Bulletin I27303 01/07 GB30RF60K IGBT PIM MODULE VCES = 600V Features • • • • Low VCE (on) Non Punch Through IGBT Technology Low Diode VF 10μs Short Circuit Capability Square RBSOA • HEXFRED Antiparallel Diode with Ultrasoft Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate IC = 27A @ TC=80°C tsc > 10μs @ TJ =150°C VCE(on) typ. = 2.04V ECONO2 PIM • Low Stray Inductance Design • TOTALLY LEAD-FREE Benefits • • • • • • Benchmark Efficiency for Motor Control Rugged Transient Performance Low EMI, Requires Less Snubbing Direct Mounting to Heatsink PCB Solderable Terminals Low Junction to Case Thermal Resistance R 23 24 Absolute Maximum Ratings Parameter Inverter Ratings 600 Gate-to-Emitter Voltage VGES ±20 IC Continuos 25°C / 80°C 50 / 27 ICM Pulsed 25°C 100 25°C 100 25°C 129 Diode Maximum Forward Current IFM Power Dissipation PD Repetitive Peak Reverse Voltage V RRM Average Output Current IF(AV) Surge Current (Non Repetitive) IFSM I2 t (Non Repetitive) Brake Test Conditions VCES Collector Current Input Rectifier Symbol Collector-to-Emitter Voltage One IGBT 50/60Hz sine pulse 80°C Rated VRRM applied, 10ms, V A W 800 V 30 A 310 525 A2s Collector-to-Emitter Voltage VCES 600 V Gate-to-Emitter Voltage VGES ±20 Collector Current Power Dissipation Repetitive Peak Reverse Voltage Maximum Operating Junction Temperature I2t Units sine pulse IC Continuous 25°C / 80°C 30 / 20 ICM Pulsed 25°C 60 PD One IGBT 25°C 100 A W V RRM 600 V TJ 150 °C Storage Temperature Range TSTG Isolation Voltage VISOL -40 to +125 AC (1 min) 2500 V Thermal and Mechanical Characteristics Parameter Min Typical Maximum Units Junction-to-Case Inverter IGBT Thermal Resistance - - 0.97 °C/W Junction-to-Case Inverter FRED Thermal Resistance - - 1.42 Junction-to-Case Brake DIODE Thermal Resistance Symbol - - 2.44 Junction-to-Case Brake IGBT Thermal Resistance - - 1.25 Junction-to-Case Input Rectifier Thermal Resistance - - 1.03 - 0.05 - 2.7 - 3.3 Case-to-Sink, flat, greased surface Mounting Torque (M5) Weight Document Number: 94479 RθJC RθCS 170 Nm g www.vishay.com 1 GB30RF60K Bulletin I27303 01/07 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Inverter IGBT BV(CES) Parameter Collector-to-Emitter Breakdown Voltage Min. Typ. Max. Units Conditions 600 V VGE = 0 IC = 500μA ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage - 0.7 - V/°C Collector-to-Emitter Voltage - 2.04 2.65 V - 2.60 3.62 IC = 50A VGE = 15V - 2.31 2.80 IC = 30A VGE = 15V TJ = 125°C - 3.01 2.77 IC = 50A VGE = 15V TJ = 125°C 3.5 - 5.5 VCE = VGE IC = 250μA ΔV GE (th)/ΔT J Thresold Voltage temp. coefficient - -10 - mV/°C ICES - - 100 μA - 400 - V CE(ON) VGE(th) Gate Threshold Voltage Zero Gate Voltage Collector Current VGE = 0 IC = 1mA (25°C - 125°C) IC = 30A VGE = 15V VCE = VGE IC = 1mA (25°C-125°C) VGE = 0 VCE = 600V VGE = 0 VCE = 600V Tj = 125°C IGES Gate-to-Emitter Leakage Current - - ±200 QG Total Gate Charge (turn-on) - 105 