeding maximum ratings may impair the useful life of the
device. These user guidelines are not tested.
Storage temperature ................................ –65 °C to +150 °C
Range
Ambient
Temperature
Commercial
0 °C to +70 °C
Ambient temperature with
power applied .......................................... –55 °C to +125 °C
Supply voltage on VDD relative to GND .......–0.5 V to +4.6 V
Supply voltage on VDDQ relative to GND ...... –0.5 V to +VDD
DC to outputs in tri-state ...................–0.5 V to VDDQ + 0.5 V
DC input voltage ................................. –0.5 V to VDD + 0.5 V
Current into outputs (LOW) ........................................ 20 mA
Static discharge voltage
(per MIL-STD-883, method 3015) .......................... > 2001 V
Latch-up current .................................................... > 200 mA
VDD
VDDQ
3.3 V– 5% / 2.5 V – 5% to
+ 10%
VDD
Neutron Soft Error Immunity
Parameter
Description
Test
Conditions Typ
Max*
Unit
368
FIT/M
b
LSBU
Logical
single-bit
upsets
25 °C
320
LMBU
Logical
multi-bit
upsets
25 °C
0
0.01 FIT/M
b
Single event
latch-up
85 °C
0
0.1
SEL
FIT/D
ev
* No LMBU or SEL events occurred during testing; this column represents a
statistical 2, 95% confidence limit calculation. For more details refer to Application
Note AN 54908 “Accelerated Neutron SER Testing and Calculation of Terrestrial
Failure Rates”.
Electrical Characteristics
Over the Operating Range
Parameter [16, 17]
Description
VDD
Power supply voltage
VDDQ
I/O supply voltage
VOH
VOL
VIH
VIL
IX
Output HIGH voltage
Output LOW voltage
Input HIGH voltage
Min
Max
Unit
3.135
3.6
V
for 3.3 V I/O
3.135
VDD
V
for 2.5 V I/O
2.375
2.625
V
for 3.3 V I/O, IOH =4.0 mA
2.4
–
V
for 2.5 V I/O, IOH =1.0 mA
2.0
–
V
for 3.3 V I/O, IOL=8.0 mA
–
0.4
V
for 2.5 V I/O, IOL=1.0 mA
–
0.4
V
for 3.3 V I/O
2.0
VDD + 0.3 V
V
for 2.5 V I/O
1.7
VDD + 0.3 V
V
for 3.3 V I/O
–0.3
0.8
V
for 2.5 V I/O
–0.3
0.7
V
Input leakage current except ZZ GND  VI  VDDQ
and MODE
–5
5
A
Input current of MODE
Input = VSS
–30
–
A
Input = VDD
–
5
A
Input = VSS
–5
–
A
Input = VDD
–
30
A
GND  VI  VDDQ, output disabled
–5
5
A
Input LOW voltage
[18]
Input current of ZZ
IOZ
Test Conditions
Output leakage current
Notes
16. Overshoot: VIH(AC) < VDD + 1.5 V (Pulse width less than tCYC/2), undershoot: VIL(AC) > –2 V (Pulse width less than tCYC/2).
17. TPower-up: Assumes a linear ramp from 0 V to VDD(min) within 200 ms. During this time VIH < VDD and VDDQ <VDD.
18. Tested initially and after any design or process changes that may affect these parameters.
Document Number: 001-88918 Rev. *A
Page 17 of 28
CY7C1354D
Electrical Characteristics (continued)
Over the Operating Range
Parameter [16, 17]
Description
Test Conditions
Min
Max
Unit
IDD
VDD operating supply
VDD = Max, IOUT = 0 mA,
f = fMAX = 1/tCYC
5 ns cycle,
200 MHz
–
220
mA
ISB1
Automatic CE power-down
current — TTL inputs
Max VDD, device deselected,
VIN  VIH or VIN  VIL,
f = fMAX = 1/tCYC
5 ns cycle,
200 MHz
–
120
mA
ISB2
Automatic CE power-down
current — CMOS inputs
Max VDD, device deselected,
5 ns cycle,
VIN  0.3 V or VIN > VDDQ 0.3 V, 200 MHz
f=0
–
40
mA
ISB3
Automatic CE power-down
current — CMOS inputs
Max VDD, device deselected,
VIN  0.3 V or VIN > VDDQ 
0.3 V, f = fMAX = 1/tCYC
5 ns cycle,
200 MHz
–
110
mA
ISB4
Automatic CE power-down
current — TTL inputs
Max VDD, device deselected,
VIN  VIH or VIN  VIL, f = 0
5 ns cycle,
200 MHz
–
40
mA
Capacitance
Parameter [19]
Description
CIN
Input capacitance
CCLK
Clock input capacitance
CI/O
Input/output capacitance
Test Conditions
TA = 25 C, f = 1 MHz,
VDD = 3.3 V, VDDQ = 2.5 V
165-ball FBGA Unit
Max
5
pF
5
pF
7
pF
Thermal Resistance
Parameter [19]
Description
JA
Thermal resistance
(junction to ambient)
JC
Thermal resistance
(junction to case)
Test Conditions
Test conditions follow standard test methods and
procedures for measuring thermal impedance, per
EIA/JESD51.
