IRF GB30RF60K

Bulletin I27303 01/07
GB30RF60K
IGBT PIM MODULE
VCES = 600V
Features
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology
Low Diode VF
10μs Short Circuit Capability
Square RBSOA
• HEXFRED Antiparallel Diode with Ultrasoft
Reverse Recovery Characteristics
• Positive VCE (on) Temperature Coefficient
• Ceramic DBC Substrate
IC = 27A @ TC=80°C
tsc > 10μs @ TJ =150°C
VCE(on) typ. = 2.04V
ECONO2 PIM
• Low Stray Inductance Design
• TOTALLY LEAD-FREE
Benefits
•
•
•
•
•
•
Benchmark Efficiency for Motor Control
Rugged Transient Performance
Low EMI, Requires Less Snubbing
Direct Mounting to Heatsink
PCB Solderable Terminals
Low Junction to Case Thermal Resistance
R
23
24
Absolute Maximum Ratings
Parameter
Inverter
Ratings
600
Gate-to-Emitter Voltage
VGES
±20
IC
Continuos
25°C / 80°C
50 / 27
ICM
Pulsed
25°C
100
25°C
100
25°C
129
Diode Maximum Forward Current
IFM
Power Dissipation
PD
Repetitive Peak Reverse Voltage
V RRM
Average Output Current
IF(AV)
Surge Current (Non Repetitive)
IFSM
I2 t (Non Repetitive)
Brake
Test Conditions
VCES
Collector Current
Input Rectifier
Symbol
Collector-to-Emitter Voltage
One IGBT
50/60Hz sine pulse
80°C
Rated VRRM applied, 10ms,
V
A
W
800
V
30
A
310
525
A2s
Collector-to-Emitter Voltage
VCES
600
V
Gate-to-Emitter Voltage
VGES
±20
Collector Current
Power Dissipation
Repetitive Peak Reverse Voltage
Maximum Operating Junction Temperature
I2t
Units
sine pulse
IC
Continuous
25°C / 80°C
30 / 20
ICM
Pulsed
25°C
60
PD
One IGBT
25°C
100
A
W
V RRM
600
V
TJ
150
°C
Storage Temperature Range
TSTG
Isolation Voltage
VISOL
-40 to +125
AC (1 min)
2500
V
Thermal and Mechanical Characteristics
Parameter
Min
Typical
Maximum
Units
Junction-to-Case Inverter IGBT Thermal Resistance
-
-
0.97
°C/W
Junction-to-Case Inverter FRED Thermal Resistance
-
-
1.42
Junction-to-Case Brake DIODE Thermal Resistance
Symbol
-
-
2.44
Junction-to-Case Brake IGBT Thermal Resistance
-
-
1.25
Junction-to-Case Input Rectifier Thermal Resistance
-
-
1.03
-
0.05
-
2.7
-
3.3
Case-to-Sink, flat, greased surface
Mounting Torque (M5)
Weight
Document Number: 94479
RθJC
RθCS
170
Nm
g
www.vishay.com
1
GB30RF60K
Bulletin I27303 01/07
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Inverter
IGBT
BV(CES)
Parameter
Collector-to-Emitter Breakdown Voltage
Min. Typ. Max. Units Conditions
600
V
VGE = 0 IC = 500μA
ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage
-
0.7
-
V/°C
Collector-to-Emitter Voltage
-
2.04
2.65
V
-
2.60
3.62
IC = 50A VGE = 15V
-
2.31
2.80
IC = 30A VGE = 15V TJ = 125°C
-
3.01
2.77
IC = 50A VGE = 15V TJ = 125°C
3.5
-
5.5
VCE = VGE IC = 250μA
ΔV GE (th)/ΔT J Thresold Voltage temp. coefficient
-
-10
-
mV/°C
ICES
-
-
100
μA
-
400
-
V CE(ON)
VGE(th)
Gate Threshold Voltage
Zero Gate Voltage Collector Current
VGE = 0
IC = 1mA (25°C - 125°C)
IC = 30A VGE = 15V
VCE = VGE IC = 1mA (25°C-125°C)
VGE = 0 VCE = 600V
VGE = 0 VCE = 600V Tj = 125°C
IGES
Gate-to-Emitter Leakage Current
-
-
±200
QG
Total Gate Charge (turn-on)
-
105
158
nA
VGE = ±20V
QGE
Gate-to-Emitter Charge (turn-on)