158 nA VGE = ±20V QGE Gate-to-Emitter Charge (turn-on) - 14 21 QGC Gate-to-Collector Charge (turn-on) - 51 76 EON Turn-On Switching Loss - 491 737 EOFF Turn-Off Switching Loss - 223 335 ETOT Total Switching Loss - 714 1072 EON Turn-On Switching Loss - 613 920 EOFF Turn-Off Switching Loss - 417 626 ETOT Total Switching Loss - 1030 1546 td(on) Turn-On delay time - 132 198 tr Rise time - 33 50 VGE = 15V RG = 22Ω L = 200μH td(off) Turn-Off delay time - 153 229 Tj = 125°C tf Fall time - 88 132 Cies Input Capacitance - 1834 2751 Coes Output Capacitance - 459 690 VCC = 30V Cres Reverse Transfer Capacitance - 54 81 f = 1Mhz RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area IC = 30A nC VCC = 300V VGE = 15V μJ IC = 30A VCC = 300V VGE = 15V RG = 22Ω L = 200μH Tj = 25°C μJ 1 IC = 30A VCC = 300V VGE = 15V RG = 22Ω L = 200μH Tj = 125°C ns pF 1 IC = 30A VCC = 300V VGE = 0 Tj = 150°C IC = 60A RG = 22Ω VGE = 15V to 0 10 - - μs IP = 220A to 310A VCC = 300V RG = 47Ω Inverter Irr Diode Peak Rev. Recovery Current - 43 - A VGE = 15V to 0 Tj = 125°C VCC = 300V IF = 30A L = 200μH Diode VGE = 15V RG = 22Ω V FM Diode Forward Voltage Drop Document Number: 94479 - 1.31 1.81 - 1.52 2.40 V IF = 30A - 1.25 1.68 IF = 30A Tj = 125°C - 1.47 2.14 IF = 50A Tj = 125°C IF = 50A www.vishay.com 2 GB30RF60K Bulletin I27303 01/07 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Input V FM Parameter Maximum Forward Voltage Drop Rectifier IRM Maximum Reverse Leakage Current Min. Typ. Max. Units Conditions 1.50 V IF = 30A - - 0.2 - - 1 mA Tj = 25°C VR = 800V Tj = 150°C VR = 800V rT Forward Slope Resistance - 8.8 - mΩ V F(TO) Conduction Thresold Voltage - 0.79 - V Brake BV(CES) Collector-to-Emitter Breakdown Voltage 600 - - V IGBT ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage - 0.6 - V/°C VCE(ON) - 2.07 2.24 V - 2.51 2.71 IC = 30A VGE = 15V - 2.49 2.72 IC = 20A VGE = 15V TJ = 125°C - 3.06 3.47 4 - 6 Collector-to-Emitter Voltage Tj = 150°C VGE = 0 IC = 500μA VGE = 0 IC = 1mA (25°C - 125°C) IC = 20A VGE = 15V IC =30A VGE = 15V TJ = 125°C VGE(th) Gate Threshold Voltage VCE = VGE IC = 250μA ΔV GE (th)/ΔT J Thresold Voltage temp. coefficient - -10 - mV/°C ICES Zero Gate Voltage Collector Current - - 100 μA - 250 - VCE = VGE IC = 1mA (25°C-125°C) VGE = 0 VCE = 600V VGE = 0 VCE = 600V Tj = 125°C IGES Gate-to-Emitter Leakage Current - - ±200 QG Total Gate Charge (turn-on) - 48 72 nA VGE = ±20V QGE Gate-to-Emitter Charge (turn-on) - 11 16 QGC Gate-to-Collector Charge (turn-on) - 30 44 EON Turn-On Switching Loss - 176 264 EOFF Turn-Off Switching Loss - 137 207 ETOT Total Switching Loss - 313 471 EON Turn-On Switching Loss - 235 353 EOFF Turn-Off Switching Loss - 276 416 VGE = 15V RG = 22Ω L = 200μH ETOT Total Switching Loss - 512 768 Tj = 125°C td(on) Turn-On delay time - 87 131 tr Rise time - 24 36 VGE = 15V RG = 22Ω L = 200μH td(off) Turn-Off delay time - 112 169 Tj = 125°C tf Fall time - 115 