MAX17030EVKIT+

19-4713; Rev 0; 7/09
MAX17030 Evaluation Kit
Features
The MAX17030 evaluation kit (EV kit) demonstrates the
high-power, dynamically adjustable, multiphase IMVP6.5 notebook CPU application circuit. This DC-DC converter steps down high-voltage batteries and/or AC
adapters, generating a precision, low-voltage CPU core
VCC rail. The MAX17030 EV kit meets the Intel mobile
IMVP-6.5 CPU’s transient voltage specification, powergood signaling, voltage regulator thermal monitoring
(VRHOT), and power-good output (PWRGD). The
MAX17030 EV kit consists of the MAX17030 3-phase
interleaved Quick-PWM™ step-down controller and one
external MAX8791 single synchronous MOSFET driver.
The MAX17030 EV kit includes active voltage positioning with adjustable gain, reducing power dissipation
and bulk output capacitance requirements. A slew-rate
controller allows controlled transitions between VID
codes, controlled soft-start and shutdown, and controlled exit suspend voltage. Precision slew-rate control
provides “just-in-time” arrival at the new DAC setting,
minimizing surge currents to and from the battery.
MAX17030:
♦ Triple-Phase, Fast-Response Interleaved, Quick-PWM
♦ 2 Internal Drivers + 1 External Driver (MAX8791)
♦ Intel IMVP-6.5 Code-Set Compliant (Calpella Socket
Configuration)
♦ Dynamic Phase Selection Optimizes Active/Sleep Efficiency
♦ Transient Phase Overlap Reduces Output Capacitance
♦ Active Voltage Positioning with Adjustable Gain
♦ High Speed, Accuracy, and Efficiency
♦ Low Bulk Output Capacitor Count
♦ 7V to 20V Input-Voltage Range
♦ 0 to 1.5000V Output-Voltage Range (7-Bit DAC)
♦ 66A Peak Load-Current Capability (22A Each Phase)
♦ Accurate Lossless Current Balance and Current Limit
♦ 300kHz Switching Frequency (per Phase)
♦ IMVP-6.5 Power Sequencing and Timing Compliant
♦ Remote Output and Ground Sense
♦ Power-Good (PWRGD) Output and Indicator (D3)
♦ Clock Enable (CLKEN) and Thermal Fault (VRHOT) Outputs
and Indicators (D4 and D5)
♦ Current Monitor (IMON) Output
♦ Output Overvoltage and Undervoltage Fault Protections
♦ 40-Pin Thin QFN Package
MAX17000:
♦ Complete DDR Supplies: VCCDDR, VTTDDR, and VTTR
♦ 7V to 20V Input-Voltage Range
♦ 400kHz Switching Frequency
♦ 10A Output Current Capability (VCCDDR)
♦ 2A Output Current Capability (VTTDDR)
♦ 3mA Output Current Capability (VTTR)
♦ Overvoltage Protection
♦ Power-Good Output Indicators (D15 and D16)
♦ 24-Pin Thin QFN Package
MAX17007A:
♦ I/O Supplies: VTT1 and VTT2
♦ 7V to 20V Input-Voltage Range
♦ 300kHz Switching Frequency
♦ 12A Output Current Capability (VTT1)
♦ 12A Output Current Capability (VTT2)
♦ Overvoltage and Undervoltage Protections
♦ Thermal Protection
♦ Power-Good Output Indicators (D19 and D20)
♦ 28-Pin Thin QFN Package
MAX17028:
♦ GMCH Graphics Supply: VCCAXG
♦ 7V to 20V Input-Voltage Range
♦ 400kHz Switching Frequency
♦ 14A Output Current Capability
♦ Overvoltage and Undervoltage Protections
♦ Thermal Fault (VRHOT) Output Indicator (D12)
♦ Current Monitor (DFGT_IMON) Output
♦ Power-Good (PWRGD) Output and Indicator (D13)
♦ 32-Pin Thin QFN Package
Two dedicated system inputs (PSI and DPRSLPVR)
dynamically select the operating mode and number of
active phases, optimizing the overall efficiency during
the CPU’s active and sleep states.
The MAX17030 includes latched output undervoltagefault protection, overvoltage-fault protection, and thermal-overload protection. It also includes a voltage regulator power-good (PWRGD) output, a clock enable
(CLKEN) output, and a current monitor (IMON) output.
The MAX17030 provides a digitally adjustable 0 to
1.5000V output voltage (7-bit on-board DAC) from a 7V
to 20V battery-input range. Each phase is designed for
a 20A thermal design current, and delivers up to 22A
peak output current for a total of 66A. The EV kit operates at 300kHz switching frequency (per phase) and
has superior line- and load-transient response.
The MAX17030 EV kit also evaluates the MAX17000,
MAX17007A, and MAX17028 DC-DC converters.
Ordering Information
PART
TYPE
MAX17030EVKIT+
EV Kit
+Denotes lead(Pb)-free and RoHS compliant.