-
14
21
QGC
Gate-to-Collector Charge (turn-on)
-
51
76
EON
Turn-On Switching Loss
-
491
737
EOFF
Turn-Off Switching Loss
-
223
335
ETOT
Total Switching Loss
-
714
1072
EON
Turn-On Switching Loss
-
613
920
EOFF
Turn-Off Switching Loss
-
417
626
ETOT
Total Switching Loss
-
1030 1546
td(on)
Turn-On delay time
-
132
198
tr
Rise time
-
33
50
VGE = 15V RG = 22Ω L = 200μH
td(off)
Turn-Off delay time
-
153
229
Tj = 125°C
tf
Fall time
-
88
132
Cies
Input Capacitance
-
1834 2751
Coes
Output Capacitance
-
459
690
VCC = 30V
Cres
Reverse Transfer Capacitance
-
54
81
f = 1Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
IC = 30A
nC
VCC = 300V
VGE = 15V
μJ
IC = 30A VCC = 300V
VGE = 15V RG = 22Ω L = 200μH
Tj = 25°C
μJ
1
IC = 30A VCC = 300V
VGE = 15V RG = 22Ω L = 200μH
Tj = 125°C
ns
pF
1
IC = 30A VCC = 300V
VGE = 0
Tj = 150°C IC = 60A
RG = 22Ω VGE = 15V to 0
10
-
-
μs
IP = 220A to 310A
VCC = 300V
RG = 47Ω
Inverter
Irr
Diode Peak Rev. Recovery Current
-
43
-
A
VGE = 15V to 0
Tj = 125°C
VCC = 300V IF = 30A L = 200μH
Diode
VGE = 15V RG = 22Ω
V FM
Diode Forward Voltage Drop
Document Number: 94479
-
1.31
1.81
-
1.52
2.40
V
IF = 30A
-
1.25
1.68
IF = 30A Tj = 125°C
-
1.47
2.14
IF = 50A Tj = 125°C
IF = 50A
www.vishay.com
2
GB30RF60K
Bulletin I27303 01/07
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Input
V FM
Parameter
Maximum Forward Voltage Drop
Rectifier
IRM
Maximum Reverse Leakage Current
Min. Typ. Max. Units Conditions
1.50
V
IF = 30A
-
-
0.2
-
-
1
mA
Tj = 25°C VR = 800V
Tj = 150°C VR = 800V
rT
Forward Slope Resistance
-
8.8
-
mΩ
V F(TO)
Conduction Thresold Voltage
-
0.79
-
V
Brake
BV(CES)
Collector-to-Emitter Breakdown Voltage
600
-
-
V
IGBT
ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage
-
0.6
-
V/°C
VCE(ON)
-
2.07
2.24
V
-
2.51
2.71
IC = 30A VGE = 15V
-
2.49
2.72
IC = 20A VGE = 15V TJ = 125°C
-
3.06
3.47
4
-
6
Collector-to-Emitter Voltage
Tj = 150°C
VGE = 0 IC = 500μA
VGE = 0 IC = 1mA (25°C - 125°C)
IC = 20A VGE = 15V
IC =30A VGE = 15V TJ = 125°C
VGE(th)
Gate Threshold Voltage
VCE = VGE IC = 250μA
ΔV GE (th)/ΔT J
Thresold Voltage temp. coefficient
-
-10
-
mV/°C
ICES
Zero Gate Voltage Collector Current
-
-
100
μA
-
250
-
VCE = VGE IC = 1mA (25°C-125°C)
VGE = 0 VCE = 600V
VGE = 0 VCE = 600V Tj = 125°C
IGES
Gate-to-Emitter Leakage Current
-
-
±200
QG
Total Gate Charge (turn-on)
-
48
72
nA
VGE = ±20V
QGE
Gate-to-Emitter Charge (turn-on)
-
11
16
QGC
Gate-to-Collector Charge (turn-on)
-
30
44
EON
Turn-On Switching Loss
-
176
264
EOFF
Turn-Off Switching Loss
-
137
207
ETOT
Total Switching Loss
-
313
471
EON
Turn-On Switching Loss
-
235
353
EOFF
Turn-Off Switching Loss
-
276
416
VGE = 15V RG = 22Ω L = 200μH
ETOT
Total Switching Loss
-
512
768
Tj = 125°C
td(on)
Turn-On delay time
-
87
131
tr
Rise time
-
24
36
VGE = 15V RG = 22Ω L = 200μH
td(off)
Turn-Off delay time
-
112
169
Tj = 125°C
tf
Fall time
-
115
172
Cies
Input Capacitance
-
901
1352
Coes
Output Capacitance
-
263
395
VCC = 30V
Cres
Reverse Transfer Capacitance
-
29
44