172 Cies Input Capacitance - 901 1352 Coes Output Capacitance - 263 395 VCC = 30V Cres Reverse Transfer Capacitance - 29 44 f = 1Mhz RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area IC = 15A nC VCC = 300V VGE = 15V μJ IC = 15A VCC = 300V VGE = 15V RG = 22Ω L = 200μH Tj = 25°C μJ ns pF 1 IC = 15A VCC = 300V 1 IC = 15A VCC = 300V VGE = 0 Tj = 150°C IC = 20A RG = 22Ω VGE = 15V to 0 10 - - μs IP = 180A to 280A VCC = 300V RG = 47Ω Brake Diode Peak Rev. Recovery Current - 28 - A VCC = 300V IF = 15A L = 200μH V FM Diode Forward Voltage Drop - 1.61 1.71 V IF = 20A - 1.79 1.99 - 1.57 1.66 IF = 20A Tj = 125°C - 1.73 1.83 IF = 30A Tj = 125°C - 5000 - - 4933 - - 3375 - VGE = 15V to 0 RG = 22Ω Diode NTC R B 1 VGE = 15V to 0 Irr Resistance B Value IF = 30A Ω Tj = 25°C Tj = 100°C K Tj = 25°C / 50°C Energy Losses include "tail" and diode reverse recovery Document Number: 94479 www.vishay.com 3 GB30RF60K Bulletin I27303 01/07 Inverter 90 60 Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 40 30 60 45 20 30 10 15 0 0 0 1 2 3 Vce (V) 4 0 5 2 Vce (V) 4 6 Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80μs Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 400 20 Tj = 25°C Tj = 125°C Ice=15A Ice=30A Ice=60A 15 Vce (V) Ice (A) 300 200 100 10 5 0 0 0 6 9 12 15 Vge (V) Fig. 3 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs 3 20 5 10 15 Vge (V) Fig. 4 - Typical VCE vs. VGE TJ = 25°C 20 10000 16 Cies Ice=15A Ice=30A Ice=60A 12 Capacitance (pF) Vce (V) Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 75 Ice (A) Ice (A) 50 8 4 0 5 10 Vge (V) 15 Fig.5 - Typical VCE vs. VGE TJ = 125°C Document Number: 94479 20 1000 Coes 100 Cres 10 0 20 40 60 Vce (V) 80 100 Fig. 6- Typ. Capacitance vs. VCE VGE= 0; f = 1MHz www.vishay.com 4 GB30RF60K Bulletin I27303 01/07 Inverter 90 16 14 12 60 If (A) 10 VGE (V) Tj = 25°C Tj = 125°C 75 300V 8 6 45 30 4 15 2 0 0 0 20 40 60 80 100 QG, Total Gate Charge (nC) 120 0 Fig. 7 - Typical Gate Charge vs. VGE ICE = 30A 0.5 2 1 tdOFF tF tdON tR EON 0.8 EOFF 0.4 Swiching Time (µs) ETOT 1.2 Energy (mJ) 1.5 Fig. 8 - Typ. Diode Forward Characteristics tp = 80μs 1.6 0.1 0.01 0 10 30 40 50 60 Ic (A) Fig. 9 - Typ. Energy Loss vs. IC TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω; VGE= 15V 20 25 45 55 65 Ic (A) Fig. 10 - Typ. Switching Time vs. IC TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω;VGE= 15V 35 1 1 Swiching Time (µs) 1.2 Energy (mJ) 1 Vf (V) E (TOT) 0.8 E (ON) 0.6 tdOFF 0.1 tF tdON tR E (OFF) 0.4 0.01 0.2 0 10 20 30 40 50 Ω) Rg (Ω Fig. 11 - Typ. Energy Loss vs. RG TJ = 125°C; L=200μH; VCE= 300V, ICE= 30A; VGE= 15V Document Number: 94479 0 10 20 30 40 50 Rg (Ω ) Fig. 12- Typ. Switching Time vs. RG TJ = 125°C; L=200μH; VCE= 300V, ICE= 30A; VGE= 15V www.vishay.com 5 GB30RF60K Bulletin I27303 01/07 Inverter 55 50 50 45 Rg = 4.7Ω Rg = 10Ω 40 Irr (A) Irr (A) 45 Rg = 22Ω 40 35 35 Rg = 33Ω 30 Rg = 47Ω 25 30 0 10 20 30 40 