Quick-PWM is a trademark of Maxim Integrated Products, Inc.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
General Description
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Component List
DESIGNATION
CLKEN,
CORE_VR_EN,
DFGT_DPRSLPVR,
DFGT_IMON,
DFGT_VR_EN,
DPRSLPVR,
DRSKP, EN1,
EN2,
GND_SENSE,
IMON, PGD_IN,
PGOOD1,
PGOOD2,
PGOODVTT1,
PGOODVTT2,
PSI, PWM,
PWRGD (x2),
SHDN, SKIP,
STDBY,
VCCAXG_SENSE,
VCCDDR,
VOUT_SENSE,
VRHOT, VRHOT1,
VSSAXG_SENSE,
VTT_1, VTT_2,
VTT1
C1–C4, C68, C69,
C105, C106,
C130, C131,
C160–C163
C5, C7, C8, C70,
C107, C149,
C166, C168
2
QTY
DESCRIPTION
DESIGNATION
2
6
1000pF ±10%, 50V X7R ceramic
capacitors (0603)
TDK C1608X7R1H102K or
Murata GRM188R71H102K or
equivalent
C13–C16, C73,
C76, C111, C180
8
0.22µF ±20%, 10V X7R ceramic
capacitors (0603)
Murata GRM188R71A224K
Taiyo Yuden LMK107BJ224MA
TDK C1608X7R1C224M
AVX 06033D224KAT
C17, C18, C19,
C21–C26, C28,
C29, C31, C74,
C75, C77, C109,
C110, C112,
C114,
C137–C140,
C170, C171,
C175, C178,
C179, C181,
C183
0
Not installed, capacitors (0603)
C20, C102, C104,
C135, C136,
C164, C165,
C174
8
0.1µF ±10%, 25V X7R ceramic
capacitors (0603)
TDK C1608X7R1E104K or
Murata GRM188R71E104K
C27
0
Not installed, capacitor—short (PC
trace) (0603)
0
Not installed, 1000µF, 50V
aluminum electrolytic capacitor
(12.5mm x 25mm)
SANYO 50MV1000AX
25
10µF ±20%, 6.3V X5R ceramic
capacitors (0805)
Murata GRM21BR60J106ME19L
TDK C2012X5R0J106M or
Taiyo Yuden AMK212BJ106MG
AVX 08056D106MAT
C12, C113, C121,
C134, C172,
C182
14
8
Test points
10µF ±20%, 25V X5R ceramic
capacitors (1210)
Murata GRM32DR61E106KA12L
TDK C3225X7R1E106M
AVX 12103D106M
Taiyo Yuden TMK325BJ106MM
KEMET C1210C106M3RAC
330µF, 2V, 4.5mΩ low-ESR polymer
capacitors (D case)
Panasonic EEFSX0D331E4 or
NEC TOKIN PSGV0E337M4.5
KEMET T520V337M2R5ATE4R5
C6, C71, C108,
C150, C167,
C169
0
Not installed, capacitors (D case)
C9
0
Not installed, capacitor (0805)
DESCRIPTION
2.2µF ±20%, 10V X5R ceramic
capacitors (0603)
TDK C1608X5R1A225M or
Murata GRM188R61A225M or
AVX 0603ZD225MAT
C10, C11
32
QTY
C30
C32, C33,
C115–C120,
C141, C142,
C143,
C145–C148,
C184–C193
_______________________________________________________________________________________
MAX17030 Evaluation Kit
DESIGNATION
C34–C60
C72, C100,
C101, C132,
C133, C176,
C177
C103
C144
C173
D1, D2, D6, D10,
D14, D17, D18
D3, D4, D5, D12,
D13, D15, D16,
D19, D20
QTY
DESCRIPTION
27
22µF, 6.3V X5R ceramic capacitors
(0805)
Murata GRM21BR60J226ME39L
TDK C2012X5R0J226MT
Taiyo Yuden JMK212BJ226MG
7
1µF ±10%, 16V X5R ceramic
capacitors (0603)
TDK C1608X5R1C105K
Taiyo Yuden EMK107BJ683MA
Murata GRM188R61C105K
1
100pF ±10%, 50V X7R ceramic
capacitor (0603)
TDK C1608X7R1H101K
Taiyo Yuden UMK107B101KZ
1
0.47µF ± 20%, 10V X5R ceramic
capacitor (0603)
Murata GRM188R71C474M
Taiyo Yuden LMK107BJ474MA
TDK C1608X5R1A474M
1
7
9
2200pF ±10%, 50V X7R ceramic
capacitor (0603)
Murata GRM188R71H222K
TDK C1608X7R1H222K
3A, 30V Schottky diodes
Nihon EC31QS03L
Central Semi CMSH3-40M
LEDs, green, clear, SMD (0805)
Lite-On Electronics LTST-C170GKT
Digi-Key 160-1179-1-ND
JU1, JU4,
JU5, JU6
4
3-pin headers (0.1in centers)
JU8
1
2-pin header (0.1in centers)
3
0.36µH, 36A, 0.82mΩ power
inductors
Panasonic ETQP4LR36ZFC
TOKO FDUE1040D-R36M
1
0.42µH, 20A, 1.55mΩ power
inductor (6.7mm x 8mm x 4 mm)
NEC TOKIN MPC0740LR42C
TOKO FDUE640-R42M
L1, L2, L3
L4
DESIGNATION
QTY
DESCRIPTION
L5, L6, L7
3
0.6µH, 17A, 2.3mΩ power inductors
(6.7mm x 8mm x 5 mm)
NEC TOKIN MPC0750LR60C
7
n-channel MOSFETs
(8 SO, PowerPAK)
Fairchild FDS6298
Vishay (Siliconix) SI4386DY
N3–N6, N9, N10,
N12, N14, N16,
N18
10
n-channel MOSFETs
(8 SO, PowerPAK)
Fairchild FDS8670
Vishay (Siliconix) SI4626ADY
R1, R16, R44,
R46, R51, R73,
R74, R76, R77,
R107, R142
11
10Ω ±5% resistors (0603)
R2
1
137kΩ ±1% resistor (0603)
R3
1
14kΩ ±1% resistor (0603)
N1, N2, N8, N11,
N13, N15, N17
R4, R156
2
200kΩ ±1% resistors (0603)
R5, R6, R15, R19,
R24, R32, R47,
R50, R62, R65,
R79, R96, R97,
R106, R120,
R128, R139,
R170
18
0Ω resistors (0603)
R7, R11, R21,
R67, R69
5
2.21kΩ ±1% resistors (0603)
R8, R12, R35
3
3.24kΩ ±1% resistors (0603)
R9, R13, R34
3
40.2kΩ ±1% resistors (0603)
R10, R14, R36,
R68, R115, R134,
R148
7
10kΩ ±1% NTC thermistors,
β = 3380 (0603)
Murata NCP18XH103F03RB
TDK NTCG163JH103F
R17, R54, R133
3
6.04kΩ ±1% resistors (0603)