165-ball FBGA Unit
Max
16.8
°C/W
3.0
°C/W
Note
19. Tested initially and after any design or process changes that may affect these parameters.
Document Number: 001-88918 Rev. *A
Page 18 of 28
CY7C1354D
AC Test Loads and Waveforms
Figure 2. AC Test Loads and Waveforms
3.3 V I/O Test Load
R = 317 
3.3 V
OUTPUT
OUTPUT
RL = 50 
Z0 = 50 
VT = 1.5 V
(a)
INCLUDING
JIG AND
SCOPE
OUTPUT
RL = 50 
VT = 1.25 V
(a)
Document Number: 001-88918 Rev. *A
R = 351 
10%
(c)
ALL INPUT PULSES
VDDQ
INCLUDING
JIG AND
SCOPE
 1 ns
(b)
GND
5 pF
R = 1538 
(b)
90%
10%
90%
 1 ns
R = 1667 
2.5 V
Z0 = 50 
GND
5 pF
2.5 V I/O Test Load
OUTPUT
ALL INPUT PULSES
VDDQ
10%
90%
10%
90%
 1 ns
 1 ns
(c)
Page 19 of 28
CY7C1354D
Switching Characteristics
Over the Operating Range
Parameter [20, 21]
Description
-200
Unit
Min
Max
VCC(typical) to the first access read or write
1
–
ms
tCYC
Clock cycle time
5
–
ns
FMAX
Maximum operating frequency
–
200
MHz
tCH
Clock HIGH
2.0
–
ns
tCL
Clock LOW
2.0
–
ns
tEOV
OE LOW to output valid
–
3.2
ns
tCLZ
[23, 24, 25]
1.5
–
ns
tPower[22]
Clock
Clock to low Z
Output Times
tCO
Data output valid after CLK rise
–
3.2
ns
tEOV
OE LOW to output valid
–
3.2
ns
tDOH
Data output hold after CLK rise
1.5
–
ns
1.5
3.2
ns
1.5
–
ns
–
3.2
ns
0
–
ns
[23, 24, 25]
tCHZ
Clock to high Z
tCLZ
Clock to low Z [23, 24, 25]
tEOHZ
tEOLZ
OE HIGH to output high Z
OE LOW to output low Z
[23, 24, 25]
[23, 24, 25]
Setup Times
tAS
Address setup before CLK rise
1.5
–
ns
tDS
Data input setup before CLK rise
1.5
–
ns
tCENS
CEN setup before CLK rise
1.5
–
ns
tWES
WE, BWx setup before CLK rise
1.5
–
ns
tALS
ADV/LD setup before CLK rise
1.5
–
ns
tCES
Chip select setup
1.5
–
ns
tAH
Address hold after CLK rise
0.5
–
ns
tDH
Data input hold after CLK rise
0.5
–
ns
tCENH
CEN hold after CLK rise
0.5
–
ns
tWEH
WE, BWx hold after CLK rise
0.5
–
ns
tALH
ADV/LD hold after CLK rise
0.5
–
ns
tCEH
Chip select hold after CLK rise
0.5
–
ns
Hold Times
Notes
20. Timing reference level is 1.5 V when VDDQ = 3.3 V and is 1.25 V when VDDQ = 2.5 V.
21. Test conditions shown in (a) of Figure 2 on page 19 unless otherwise noted.
22. This part has a voltage regulator internally; tpower is the time power needs to be supplied above VDD minimum initially, before a Read or Write operation can be initiated.
23. tCHZ, tCLZ, tEOLZ, and tEOHZ are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
24. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same data
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve
high Z prior to low Z under the same system conditions.
25. This parameter is sampled and not 100% tested.
Document Number: 001-88918 Rev. *A
Page 20 of 28
CY7C1354D
Switching Waveforms
Figure 3. Read/Write Timing [26, 27, 28]
1
2
3
t CYC
4
5
6
A3
A4
7
8
9
A5
A6
10
CLK
t CENS
t CENH
t CES
t CEH
t CH
t CL
CEN
CE
ADV/LD
WE
BW x
A1
ADDRESS
A2
A7
t CO
t AS
t DS
t AH
Data
In-Out (DQ)
t DH
D(A1)
t CLZ
D(A2)
D(A2+1)
t DOH
Q(A3)
t OEV
Q(A4)
t CHZ
Q(A4+1)
D(A5)
Q(A6)
t OEHZ
t DOH
t OELZ
OE
WRITE
D(A1)
WRITE
D(A2)
BURST
WRITE
D(A2+1)
READ
Q(A3)
DON’T CARE
READ
Q(A4)
BURST
READ
Q(A4+1)
WRITE
D(A5)
READ
Q(A6)
WRITE
D(A7)
DESELECT
UNDEFINED
Notes
26. For this waveform ZZ is tied low.
27. When CE is LOW, CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH, CE1 is HIGH or CE2 is LOW or CE3 is HIGH.
28. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.