50 60 70 If (A) Fig. 13 - Typical Diode IRR vs. IF TJ = 125°C 0 10 20 30 Rg (Ω ) 40 50 Fig. 14 - Typical Diode IRR vs. RG TJ = 125°C; IF = 30A 50 Thermistor 14 Thermistor Resistance ( kΩ) 12 Irr (A) 45 40 35 10 8 6 4 2 30 600 0 800 1000 1200 1400 dif/dt (A/µs) Fig. 15- Typical Diode IRR vs. diF/dt VCC= 300V; VGE= 15V; ICE= 30A; TJ = 125°C 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig. 16 - Thermistor Resistance vs. Temperature Input Rectifier 90 Istantaneous Forward Current IF (A) 0 75 60 45 30 Tj = 25°C Tj = 125°C 15 0 0 0.5 1 1.5 2 Forward Voltage Drop VF (V) Document Number: 94479 Fig. 17- Typ. Diode Forward Characteristics tp = 80μs www.vishay.com 6 GB30RF60K Bulletin I27303 01/07 Inverter 1 Thermal Response (ZthJC ) 0.5 0.3 0.1 0.1 0.05 R1 R1 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) 0.01 R2 R2 J τ1 Ri (°C/W) τi (sec) 0.2582 0.000393 0.7117 0.026554 TC TτJ τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc 0.001 1E-05 1E-04 1E-03 1E-02 t1 , Rectangular Pulse Duration (sec) 1E-01 1E+00 Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response (ZthJC ) 10 1 0.5 0.3 R1 R1 τJ τ1 0.1 0.1 0.05 0.01 1E-05 R3 R3 TC τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci= i/Ri 0.02 0.01 R2 R2 TJ SINGLE PULSE (THERMAL RESPONSE) 1E-04 1E-03 1E-02 t1 , Rectangular Pulse Duration (sec) Ri (°C/W) τi (sec) 0.000196 0.228 0.001288 0.377 0.043359 0.815 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc 1E-01 1E+00 Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) Document Number: 94479 www.vishay.com 7 GB30RF60K Brake 30 30 20 20 Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 10 10 0 0 Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V Ice (A) Ice (A) Bulletin I27303 01/07 1 2 Vce (V) 3 0 4 0 1 2 Vce (V) 4 Fig. 21 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80μs Fig. 20 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 20 70 Ice=5A Ice=20A Ice=30A 60 15 50 40 30 Vce (V) Ice (A) 3 Tj = 25°C Tj = 125°C 20 10 5 10 0 0 4 6 8 10 Vge (V) 12 5 14 15 20 10000 12 Capacitance (pF) Ice=5A Ice=20A Ice=30A 16 Vce (V) Vge (V) Fig. 23 - Typical VCE vs. VGE TJ = 25°C Fig. 22 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs 20 10 8 4 0 Cies 1000 Coes 100 Cres 10 5 10 Vge (V) 15 Fig.24- Typical VCE vs. VGE TJ = 125°C Document Number: 94479 20 0 20 40 60 80 100 Vce (V) Fig. 25- Typ. Capacitance vs. VCE VGE= 0; f = 1MHz www.vishay.com 8 GB30RF60K Brake Bulletin I27303 01/07 16 30 300V 25 12 If (A) VGE (V) 20 8 15 Tj = 25°C Tj = 125°C 10 4 5 0 0 0 20 40 QG, Total Gate Charge (nC) 0 Fig. 26 - Typical Gate Charge vs. VGE ICE = 15A 0.5 1 Vf (V) 1.5 2 Fig. 27 - Typ. Diode Forward Characteristics tp = 80μs 1 0.7 0.6 Swiching Time (µs) Energy (mJ) ETOT 0.5 0.4 0.3 EON tF tdOF F 0.1 tdO N 0.2 tR EOFF 0.1 4 7 10 0.01 13 Ic (A) 16 19 10 22 14 18 22 Ic (A) Fig. 28 - Typ. Energy Loss vs. IC TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω; VGE= 