_______________________________________________________________________________________
3
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Component List (continued)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Component List (continued)
DESIGNATION
QTY
DESCRIPTION
R18, R48, R49,
R53, R71, R72,
R87, R89–R95,
R98, R99, R103,
R111, R112,
R117, R118,
R119,
R122–R127,
R129, R131,
R132, R137,
R138, R147,
R150, R151,
R157
0
R20, R52, R100,
R130
0
Not installed, resistors—short (PC
trace) (1210)
R22, R23, R30
3
1.91kΩ ±5% resistors (0603)
R25, R60
2
13kΩ ±1% resistors (0603)
2
100kΩ ±5% NTC thermistors,
β = 4250 (0603)
Murata NCP18WF104J03RBTDK
NTCG163JF104J
R26, R61
R27, R28, R29,
R31, R58, R66,
R102, R108,
R109, R110,
R144, R155
12
R33
1
Not installed, resistors (0603)
R18, R48, R49, R87, R89–R95, R98,
R99, R111, R112, R119,
R122–R127, R129, R147, R157 are
open; R53, R71, R72, R103, R117,
R118, R131, R132, R137, R138,
R150, R151 are short (PC trace)
100kΩ ±5% resistors (0603)
QTY
R121
0
Not installed, resistor—short (PC
trace) (0805)
R135
1
4.22kΩ ±1% resistor (0603)
R136
1
3.01kΩ ±1% resistor (0603)
14
100kΩ ±1% resistors (0603)
R45, R88
2
100Ω ±5% resistors (0603)
R55
1
63.4kΩ ±1% resistor (0603)
R56, R101, R145
3
150kΩ ±1% resistors (0603)
R57, R59, R78,
R104, R105,
R143, R154
7
1kΩ ±5% resistors (0603)
R63, R64, R153
3
10kΩ ±1% resistors (0603)
R70
1
15kΩ ±1% resistor (0603)
R75
1
13.3kΩ ±1% resistor (0603)
R113, R114
2
3.48 kΩ ±1% resistors (0603)
R116
1
20kΩ ±1% resistor (0603)
DESCRIPTION
R140
1
90.9kΩ ±1% resistor (0603)
R141
1
110kΩ ±1% resistor (0603)
R146
1
4.99kΩ ±1% resistor (0603)
R149
1
1.3kΩ ±1% resistor (0603)
R152
1
5.76kΩ ±1% resistor (0603)
R158, R159,
R160
3
2Ω ±5% resistors (0603)
REFIN1, SKIPVTT
0
Not installed, test points
SW1, SW3
2
7-position low-profile DIP switches
SW2, SW4, SW5
3
4-position low-profile DIP switches
U1
1
3/2-phase Quick-PWM
VID controller (40 TQFN-EP*)
Maxim MAX17030GTL+
U2
1
CPU socket rPGA-989
U3
1
Single driver (8 TQFN)
Maxim MAX8791GTA+
U4
1
1-phase Quick-PWM
VID controller (32 TQFN-EP*)
Maxim MAX17028GTJ+
U5
1
DDR memory power controller
(24 TQFN)
Maxim MAX17000ETG+
U6
1
Dual step-down Quick-PWM
controller (28 TQFN)
Maxim MAX17007AGTI+
—
1
PCB: MAX17030 EVALUATION
KIT+
11.5kΩ ±1% resistor (0603)
R37–R43,
R80–R86
4
DESIGNATION
*EP = Exposed pad.
_______________________________________________________________________________________
MAX17030 Evaluation Kit
SUPPLIER
PHONE
WEBSITE
AVX Corporation
843-946-0238
www.avxcorp.com
Central Semiconductor Corp.
631-435-1110
www.centralsemi.com
Digi-Key Corp.
800-344-4539
www.digikey.com
Fairchild Semiconductor
888-522-5372
864-963-6300
www.fairchildsemi.com
www.kemet.com
KEMET Corp.
Murata Electronics North America, Inc.
770-436-1300
www.murata-northamerica.com
NEC TOKIN America, Inc.
408-324-1790
www.nec-tokinamerica.com
Nihon Inter Electronics Corp.
847-843-7500
www.niec.co.jp
Panasonic Corp.
800-344-2112
www.panasonic.com
SANYO Electric Co., Ltd.
619-661-6835
www.sanyodevice.com
Taiyo Yuden
800-348-2496
www.t-yuden.com
TDK Corp.
847-803-6100
www.component.tdk.com
TOKO America, Inc.
847-297-0070
www.tokoam.com
Vishay
402-563-6866
www.vishay.com
Note: Indicate that you are using the MAX17030 when contacting these component suppliers.
Quick Start
Recommended Equipment
•
MAX17030 EV kit
•
7V to 20V power supply, battery, or notebook AC
adapter
•
DC bias power supply, 5V at 1A
•
DC bias power supply, 3.3V at 100mA
•
Three dummy loads capable of sinking 22A each
•
Digital multimeters (DMMs)
•
Set SW1 (2, 13), SW1 (4, 11), and SW1 (6, 9) to the
on positions. Set SW4 (1, 8) and SW5 (4, 5) to the
on positions.The output voltage is set for 0.9750V.
3) Turn on the battery power before turning on the 5V
bias power. Turn on the 5V and 3.3V power supplies.
4) Observe the 0.9750V output voltage with the DMM
and/or oscilloscope. Look at the LX switching nodes
and MOSFET gate-drive signals while varying the
load current.
Detailed Description of Hardware
100MHz dual-trace oscilloscope
Procedure
The MAX17030 EV kit is fully assembled and tested.
Follow the steps below to verify board operation:
1) Ensure that the circuit is connected correctly to the
supplies and dummy load prior to applying any
power.
2) Verify that all positions of switch SW2 are off. The
DAC code settings (D6–D0) are set by switch SW1.