f = 1Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
IC = 15A
nC
VCC = 300V
VGE = 15V
μJ
IC = 15A VCC = 300V
VGE = 15V RG = 22Ω L = 200μH
Tj = 25°C
μJ
ns
pF
1
IC = 15A VCC = 300V
1
IC = 15A VCC = 300V
VGE = 0
Tj = 150°C IC = 20A
RG = 22Ω VGE = 15V to 0
10
-
-
μs
IP = 180A to 280A
VCC = 300V
RG = 47Ω
Brake
Diode Peak Rev. Recovery Current
-
28
-
A
VCC = 300V IF = 15A L = 200μH
V FM
Diode Forward Voltage Drop
-
1.61
1.71
V
IF = 20A
-
1.79
1.99
-
1.57
1.66
IF = 20A Tj = 125°C
-
1.73
1.83
IF = 30A Tj = 125°C
-
5000
-
-
4933
-
-
3375
-
VGE = 15V to 0 RG = 22Ω
Diode
NTC
R
B
1
VGE = 15V to 0
Irr
Resistance
B Value
IF = 30A
Ω
Tj = 25°C
Tj = 100°C
K
Tj = 25°C / 50°C
Energy Losses include "tail" and diode reverse recovery
Document Number: 94479
www.vishay.com
3
GB30RF60K
Bulletin I27303 01/07
Inverter
90
60
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
40
30
60
45
20
30
10
15
0
0
0
1
2
3
Vce (V)
4
0
5
2
Vce (V)
4
6
Fig. 2 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80μs
Fig. 1 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
400
20
Tj = 25°C
Tj = 125°C
Ice=15A
Ice=30A
Ice=60A
15
Vce (V)
Ice (A)
300
200
100
10
5
0
0
0
6
9
12
15
Vge (V)
Fig. 3 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
3
20
5
10
15
Vge (V)
Fig. 4 - Typical VCE vs. VGE
TJ = 25°C
20
10000
16
Cies
Ice=15A
Ice=30A
Ice=60A
12
Capacitance (pF)
Vce (V)
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
75
Ice (A)
Ice (A)
50
8
4
0
5
10
Vge (V)
15
Fig.5 - Typical VCE vs. VGE
TJ = 125°C
Document Number: 94479
20
1000
Coes
100
Cres
10
0
20
40
60
Vce (V)
80
100
Fig. 6- Typ. Capacitance vs. VCE
VGE= 0; f = 1MHz
www.vishay.com
4
GB30RF60K
Bulletin I27303 01/07
Inverter
90
16
14
12
60
If (A)
10
VGE (V)
Tj = 25°C
Tj = 125°C
75
300V
8
6
45
30
4
15
2
0
0
0
20
40
60
80 100
QG, Total Gate Charge (nC)
120
0
Fig. 7 - Typical Gate Charge vs. VGE
ICE = 30A
0.5
2
1
tdOFF
tF
tdON
tR
EON
0.8
EOFF
0.4
Swiching Time (µs)
ETOT
1.2
Energy (mJ)
1.5
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
1.6
0.1
0.01
0
10
30
40
50
60
Ic (A)
Fig. 9 - Typ. Energy Loss vs. IC
TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω; VGE= 15V
20
25
45
55
65
Ic (A)
Fig. 10 - Typ. Switching Time vs. IC
TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω;VGE= 15V
35
1
1
Swiching Time (µs)
1.2
Energy (mJ)
1
Vf (V)
E (TOT)
0.8
E (ON)
0.6
tdOFF
0.1
tF
tdON
tR
E (OFF)
0.4
0.01
0.2
0
10
20
30
40
50
Ω)
Rg (Ω
Fig. 11 - Typ. Energy Loss vs. RG
TJ = 125°C; L=200μH; VCE= 300V, ICE= 30A; VGE= 15V
Document Number: 94479
0
10
20
30
40
50
Rg (Ω )
Fig. 12- Typ. Switching Time vs. RG
TJ = 125°C; L=200μH; VCE= 300V, ICE= 30A; VGE= 15V
www.vishay.com
5
GB30RF60K
Bulletin I27303 01/07
Inverter
55
50
50
45
Rg = 4.7Ω
Rg = 10Ω
40
Irr (A)
Irr (A)
45
Rg = 22Ω
40
35
35
Rg = 33Ω
30
Rg = 47Ω
25
30
0
10
20
30 40 50 60 70
If (A)
Fig. 13 - Typical Diode IRR vs. IF
TJ = 125°C
0
10
20
30
Rg (Ω )
40
50
Fig. 14 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 30A
50
Thermistor
14
Thermistor Resistance ( kΩ)
12
Irr (A)
45
40
35
10
8
6
4
2
30
600
0
800
