IRF IRGP50B60PD1-EP

PD - 96170
SMPS IGBT
IRGP50B60PD1-EP
WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
VCES = 600V
VCE(on) typ. = 2.00V
@ VGE = 15V IC = 33A
C
Applications
•
•
•
•
•
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
Lead-Free
E
Features
•
•
•
•
•
•
•
Equivalent MOSFET
Parameters
RCE(on) typ. = 61mΩ
ID (FET equivalent) = 50A
G
NPT Technology, Positive Temperature Coefficient
Lower VCE(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
n-channel
Benefits
• Parallel Operation for Higher Current Applications
• Lower Conduction Losses and Switching Losses
• Higher Switching Frequency up to 150kHz
TO-247AD
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
75
IC @ TC = 100°C
Continuous Collector Current
45
ICM
150
ILM
Pulse Collector Current (Ref. Fig. C.T.4)
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
40
IF @ TC = 100°C
IFRM
Diode Continous Forward Current
Maximum Repetitive Forward Current
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
390
W
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
d
150
A
15
e
60
156
-55 to +150
Soldering Temperature for 10 sec.
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.32
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
1.7
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
Weight
–––
6.0 (0.21)
–––
g (oz)
08/06/08
1
www.irf.com
IRGP50B60PD1-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.31
—
RG
Internal Gate Resistance
—
1.7
—
—
2.00
2.35
—
2.45
2.85
—
2.60
2.95
—
3.20
3.60
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
V
Conditions
Ref.Fig
VGE = 0V, IC = 500µA
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
Ω
1MHz, Open Collector
IC = 33A, VGE = 15V
V
IC = 50A, VGE = 15V
4, 5,6,8,9
IC = 33A, VGE = 15V, TJ = 125°C
IC = 50A, VGE = 15V, TJ = 125°C
IC = 250µA
VGE(th)
Gate Threshold Voltage
3.0
4.0
5.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-10
—
gfe
ICES
Forward Transconductance
—
41
—
Collector-to-Emitter Leakage Current
—
5.0
500
µA
VGE = 0V, VCE = 600V
—
1.0
—
mA
VGE = 0V, VCE = 600V, TJ = 125°C
—
1.30
1.70
V
—
1.20
1.60
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
7,8,9
mV/°C VCE = VGE, IC = 1.0mA
S VCE = 50V, IC = 33A, PW = 80µs
IF = 15A, VGE = 0V
10
IF = 15A, VGE = 0V, TJ = 125°C
nA
VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Total Gate Charge (turn-on)
Min.
Typ.
—
205
Max. Units
Conditions
308
IC = 33A
70
105
VCC = 400V
30
45
Ref.Fig
Qg
Qgc
Gate-to-Collector Charge (turn-on)
—
Qge
Gate-to-Emitter Charge (turn-on)
—
Eon
Turn-On Switching Loss
—
255
305
Eoff
Turn-Off Switching Loss
—
375
445
Etotal
Total Switching Loss
—
630
750
VGE = +15V, RG = 3.3Ω, L = 200µH
TJ = 25°C
td(on)
Turn-On delay time
—
30
40
IC = 33A, VCC = 390V
tr
Rise time
—
10
15
td(off)
Turn-Off delay time
—
130
150
tf
Fall time
—
11
15
Eon
Turn-On Switching Loss
—
580
700
Eoff
Turn-Off Switching Loss
—
480
550
Etotal
Total Switching Loss
—
1060
1250
td(on)
Turn-On delay time
—
26
35
tr
Rise time
—
13
20
td(off)
Turn-Off delay time
—
146
165
tf
Fall time
—
15
20
nC
IC = 33A, VCC = 390V
µJ
ns
TJ = 25°C
f
IC = 33A, VCC = 390V
µJ
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
TJ = 125°C
f
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
f
TJ = 125°C
—
3648
—
VGE = 0V
—
322
—
VCC = 30V
Cres
Reverse Transfer Capacitance
Effective Output Capacitance (Time Related)
—
56
—
Coes eff.
—
215
—
Coes eff. (ER)
Effective Output Capacitance (Energy Related)
—
163
—
pF
FULL SQUARE
11,13
WF1,WF2
IC = 33A, VCC = 390V
ns
Output Capacitance
Reverse Bias Safe Operating Area
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
Input Capacitance
RBSOA
CT3
f
Cies
g
CT1
VGE = 15V
Coes
g
17
12,14
WF1,WF2
16
f = 1Mhz
VGE = 0V, VCE = 0V to 480V
15
TJ = 150°C, IC = 150A
3
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
trr
Diode Reverse Recovery Time
Qrr
Diode Reverse Recovery Charge
Irr
Peak Reverse Recovery Current
—
42
60
—
74
120
—
80
180
—
220
600
—
4.0
6.0
—
6.5
10
ns
nC
TJ = 25°C
IF = 15A, VR = 200V,
19
TJ = 125°C
di/dt = 200A/µs
IF = 15A, VR = 200V,
21
TJ = 25°C
di/dt = 200A/µs
IF = 15A, VR = 200V,
19,20,21,22
TJ = 125°C
di/dt = 200A/µs
TJ = 25°C
TJ = 125°C
A
CT5
Notes:
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 2.00V and IC =33A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
‚ VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω.
ƒ Pulse width limited by max. junction temperature.
„ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
… Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as C oes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
IRGP50B60PD1-EP
450
80
400
70
350
60
300
Ptot (W)
90
IC (A)
50
40
250
200
30
150
20
100
10
50
0
0
0
20
40
60
80
100 120 140 160
0
20
40
60
80
T C (°C)
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
200
1000
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
180
160
140
IC A)
ICE (A)
100
10
120
100
80
60
40
20
0
1
10
100
0
1000
1
2
3
4
Fig. 3 - Reverse Bias SOA
TJ = 150°C; VGE =15V
7
8
9
10
200
160
140
160
140
ICE (A)
120
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
180
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
180
ICE (A)
6
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
200
100
80
120
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
7
8
9
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
www.irf.com
5
VCE (V)
VCE (V)
10
0
1
2
3
4
5
6
7
8
9
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
3
IRGP50B60PD1-EP
900
10
800
T J = 25°C
9
700
T J = 125°C
8
7
VCE (V)
ICE (A)
600
500
400
300
ICE = 15A
ICE = 33A
6
5
ICE = 50A
4
200
TJ = 125°C
3
100
T J = 25°C
2
0
1
0
5
10
15
20
0
5
10
VGE (V)
15
20
VGE (V)
Fig. 7 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 8 - Typical VCE vs. VGE
TJ = 25°C
10
100
InstantaneousF
orw
ardC
urrent -I (A
)
9
F
8
VCE (V)
7
ICE = 15A
6
ICE = 33A
5
ICE = 50A
4
3
10
TJ = 150°C
TJ = 125°C
TJ =
25°C
2
1
0
5
10
15
1
0.8
20
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 125°C
Fig. 10 - Typ. Diode Forward Characteristics
tp = 80µs
1200
1000
Swiching Time (ns)
1000
Energy (µJ)
800
EON
600
EOFF
400
td OFF
100
tF
tdON
200
tR
0
10
0
10
20
30
40
50
60
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
4
0
10
20
30
40
50
60
IC (A)
Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
www.irf.com
IRGP50B60PD1-EP
1000
1000
900
EON
700
EOFF
600
tdOFF
Swiching Time (ns)
Energy (µJ)
800
500
100
td ON
tF
400
tR
10
300
0
5
10
15
20
0
25
5
10
15
20
25
RG ( Ω)
RG ( Ω)
Fig. 13 - Typ. Energy Loss vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
40
10000
Cies
Capacitance (pF)
Eoes (µJ)
30
20
1000
Coes
100
Cres
10
0
10
0
100
200
300
400
500
600
700
0
20
VCE (V)
40
60
80
100
VCE (V)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 15- Typ. Output Capacitance
Stored Energy vs. VCE
16
1.4
14
Normalized V CE(on) (V)
400V
12
VGE (V)
10
8
6
4
1.2
1.0
2
0
0.8
0
50
100
150
200
250
Q G , Total Gate Charge (nC)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 33A
www.irf.com
-50
0
50
100
150
200
T J (°C)
Fig. 18 - Normalized Typ. VCE(on)
vs. Junction Temperature
IC = 33A, VGE= 15V
5
IRGP50B60PD1-EP
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
I IRRM - (A)
t rr - (ns)
I F = 30A
I F = 30A
60
I F = 15A
IF = 15A
10
I F = 5.0A
40
I F = 5.0A
20
100
di f /dt - (A/µs)
1
100
1000
Fig. 19 - Typical Reverse Recovery vs. dif/dt
1000
di f /dt - (A/µs)
Fig. 20 - Typical Recovery Current vs. dif/dt
800
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
600
Q RR - (nC)
IF = 30A
400
I F = 15A
IF = 5.0A
I F = 5.0A
I F = 15A
I F = 30A
200
0
100
di f /dt - (A/µs)
1000
Fig. 21 - Typical Stored Charge vs. dif/dt
6
100
100
1000
di f /dt - (A/µs)
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
www.irf.com
IRGP50B60PD1-EP
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
R1
R1
0.05
0.01
τJ
0.01
0.02
τJ
τ1
τC
τ2
τ1
τ
Ri (°C/W) τi (sec)
0.157
0.000346
0.163
τ2
4.28
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R2
R2
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.01
0.02
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.01
R3
R3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.363
0.000112
0.864
0.473
0.001184
0.032264
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP50B60PD1-EP
L
L
VCC
DUT
0
80 V
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
L
PFC diode
R=
DUT /
DRIVER
VCC
DUT
Rg
VCC
ICM
VCC
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω
L = 70µH
D.U.T.
dif/dt
ADJUST
D
G
IRFP250
S
Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit
8
www.irf.com
IRGP50B60PD1-EP
550
50
500
90
400
80
90% ICE
350
450
40
90% ICE
300
30
250
200
20
5% V CE
150
100
-100
-0.20
Eof f
0.00
60
40
30
5% V CE
100
10% ICE
20
10
0
-10
0.40
0.20
70
50
150
0
-50
TEST CURRENT
200
50
0
tr
250
10
5% ICE
50
300
V CE (V)
tf
350
ICE (A)
400
VCE (V)
450
ICE (A)
60
600
Eon Loss
-50
-0.10
0.00
Time (µs)
0.10
0
-10
0.20
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 25°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 25°C using Fig. CT.3
3
trr
IF
tb
ta
0
2
Q rr
I RRM
4
0.5 I RRM
di(rec)M/dt
5
0.75 I RRM
1
di f /dt
1. dif/dt - Rate of change of current
through zero crossing
2. I RRM - Peak reverse recovery current
3. trr - Reverse recovery time measured
from zero crossing point of negative
going I F to point where a line passing
through 0.75 I RRM and 0.50 IRRM
extrapolated to zero current
4. Qrr - Area under curve defined by trr
and IRRM
trr X IRRM
Qrr =
2
5. di(rec)M /dt - Peak rate of change of
current during tb portion of trr
Fig. WF3 - Reverse Recovery Waveform and
Definitions
www.irf.com
9
IRGP50B60PD1-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/2008
10
www.irf.com