This 66A multiphase buck-regulator design is optimized
for a 300kHz switching frequency (per phase) and output-voltage settings around 1V. At VOUT = 1V and VIN
= 12V, the inductor ripple is approximately 30% (LIR =
0.30). The MAX17030 controller interleaves all the
active phases, resulting in out-of-phase operation that
minimizes the input and output filtering requirements.
The multiphase controller shares the current between
three phases that operate 120° out-of-phase, supplying
up to 22A per phase.
_______________________________________________________________________________________
5
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Component Suppliers
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Setting the Output Voltage
The MAX17030 has an internal digital-to-analog converter (DAC) that programs the output voltage. The output voltage can be digitally set from 0 to 1.5000V
(Table 2) from the D0–D6 pins. There are two different
ways of setting the output voltage:
1) Drive the external VID0–VID6 inputs (all SW1
positions are off). The output voltage is set by driving VID0–VID6 with open-drain drivers (pullup
resistors are included on the board) or 3V/5V
CMOS output logic levels.
2) Switch SW1. When SW1 positions are off, the
MAX17030’s D0–D6 inputs are at logic 0 (connected to GND). When SW1 positions are on, D0–D6
inputs are at logic 1 (connected to VTT1). The output voltage can be changed during operation by
activating SW1 on and off. As shipped, the EV kit is
configured with SW1 positions set for 0.9750V output (Table 2). Refer to the MAX17030 IC data sheet
for more information.
Table 1. MAX17030 Operating Mode Truth Table
INPUTS
SHDN
SW5
(1, 8)
DPRSLPVR
SW5
(2, 7)
PSI
SW5
(3, 6)
PHASE
OPERATION*
GND
X
X
Disabled
Multiphase
pulse-skipping
1/4 RTIME
slew rate
OPERATING MODE
Low-Power Shutdown Mode. DL1 and DL2 are forced low and the
controller is disabled. The supply current drops to 1µA (max).
Startup/Boot. When SHDN is pulled high, the MAX17030 begins the
startup sequence. Once the REF is above 1.84V, the controller enables
the PWM controller and ramps the output voltage up to the boot
voltage.
Rising
X
X
High
Low
High
Multiphase
Full Power. The no-load output voltage is determined by the selected
forced-PWM
VID DAC code (D0–D6, Table 2).
nominal RTIME slew rate
Low
Intermediate Power. The no-load output voltage is determined by the
(N-1)-phase
selected VID DAC code (D0–D6, Table 2). When PSI is pulled low, the
forced-PWM
MAX17030 immediately disables phase 3. PWM3 is three-state and
nominal RTIME slew rate
DRSKP is low.
High
High
Low
High
X
Deeper Sleep Mode. The no-load output voltage is determined by the
selected VID DAC code (D0–D6, Table 2). When DPRSLPVR is pulled
1-phase
high, the MAX17030 immediately enters 1-phase pulse-skipping
pulse-skipping
operation, allowing automatic PWM/PFM switchover under light loads.
nominal RTIME slew rate
The PWRGD and CLKEN upper thresholds are blanked. DH2 and DL2
are pulled low. PWM3 is three-state and DRSKP is low.
Falling
X
X
Multiphase
forced-PWM
1/4 RTIME
slew rate
High
X
X
Disabled
Shutdown. When SHDN is pulled low, the MAX17030 immediately pulls
PWRGD low, CLKEN becomes high impedance, all enabled phases are
activated, and the output voltage is ramped down to 12.5mV, then DH_
and DL_ are pulled low, and CSN1 discharge FET is turned on.
Fault Mode. The fault latch has been set by the MAX17030 UVP or
thermal-shutdown protection, or by the OVP protection. The controller
remains in fault mode until VCC power is cycled or SHDN toggled.
*Multiphase operation = All enabled phases active.
X = Don’t care.
6
_______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Table 2. MAX17030 IMVP-6.5 Output-Voltage VID DAC Codes
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
0
0
0
0
0
0
0
1.5000
1
0
0
0
0
0
0
0.7000
0
0
0
0
0
0
1
1.4875
1
0
0
0
0
0
1
0.6875
0
0
0
0
0
1
0
1.4750
1
0
0
0
0
1
0
0.6750
0
0
0
0
0
1
1
1.4625
1
0
0
0
0
1
1
0.6625
0
0
0
0
1
0
0
1.4500
1
0
0
0
1
0
0
0.6500
0
0
0
0
1
0
1
1.4375
1
0
0
0
1
0
1
0.6375
0
0
0
0
1
1
0
1.4250
1
0
0
0
1
1
0
0.6250
0
0
0
0
1
1
1
1.4125
1
0
0
0
1
1
1
0.6125
0
0
0
1
0
0
0
1.4000
1
0
0
1
0
0
0
0.6000
0
0
0
1
0
0
1
1.3875
1
0
0
1
0
0
1
0.5875
0
0
0
1
0
1
0
1.3750
1
0
0
1
0
1
0
0.5750
0
0
0
1
0
1
1
1.3625
1
0
0
1
0
1
1
0.5625
0
0
0
1
1
0
0
1.3500
1
0
0
1
1
0
0
0.5500
0
0
0
1
1
0
1
1.3375
1
0
0
1
1
0
1
0.5375
0
0
0
1
1
1
0
1.3250
1
0
0
1
1
1
0
0.5250
0
0
0
1
1
1
1
1.3125
1
0
0
1
1
1
1
0.5125
0
0
1
0
0
0
0
1.3000
1
0
1
0
0