1000
1200
1400
dif/dt (A/µs)
Fig. 15- Typical Diode IRR vs. diF/dt
VCC= 300V; VGE= 15V; ICE= 30A; TJ = 125°C
20
40
60
80
100
120
140
160
180
T J , Junction Temperature (°C)
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
90
Istantaneous Forward Current IF (A)
0
75
60
45
30
Tj = 25°C
Tj = 125°C
15
0
0
0.5
1
1.5
2
Forward Voltage Drop VF (V)
Document Number: 94479
Fig. 17- Typ. Diode Forward Characteristics
tp = 80μs
www.vishay.com
6
GB30RF60K
Bulletin I27303 01/07
Inverter
1
Thermal Response (ZthJC )
0.5
0.3
0.1
0.1
0.05
R1
R1
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
0.01
R2
R2
J
τ1
Ri (°C/W) τi (sec)
0.2582 0.000393
0.7117 0.026554
TC
TτJ
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
0.001
1E-05
1E-04
1E-03
1E-02
t1 , Rectangular Pulse Duration (sec)
1E-01
1E+00
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response (ZthJC )
10
1
0.5
0.3
R1
R1
τJ
τ1
0.1
0.1
0.05
0.01
1E-05
R3
R3
TC
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci= i/Ri
0.02
0.01
R2
R2
TJ
SINGLE PULSE
(THERMAL RESPONSE)
1E-04
1E-03
1E-02
t1 , Rectangular Pulse Duration (sec)
Ri (°C/W) τi (sec)
0.000196
0.228
0.001288
0.377
0.043359
0.815
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
1E-01
1E+00
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Document Number: 94479
www.vishay.com
7
GB30RF60K
Brake
30
30
20
20
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
10
10
0
0
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
Ice (A)
Ice (A)
Bulletin I27303 01/07
1
2
Vce (V)
3
0
4
0
1
2
Vce (V)
4
Fig. 21 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80μs
Fig. 20 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
20
70
Ice=5A
Ice=20A
Ice=30A
60
15
50
40
30
Vce (V)
Ice (A)
3
Tj = 25°C
Tj = 125°C
20
10
5
10
0
0
4
6
8
10
Vge (V)
12
5
14
15
20
10000
12
Capacitance (pF)
Ice=5A
Ice=20A
Ice=30A
16
Vce (V)
Vge (V)
Fig. 23 - Typical VCE vs. VGE
TJ = 25°C
Fig. 22 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
20
10
8
4
0
Cies
1000
Coes
100
Cres
10
5
10
Vge (V)
15
Fig.24- Typical VCE vs. VGE
TJ = 125°C
Document Number: 94479
20
0
20
40
60
80
100
Vce (V)
Fig. 25- Typ. Capacitance vs. VCE
VGE= 0; f = 1MHz
www.vishay.com
8
GB30RF60K
Brake
Bulletin I27303 01/07
16
30
300V
25
12
If (A)
VGE (V)
20
8
15
Tj = 25°C
Tj = 125°C
10
4
5
0
0
0
20
40
QG, Total Gate Charge (nC)
0
Fig. 26 - Typical Gate Charge vs. VGE
ICE = 15A
0.5
1
Vf (V)
1.5
2
Fig. 27 - Typ. Diode Forward Characteristics
tp = 80μs
1
0.7
0.6
Swiching Time (µs)
Energy (mJ)
ETOT
0.5
0.4
0.3
EON
tF
tdOF
F
0.1
tdO
N
0.2
tR
EOFF
0.1
4
7
10
0.01
13
Ic (A)
16
19
10
22
14
18
22
Ic (A)
Fig. 28 - Typ. Energy Loss vs. IC
TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω; VGE= 15V
Fig. 29 - Typ. Switching Time vs. IC
TJ = 125°C; L=200μH; VCE= 300V,RG= 22Ω;VGE= 15V
1
0.6
E (TOT)
Swiching Time (µs)
Energy (mJ)
0.5
0.4
0.3
E (OFF)
tF
tdOFF
tdON
0.1
0.2
E (ON)
tR
0.01
0.1
0
10
20
30
40
50
Ω)
Rg (Ω
Fig. 30 - Typ. Energy Loss vs. RG
TJ = 125°C; L=200μH; VCE= 300V, ICE= 15A; VGE= 15V
Document Number: 94479