Document Number: 001-88918 Rev. *A
Page 21 of 28
CY7C1354D
Switching Waveforms (continued)
Figure 4. NOP, STALL, and DESELECT Cycles [29, 30, 31]
1
2
A1
A2
3
4
5
A3
A4
6
7
8
9
10
CLK
CEN
CE
ADV/LD
WE
BWx
ADDRESS
A5
t CHZ
D(A1)
Data
Q(A2)
D(A4)
Q(A3)
Q(A5)
In-Out (DQ)
WRITE
D(A1)
READ
Q(A2)
STALL
READ
Q(A3)
WRITE
D(A4)
DON’T CARE
STALL
NOP
READ
Q(A5)
DESELECT
CONTINUE
DESELECT
UNDEFINED
Notes
29. For this waveform ZZ is tied low.
30. When CE is LOW, CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH, CE1 is HIGH or CE2 is LOW or CE3 is HIGH.
31. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.
Document Number: 001-88918 Rev. *A
Page 22 of 28
CY7C1354D
Switching Waveforms (continued)
Figure 5. ZZ Mode Timing [32, 33]
CLK
t ZZ
ZZ
I
t
t ZZREC
ZZI
SUPPLY
I DDZZ
t RZZI
A LL INPUTS
DESELECT or READ Only
(except ZZ)
Outputs (Q)
High-Z
DON’T CARE
Notes
32. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.
33. I/Os are in high Z when exiting ZZ sleep mode.
Document Number: 001-88918 Rev. *A
Page 23 of 28
CY7C1354D
Ordering Information
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your local
sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at
http://www.cypress.com/products
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office
closest to you, visit us at http://www.cypress.com/go/datasheet/offices
Speed
(MHz)
200
Package
Diagram
Ordering Code
CY7C1354D-200BZC
Part and Package Type
51-85180 165-ball FBGA (13 × 15 × 1.4 mm)
Operating
Range
Commercial
Ordering Code Definitions
CY
7
C
1354
D - 200
BZ
C
Temperature Range: C = Commercial;
Package Type: BZ = 165-ball FBGA
Speed Grade: 200 MHz
Process Technology  90 nm
Part Identifier: 1354 = PL, 256 Kb × 36 (9 Mb)
Technology Code: C = CMOS
Marketing Code: 7 = SRAM
Company ID: CY = Cypress
Document Number: 001-88918 Rev. *A
Page 24 of 28
CY7C1354D
Package Diagrams
Figure 6. 165-ball FBGA (13 × 15 × 1.4 mm) BB165D/BW165D (0.5 Ball Diameter) Package Outline, 51-85180
51-85180 *F
Document Number: 001-88918 Rev. *A
Page 25 of 28
CY7C1354D
Acronyms
Acronym
Document Conventions
Description
Units of Measure
BGA
Ball Grid Array
CMOS
Complementary Metal Oxide Semiconductor
°C
degree Celsius
Symbol
Unit of Measure
CE
Chip Enable
MHz
megahertz
CEN
Clock Enable
µA
microampere
EIA
Electronic Industries Alliance
mA
milliampere
FBGA
Fine-Pitch Ball Grid Array
mm
millimeter
I/O
Input/Output
ms
millisecond
JEDEC
Joint Electron Devices Engineering Council
mV
millivolt
JTAG
Joint Test Action Group
ns
nanosecond
LMBU
Logical Multi-Bit Upsets

ohm
LSB
Least Significant Bit
%
percent
LSBU
Logical Single-Bit Upsets
pF
picofarad
MSB
Most Significant Bit
V
volt
NoBL
No Bus Latency
W
watt
OE
Output Enable
SEL
Single Event Latch-up
SRAM
Static Random Access Memory
TAP
Test Access Port
TCK
Test Clock
TDI
Test Data-In
TDO
Test Data-Out
TMS
Test Mode Select
TTL
Transistor-Transistor Logic
WE
Write Enable
Document Number: 001-88918 Rev. *A
Page 26 of 28
CY7C1354D
Document History Page
Document Title: CY7C1354D, 9-Mbit (256 K × 36) Pipelined SRAM with NoBL™ Architecture
Document Number: 001-88918
Revision
ECN
Submission
Date
Orig. of
Change
**
4103005
08/23/2013
PRIT
New data sheet.
*A
4571750
11/18/2014
PRIT
Added documentation related hyperlink in page 1
Document Number: 001-88918 Rev. *A
Description of Change
Page 27 of 28
CY7C1354D
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
PSoC
Touch Sensing
cypress.com/go/memory
cypress.com/go/psoc
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
cypress.com/go/touch
USB Controllers
Wireless/RF
psoc.cypress.com/solutions
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2013-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-88918 Rev. *A
Revised November 18, 2014
Page 28 of 28
No Bus Latency and NoBL are trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.