0
0
0.5000
0
0
1
0
0
0
1
1.2875
1
0
1
0
0
0
1
0.4875
0
0
1
0
0
1
0
1.2750
1
0
1
0
0
1
0
0.4750
0
0
1
0
0
1
1
1.2625
1
0
1
0
0
1
1
0.4625
0
0
1
0
1
0
0
1.2500
1
0
1
0
1
0
0
0.4500
0
0
1
0
1
0
1
1.2375
1
0
1
0
1
0
1
0.4375
0
0
1
0
1
1
0
1.2250
1
0
1
0
1
1
0
0.4250
0
0
1
0
1
1
1
1.2125
1
0
1
0
1
1
1
0.4125
0
0
1
1
0
0
0
1.2000
1
0
1
1
0
0
0
0.4000
0
0
1
1
0
0
1
1.1875
1
0
1
1
0
0
1
0.3875
0
0
1
1
0
1
0
1.1750
1
0
1
1
0
1
0
0.3750
0
0
1
1
0
1
1
1.1625
1
0
1
1
0
1
1
0.3625
0
0
1
1
1
0
0
1.1500
1
0
1
1
1
0
0
0.3500
0
0
1
1
1
0
1
1.1375
1
0
1
1
1
0
1
0.3375
0
0
1
1
1
1
0
1.1250
1
0
1
1
1
1
0
0.3250
0
0
1
1
1
1
1
1.1125
1
0
1
1
1
1
1
0.3125
0
1
0
0
0
0
0
1.1000
1
1
0
0
0
0
0
0.3000
0
1
0
0
0
0
1
1.0875
1
1
0
0
0
0
1
0.2875
0
1
0
0
0
1
0
1.0750
1
1
0
0
0
1
0
0.2750
0
1
0
0
0
1
1
1.0625
1
1
0
0
0
1
1
0.2625
0
1
0
0
1
0
0
1.0500
1
1
0
0
1
0
0
0.2500
0
1
0
0
1
0
1
1.0375
1
1
0
0
1
0
1
0.2375
0
1
0
0
1
1
0
1.0250
1
1
0
0
1
1
0
0.2250
0
1
0
0
1
1
1
1.0125
1
1
0
0
1
1
1
0.2125
_______________________________________________________________________________________
7
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Table 2. MAX17030 IMVP-6.5 Output-Voltage VID DAC Codes (continued)
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
0
1
0
1
0
0
0
1.0000
1
1
0
1
0
0
0
0.2000
0
1
0
1
0
0
1
0.9875
1
1
0
1
0
0
1
0.1875
0
1
0
1
0
1
0
0.9750
1
1
0
1
0
1
0
0.1750
0
1
0
1
0
1
1
0.9625
1
1
0
1
0
1
1
0.1625
0
1
0
1
1
0
0
0.9500
1
1
0
1
1
0
0
0.1500
0
1
0
1
1
0
1
0.9375
1
1
0
1
1
0
1
0.1375
0
1
0
1
1
1
0
0.9250
1
1
0
1
1
1
0
0.1250
0
1
0
1
1
1
1
0.9125
1
1
0
1
1
1
1
0.1125
0
1
1
0
0
0
0
0.9000
1
1
1
0
0
0
0
0.1000
0
1
1
0
0
0
1
0.8875
1
1
1
0
0
0
1
0.0875
0
1
1
0
0
1
0
0.8750
1
1
1
0
0
1
0
0.0750
0
1
1
0
0
1
1
0.8625
1
1
1
0
0
1
1
0.0625
0
1
1
0
1
0
0
0.8500
1
1
1
0
1
0
0
0.0500
0
1
1
0
1
0
1
0.8375
1
1
1
0
1
0
1
0.0375
0
1
1
0
1
1
0
0.8250
1
1
1
0
1
1
0
0.0250
0
1
1
0
1
1
1
0.8125
1
1
1
0
1
1
1
0.0125
0
1
1
1
0
0
0
0.8000
1
1
1
1
0
0
0
0
0
1
1
1
0
0
1
0.7875
1
1
1
1
0
0
1
0
0
1
1
1
0
1
0
0.7750
1
1
1
1
0
1
0
0
0
1
1
1
0
1
1
0.7625
1
1
1
1
0
1
1
0
0
1
1
1
1
0
0
0.7500
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0.7375
1
1
1
1
1
0
1
0
0
1
1
1
1
1
0
0.7250
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0.7125
1
1
1
1
1
1
1
Off
Reduced Power-Dissipation
Voltage Positioning
Dynamic Output-Voltage
Transition Experiment
The MAX17030 includes a transconductance amplifier for
adding gain to the voltage-positioning sense path. The
amplifier’s input is generated by summing the currentsense inputs, which differentially sense the voltage
across the inductor’s DCR. The transconductance amplifier’s output connects to the voltage-positioned feedback
input (FBAC), so the resistance between FBAC and VOUT
(R17) determines the voltage-positioning gain. Resistor
R17 (6.04kΩ) provides a -1.9mV/A voltage-positioning
slope at the output when all phases are active. Remote
output and ground sensing eliminate any additional
PCB voltage drops.
This MAX17030 EV kit is set to transition the output voltage at 6mV/µs. The speed of the transition is altered by
scaling resistors R2 and R3.
8
During the voltage transition, watch the inductor current by
looking at the current-sense inputs with a differential scope
probe. Observe the low, well-controlled inductor current
that accompanies the voltage transition. Slew-rate control
during shutdown and startup results in well-controlled
currents in to and out of the battery (input source).
There are two methods to create an output-voltage
transition. Select D0–D6 (SW1). Then either manually
change the SW1 settings to a new VID code setting
(Table 2), or disable all SW1 settings and drive the
VID0–VID6 PCB test points externally to the desired
code settings.
_______________________________________________________________________________________
MAX17030 Evaluation Kit
Shutdown SW5 (1, 8)
When SHDN goes low (SW5 (1, 8) = on), the MAX17030
enters low-power shutdown mode. PWRGD is pulled low
immediately and the output voltage ramps down at 1/4
the slew rate set by R2 and R3. When the controller
reaches the 12.5mV target, the drivers are disabled
(DH_ and DL_ driven low), the reference is turned off,
and the IC supply currents drop to 1µA (max).
When a fault condition activates the shutdown
sequence (output undervoltage lockout or thermal shutdown), the protection circuitry sets the fault latch to
prevent the controller from restarting. To clear the fault
latch and reactivate the MAX17030, toggle SHDN or
cycle VDD power.