0
10
20
30
Rg (Ω )
40
50
Fig. 31 - Typ. Switching Time vs. RG
TJ = 125°C; L=200μH; VCE= 300V, ICE= 15A; VGE= 15V
www.vishay.com
9
GB30RF60K
Brake
Bulletin I27303 01/07
40
35
30
Irr (A)
Irr (A)
30
25
20
Rg = 4.7Ω
Rg = 10 Ω
Rg = 22 Ω
15
20
10
Rg = 33 Ω
Rg = 47 Ω
10
0
5
0
10
15
If (A)
20
Fig. 32 - Typical Diode IRR vs. IF
TJ = 125°C
25
0
10
20
30
Rg (Ω )
40
50
Fig. 33- Typical Diode IRR vs. RG
TJ = 125°C; IF = 15A
40
Irr (A)
30
20
10
0
400
500
600
700
dif/dt (A/µs)
Fig. 34- Typical Diode IRR vs. diF/dt
VCC= 300V; VGE= 15V; ICE= 15A; TJ = 125°C
Document Number: 94479
www.vishay.com
10
GB30RF60K
Brake
Bulletin I27303 01/07
Thermal Response (ZthJC )
10
1
0.5
0.3
R1
R1
τJ
τ1
0.1
0.1
0.05
R3
R3
Ri (°C/W) τi (sec)
0.000207
0.256
0.00051
0.225
0.023774
0.769
TC
τ2
τ1
τ3
τ2
τ3
Ci= τi/Ri
Ci= i/Ri
0.02
0.01
0.01
1E-05
R2
R2
TJ
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
SINGLE PULSE
(THERMAL RESPONSE)
1E-04
1E-03
1E-02
t1 , Rectangular Pulse Duration (sec)
1E-01
1E+00
Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
Thermal Response (ZthJC )
10
1
0.5
0.3
R1
R1
0.1
τJ
τ1
0.05
0.1
R2
R2
R3
R3
TJ
0.02
0.01
TC
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci= i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
SINGLE PULSE
(THERMAL RESPONSE)
0.01
1E-05
1E-04
Ri (°C/W) τi (sec)
0.000114
0.342
0.001417
0.856
0.035743
1.242
1E-03
1E-02
t1 , Rectangular Pulse Duration (sec)
1E-01
1E+00
Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode)
Document Number: 94479
www.vishay.com
11
GB30RF60K
Bulletin I27303 01/07
R=
diode clamp/
DUT
VCC
ICM
L
+
-
VGE
- +
VCC
5V
DUT/
DRIVER
+
-
1mA
IC
VCC
RG
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp/
DUT
L
+
-
DUT
- +
VCC
5V
DUT/
DRIVER
+
-
VCC
RG
RG
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
+
VCC
-
RG
Fig.C.T.5 - Resistive Load Circuit
Document Number: 94479
www.vishay.com
12
GB30RF60K
Bulletin I27303 01/07
Econo2 PIM Package Outline
Dimensions are shown in millimeters (inches)
Econo2 PIM Part Marking Information
LOT
Made in Italy
GB30RF60K
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR's Web site.
Document Number: 94479
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
01/07
www.vishay.com
13
Legal Disclaimer Notice
Vishay
Notice
The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of
International Rectifier’s Power Control Systems (PCS) business, which closed in April 2007. Specifications of the
products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or
anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.
Information contained herein is intended to provide a product description only. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully
indemnify Vishay for any damages resulting from such improper use or sale.
International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN®
are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product
names noted herein may be trademarks of their respective owners.
Document Number: 99901
Revision: 12-Mar-07
www.vishay.com
1