15V Fig. 29 - Typ. Switching Time vs. IC TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω;VGE= 15V 1 0.6 E (TOT) Swiching Time (µs) Energy (mJ) 0.5 0.4 0.3 E (OFF) tF tdOFF tdON 0.1 0.2 E (ON) tR 0.01 0.1 0 10 20 30 40 50 Ω) Rg (Ω Fig. 30 - Typ. Energy Loss vs. RG TJ = 125°C; L=200μH; VCE= 300V, ICE= 15A; VGE= 15V Document Number: 94479 0 10 20 30 Rg (Ω ) 40 50 Fig. 31 - Typ. Switching Time vs. RG TJ = 125°C; L=200μH; VCE= 300V, ICE= 15A; VGE= 15V www.vishay.com 9 GB30RF60K Brake Bulletin I27303 01/07 40 35 30 Irr (A) Irr (A) 30 25 20 Rg = 4.7Ω Rg = 10 Ω Rg = 22 Ω 15 20 10 Rg = 33 Ω Rg = 47 Ω 10 0 5 0 10 15 If (A) 20 Fig. 32 - Typical Diode IRR vs. IF TJ = 125°C 25 0 10 20 30 Rg (Ω ) 40 50 Fig. 33- Typical Diode IRR vs. RG TJ = 125°C; IF = 15A 40 Irr (A) 30 20 10 0 400 500 600 700 dif/dt (A/µs) Fig. 34- Typical Diode IRR vs. diF/dt VCC= 300V; VGE= 15V; ICE= 15A; TJ = 125°C Document Number: 94479 www.vishay.com 10 GB30RF60K Brake Bulletin I27303 01/07 Thermal Response (ZthJC ) 10 1 0.5 0.3 R1 R1 τJ τ1 0.1 0.1 0.05 R3 R3 Ri (°C/W) τi (sec) 0.000207 0.256 0.00051 0.225 0.023774 0.769 TC τ2 τ1 τ3 τ2 τ3 Ci= τi/Ri Ci= i/Ri 0.02 0.01 0.01 1E-05 R2 R2 TJ Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc SINGLE PULSE (THERMAL RESPONSE) 1E-04 1E-03 1E-02 t1 , Rectangular Pulse Duration (sec) 1E-01 1E+00 Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT) Thermal Response (ZthJC ) 10 1 0.5 0.3 R1 R1 0.1 τJ τ1 0.05 0.1 R2 R2 R3 R3 TJ 0.02 0.01 TC τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci= i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc SINGLE PULSE (THERMAL RESPONSE) 0.01 1E-05 1E-04 Ri (°C/W) τi (sec) 0.000114 0.342 0.001417 0.856 0.035743 1.242 1E-03 1E-02 t1 , Rectangular Pulse Duration (sec) 1E-01 1E+00 Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode) Document Number: 94479 www.vishay.com 11 GB30RF60K Bulletin I27303 01/07 R= diode clamp/ DUT VCC ICM L + - VGE - + VCC 5V DUT/ DRIVER + - 1mA IC VCC RG Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp/ DUT L + - DUT - + VCC 5V DUT/ DRIVER + - VCC RG RG Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM + VCC - RG Fig.C.T.5 - Resistive Load Circuit Document Number: 94479 www.vishay.com 12 GB30RF60K Bulletin I27303 01/07 Econo2 PIM Package Outline Dimensions are shown in millimeters (inches) Econo2 PIM Part Marking Information LOT Made in Italy GB30RF60K Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site. Document Number: 94479 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 01/07 www.vishay.com 13 Legal Disclaimer Notice Vishay Notice The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier’s Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below. Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale. International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners. Document Number: 99901 Revision: 12-Mar-07 www.vishay.com 1