DPRSLPVR SW5 (2, 7), PSI SW5 (3, 6)
DPRSLPVR and PSI together determine the operating
mode, as shown in Table 4. The MAX17030 is in pulseskipping mode during startup and in boot mode, and is
forced into PWM mode during soft-shutdown.
PGD_IN, SW5 (4, 5)
PGD_IN indicates the power status of other system rails
and is used for power-supply sequencing. After powerup to the boot voltage, the output voltage remains at
VBOOT, CLKEN remains high, and PWRGD remains low
as long as the PG_DIN stays low. When PGD_IN is
pulled high, the output transitions to selected VID voltage, and CLKEN is pulled low. If the system pulls
PGD_IN low during normal operation, the MAX17030
immediately drives CLKEN high, pulls PWRGD low, and
slews the output to the boot voltage (using 3-phase
pulse-skipping mode). The controller remains at the
boot voltage until PGD_IN goes high again, SHDN is
toggled, or the VDD is cycled.
Evaluating the MAX17028 Circuit
The MAX17030 EV kit also demonstrates the highpower, dynamically adjustable, 1-phase MAX17028
Quick-PWM step-down VID power-supply controller.
This DC-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision, lowvoltage VCCAXG rail for Intel’s GMCH graphics core.
The MAX17028 circuit includes power-good signaling,
voltage regulator thermal monitoring (VRHOT), and current monitor (DFGT_IMON) output. The MAX17028
includes active voltage positioning with adjustable
gain, reducing power dissipation and bulk output
capacitance requirements. An internal amplifier buffers
the DAC and accurately controls the slew rate for all
output-voltage transitions, including transitions between
Table 3. Shutdown Mode (SHDN)
SW5 (1, 8)
SHDN PIN
Off
Connected to V3P3
Output enabled—VOUT is selected by VID DAC code (D0–D6) settings
On
Connected to GND
Shutdown mode, VOUT = 0
MAX17030 OUTPUT
Table 4. DPRSLPVR, PSI
DPRSLPVR
SW5 (2, 7)
PSI
SW5 (3, 6)
POWER LEVEL
OPERATING MODE
On (VCCP)
X
Low current
1-phase pulse-skipping mode
Off (GND)
On (GND)
Intermediate
2-phase forced-PWM mode
Off (GND)*
Off (VCCP)*
Full
Normal operation—all phases are active, forced-PWM mode
*Default position.
X = Don’t care.
Table 5. PGD_IN
SW5 (4, 5)
PGD_IN PIN
MAX17030 OUTPUT
Off
Connected to GND
VOUT remains at the boot voltage. CLKEN remains high, and PWRGD
remains low.
On
Connected to V3P3
VOUT transitions to selected VID voltage, and CLKEN is pulled low.
_______________________________________________________________________________________
9
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Switch SW5 Settings
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
VID codes, startup, and shutdown. Precision slew-rate
control provides just-in-time arrival at the new DAC setting, minimizing surge currents to and from the battery.
The MAX17028 includes output undervoltage fault,
overvoltage-fault protection, and thermal overload protection. It also includes a voltage regulator power-good
(PWRGD) output.
The output voltage (VCCAXG) can be digitally
adjustable from 0 to 1.5000V (7-bit on-board DAC) from
a 7V to 20V battery input range. It delivers up to 14A
output current. The MAX17028 circuit operates at
400kHz switching frequency and has superior line- and
load-transient response.
Setting the VCCAXG Output Voltage
The MAX17028 has an internal DAC that programs the
VCCAXG output voltage. The output voltage is digitally
set from 0 to 1.5000V (Table 6) using the D0–D6 pins.
When SW3 positions are off, the MAX17028’s D0–D6
inputs are at logic 0 (connected to GND). When SW3
positions are on, D0–D6 inputs are at logic 1 (connected to VTT1). The output voltage can be changed during
operation by activating SW3 on and off. As shipped,
the EV kit is configured with SW3 positions set for
0.9000V output (SW3 (5, 10), SW3 (6, 9) and SW2 (1, 8)
in the on positions) (Table 6). Refer to the MAX17028 IC
data sheet for more information.
Table 6. MAX17028 GMCH Output-Voltage Adjustment Settings
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
0
0
0
0
0
0
0
1.5000
1
0
0
0
0
0
0
0.7000
0
0
0
0
0
0
1
1.4875
1
0
0
0
0
0
1
0.6875
0
0
0
0
0
1
0
1.4750
1
0
0
0
0
1
0
0.6750
0
0
0
0
0
1
1
1.4625
1
0
0
0
0
1
1
0.6625
0
0
0
0
1
0
0
1.4500
1
0
0
0
1
0
0
0.6500
0
0
0
0
1
0
1
1.4375
1
0
0
0
1
0
1
0.6375
0
0
0
0
1
1
0
1.4250
1
0
0
0
1
1
0
0.6250
0
0
0
0
1
1
1
1.4125
1
0
0
0
1
1
1
0.6125
0
0
0
1
0
0
0
1.4000
1
0
0
1
0
0
0
0.6000
0
0
0
1
0
0
1
1.3875
1
0
0
1
0
0
1
0.5875
0
0
0
1
0
1
0
1.3750
1
0
0
1
0
1
0
0.5750
0
0
0
1
0
1
1
1.3625
1
0
0
1
0
1
1
0.5625
0
0
0
1
1
0
0
1.3500
1
0
0
1
1
0
0
0.5500
0
0
0
1
1
0
1
1.3375
1
0
0
1
1
0
1
0.5375
0
0
0
1
1
1
0
1.3250
1
0
0
1
1
1
0
0.5250
0
0
0
1
1
1
1
1.3125
1
0
0
1
1
1
1
0.5125
0
0
1
0
0
0
0
1.3000
1
0
1
0
0
0
0
0.5000
0
0
1
0
0
0
1
1.2875
1
0
1
0
0
0
1
0.4875
0
0
1
0
0
1
0
1.2750
1
0
1
0
0
1
0
0.4750
0
0
1
0
0
1
1
1.2625
1
0
1
0
0
1
1
0.4625
0
0
1
0
1
0
0
1.2500
1
0
1
0
1
0
0
0.4500
0
0
1
0
1
0
1
1.2375
1
0
1
0
1
0
1
0.4375
0
0
1
0
1
1
0
1.2250
1
0
1
0
1
1
0
0.4250
0
0
1
0
1
1
1
1.2125
1
0
1
0
1
1
1
0.4125
0
0
1
1
0
0
0
1.2000
1
0
1
1
0
0
0
0.4000
0
0
1
1
0
0
1
1.1875
1
0
1
1
0
0
1
0.3875
0
0
1
1
0
1
0
1.1750
1
0
1
1
0
1
0
0.3750
0
0
1
1
0
1
1
1.1625
1
0
1
1
0
1
1
0.3625
10
______________________________________________________________________________________
MAX17030 Evaluation Kit
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
D6
D5
D4
D3
D2
D1
D0
OUTPUT
VOLTAGE (V)
0
0
1
1
1
0
0
1.1500
1
0
1
1
1
0
0
0.3500
0
0
1
1
1
0
1
1.1375
1
0
1
1
1
0
1
0.3375
0
0
1
1
1
1
0
1.1250
1
0
1
1
1
1
0
0.3250
0
0
1
1
1
1
1
1.1125
1
0
1
1
1
1
1
0.3125
0
1
0
0
0
0
0
1.1000
1
1
0
0
0
0
0
0.3000
0
1
0
0
0
0
1
1.0875
1
1
0
0
0
0
1
0.2875
0
1
0
0
0
1
0
1.0750
1
1
0
0
0
1
0
0.2750
0
1
0
0
0
1
1
1.0625
1
1
0
0
0
1
1
0.2625
0
1
0
0
1
0
0
1.0500
1
1
0
0
1
0
0
0.2500
0
1
0
0
1
0
1
1.0375
1
1
0
0
1
0
1
0.2375
0
1
0
0
1
1
0
1.0250
1
1
0
0
1
1
0
0.2250
0
1
0
0
1
1
1
1.0125
1
1
0
0
1
1
1
0.2125
0
1
0
1
0
0
0
1.0000
1
1
0
1
0
0
0
0.2000
0
1
0
1
0
0
1
0.9875
1
1
0
1
0
0
1
0.1875
0
1
0
1
0
1
0
0.9750
1
1
0
1
0
1
0
0.1750
0
1
0
1
0
1
1
0.9625
1
1
0
1
0
1
1
0.1625
0
1
0
1
1
0
0
0.9500
1
1
0
1
1
0
0
0.1500
0
1
0
1
1
0
1
0.9375
1
1
0
1
1
0
1
0.1375
0
1
0
1
1
1
0
0.9250
1
1
0
1
1
1
0
0.1250
0
1
0
1
1
1
1
0.9125
1
1
0
1
1
1
1
0.1125
0
1
1
0
0
0
0
0.9000
1
1
1
0
0
0
0
0.1000
0
1
1
0
0
0
1
0.8875
1
1
1
0
0
0
1
0.0875
0
1
1
0
0
1
0
0.8750
1
1
1
0
0
1
0
0.0750
0
1
1
0
0
1
1
0.8625
1
1
1
0
0
1
1
0.0625
0
1
1
0
1
0
0
0.8500
1
1
1
0
1
0
0
0.0500
0
1
1
0
1
0
1
0.8375
1
1
1
0
1
0
1
0.0375
0
1
1
0
1
1
0
0.8250
1
1
1
0
1
1
0
0.0250
0
1
1
0
1
1
1
0.8125
1
1
1
0
1
1
1
0.0125
0
1
1
1
0
0
0
0.8000
1
1
1
1
0
0
0
0
0
1
1
1
0
0
1
0.7875
1
1
1
1
0
0
1
0
0
1
1
1
0
1
0
0.7750
1
1
1
1
0
1
0
0
0
1
1
1
0
1
1
0.7625
1
1
1
1
0
1
1
0
0
1
1
1
1
0
0
0.7500
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0.7375
1
1
1
1
1
0
1
0
0
1
1
1
1
1
0
0.7250
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0.7125
1
1
1
1
1
1
1
0
______________________________________________________________________________________
11
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Table 6. MAX17028 GMCH Output-Voltage Adjustment Settings (continued)
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Table 7. MAX17028 Operating Mode Truth Table
INPUTS
SHDN
SW2 (1, 8)
DPRSLPVR
SW2 (2, 7)
PGD_IN
Low
X
X
Disabled
High
Low
High
1-phase forced-PWM
1/2 RTIME slew rate
Full Power. The no-load output voltage is determined by the
selected VID DAC code (D0–D6).
High
1-phase pulseskipping
nominal RTIME slew
rate
Skip Mode. The no-load output voltage is determined by the
selected VID DAC code (D0–D6). When DPRSLPVR is pulled
high, the MAX17028 immediately enters 1-phase pulseskipping operation, allowing automatic PWM/PFM switchover
under light loads.
X
1-phase forced-PWM
1/8 RTIME slew rate
High
High
Falling
X
STATE
OPERATING MODE
Low-Power Shutdown Mode. DL forced low, and the
controller is disabled. The controller’s bias supply current
drops to 15µA (typ).
Shutdown. When SHDN is pulled low, the MAX17028
immediately pulls PWRGD low and the output voltage is
ramped down to ground. Once the output reaches 0V, the
controller enters the low-power shutdown state.
X = Don’t care.
Switch SW2 Settings
Switch SW2 controls the MAX17028 operating modes
(Table 7).
VCCDDR. Install feedback resistors with values according to the following equation:
R119 ⎞
⎛
VCCDDR = VFB ⎜1 +
⎟
⎝
R120 ⎠
Evaluating the MAX17000 Circuit
The MAX17030 kit also demonstrates the MAX17000
DDR memory power-solution circuit. The MAX17000
provides the regulated voltages required in a complete
DDR memory system. The MAX17000 generates the
main memory voltage (VCCDDR), the tracking
sinking/sourcing termination voltage (VTTDDR), and the
reference voltage (VTTR). The MAX17000 circuit operates at 400kHz switching frequency, generates a preset 1.5V VCCDDR main memory voltage that is capable
of sourcing 10A from 7V to 20V battery input range. The
termination regulator provides a 0.75V VTTDDR supply
that is capable of sinking/sourcing 2A. The termination
reference buffer provides a 0.75V VTTR supply that is
capable of sinking/sourcing 3mA.
Setting the VCCDDR Output Voltage
The MAX17000 feedback input (FB) is connected to a
network of resistors, which set the VCCDDR output voltage. By default, the output voltage is preset to a fixed
1.5V output (R120 = 0Ω). For a fixed 1.8V output,
remove R120 and install a short across resistor R99.
For an adjustable VCCDDR output (1V to 2.7V), connect FB to resistive divider R119 and R120 from the
output voltage
12
where VFB = 1V. Use 10kΩ for R120, and calculate
R119 for the desired VCCDDR output voltage.
MAX17000 Standby Control Input (STDBY)
and Shutdown Control Input (SHDN)
The MAX17000 features independent standby and
shutdown controls by implementing switches SW4 (4,
5) and SW4 (3, 6) to control the STDBY and SHDN
inputs, respectively. Switches SW4 (4, 5) and SW4 (3,
6) allow flexible sequencing to support all DDR operating states. The shutdown and standby control logic is
illustrated in Table 8.
Table 8. SW4 (4, 5) (STDBY) and
SW4 (3, 6) (SHDN) Functions
SW4 (4, 5)
(STDBY)
SW4 (3, 6)
(SHDN)
VCCDDR
OUTPUT
VTTDDR
VTTR
Disabled
X
Off
Disabled
Disabled
On
On
Enabled
Enabled
Enabled
Off
On
Enabled
Disabled
Enabled
X = Don’t care.
______________________________________________________________________________________
MAX17030 Evaluation Kit
This DC-DC converter steps down high-voltage batteries to generate low-voltage core or chipset/RAM bias
supplies in notebook computers. The MAX17007A circuit generates two independent I/O voltages (VTT1 and
VTT2) from a 7V to 20V battery-input range. VTT1 and
VTT2 are configured for 1.1V output voltages. Each output delivers up to 12A. The VTT1 and VTT2 outputs
operate at 270kHz and 330kHz switching frequencies,
respectively. Both outputs can be configured for other
voltages by changing R140, R141, R152, and R153 values. Refer to the MAX17007A IC data sheet for more
details.
Table 9. Switch SW4 (1, 8) Functions
The outputs can also be combined to operate as a 2phase, high-current, single-output regulator. In this
mode, the output is configured for either a preset,
adjustable, or dynamically adjustable output voltage
using REFIN1. Refer to the Combined-Mode Operation
(FB2 = VCC) section in the IC MAX17007A data sheet
for more details.
The MAX17007A provides access to the device’s
enable control pins (EN1 and EN2), through SW4
switches SW4 (1, 8) and SW4 (2, 7), respectively. EN1
is used to control the VTT1 output and EN2 is used to
control the VTT2 output. When in combined mode, EN1
is used for output control and EN2 must be connected
to GND. Tables 9 and 10 list the options for each output-enable pin.
Table 10. Switch SW4 (2, 7) Functions
SW4 (1, 8)
EN1 PIN
VTT1 OUTPUT
SW4 (2, 7)
EN2 PIN
VTT2 OUTPUT
On
Connected to V3P3
Enabled, VTT1 = 1.1V
On
Connected to V3P3
Enabled, VTT2 = 1.1V
Off
Connected to GND
through R144
Shutdown mode,
VTT1 = 0V
Off
Connected to GND
through R155
Shutdown mode,
VTT2 = 0V
______________________________________________________________________________________
13
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Evaluating the MAX17007A Circuit
The MAX17030 kit also demonstrates the MAX17007A
I/O power solution circuit.
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 1a. MAX17030 EV Kit Schematic (Sheet 1 of 5)
14
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 1b. MAX17030 EV Kit Schematic (Sheet 2 of 5)
______________________________________________________________________________________
15
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 1c. MAX17030 EV Kit Schematic (Sheet 3 of 5)
16
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 1d. MAX17030 EV Kit Schematic (Sheet 4 of 5)
______________________________________________________________________________________
17
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 1e. MAX17030 EV Kit Schematic (Sheet 5 of 5)
18
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 2. MAX17030 EV Kit Component Placement Guide—Component Side
______________________________________________________________________________________
19
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 3. MAX17030 EV Kit PCB Layout—Component Side
20
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 4. MAX17030 EV Kit PCB Layout—Internal Layer 2 (PGND Plane)
______________________________________________________________________________________
21
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 5. MAX17030 EV Kit PCB Layout—Internal Layer 3 (Signal Layer)
22
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 6. MAX17030 EV Kit PCB Layout—Internal Layer 4 (AGND/PGND Layer)
______________________________________________________________________________________
23
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 7. MAX17030 EV Kit PCB Layout —Internal Layer 5 (PGND Layer)
24
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 8. MAX17030 EV Kit PCB Layout —Internal Layer 6 (Signal Layer)
______________________________________________________________________________________
25
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 9. MAX17030 EV Kit PCB Layout —Internal Layer 7 (PGND Layer)
26
______________________________________________________________________________________
MAX17030 Evaluation Kit
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
Figure 10. MAX17030 EV Kit PCB Layout—Solder Side
______________________________________________________________________________________
27
Evaluates: MAX17000/MAX17007A/MAX17028/MAX17030
MAX17030 Evaluation Kit
Figure 11. MAX17030 EV Kit Component Placement Guide—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
28 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products
SPRINGER
Maxim is a registered trademark of Maxim Integrated Products, Inc.