PD - 96368A IRFHM792TRPbF IRFHM792TR2PbF VDS Vgs max RDS(on) max (@VGS = 10V) Qg typ 100 V ± 20 V 195 mΩ 4.2 ID 3.4 (@Tc(Bottom) = 25°C) HEXFET® Power MOSFET TOP VIEW D 7 D 8 D 6 D 5 S nC h A G S G D D D 1 S 2 G 3 S 4 G D D D PQFN Dual 3.3X3.3 mm Applications • DC-DC Primary Switch • 48V Battery Monitoring Features and Benefits Features Low RDSon (<195mΩ) Low Thermal Resistance to PCB (< 12°C/W) Low Profile (<1.2mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Orderable part number Package Type IRFHM792TRPBF IRFHM792TR2PBF PQFN Dual 3.3mm x 3.3mm PQFN Dual 3.3mm x 3.3mm Benefits Lower Conduction Losses Enable better thermal dissipation results in Increased Power Density ⇒ Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 100 VGS ± 20 ID @ TA = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ID @ TA = 70°C Continuous Drain Current, VGS @ 10V ID @ TC(Bottom) = 25°C Continuous Drain Current, VGS @ 10V ID @ TC(Bottom) = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C IDM Continuous Drain Current, VGS @ 10V (Wirebond Limited) Pulsed Drain Current PD @TA = 25°C Power Dissipation c PD @TC(Bottom) = 25°C g Power Dissipation g TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range V 2.3 1.8 4.8 h 3.1 3.4 A h 14 2.3 g Units 10.4 0.018 -55 to + 150 W W/°C °C Notes through are on page 9 www.irf.com 1 05/10/11 IRFHM792TRPbF/IRFHM792TR2PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ΔΒVDSS/ΔTJ RDS(on) VGS(th) ΔVGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Min. Typ. Drain-to-Source Breakdown Voltage 100 ––– ––– Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 0.11 164 ––– 195 Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current 2.0 ––– ––– 3.0 -8.2 ––– 4.0 ––– 20 Gate-to-Source Forward Leakage ––– ––– ––– ––– 250 100 Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge ––– 3.5 ––– ––– ––– 4.2 -100 ––– 6.3 Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– 0.7 0.3 ––– ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 1.3 1.9 ––– ––– Output Charge ––– ––– 1.6 6.7 ––– ––– Gate Resistance Turn-On Delay Time Rise Time ––– ––– ––– 1.6 3.4 4.7 ––– ––– ––– Turn-Off Delay Time Fall Time Input Capacitance ––– ––– ––– 5.2 2.6 ––– ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 251 31 13 Max. Units ––– ––– Conditions VGS = 0V, ID = 250μA V V/°C Reference to 25°C, ID = 1.0mA mΩ VGS = 10V, ID = 2.9A VDS = VGS, ID = 10μA V e mV/°C VDS = 100V, VGS = 0V μA mA VDS = 100V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V VDS = 50V, ID = 2.9A S VDS = 50V VGS = 10V nC ID = 2.9A VDS = 16V, VGS = 0V nC Ω VDD = 50V, VGS = 10V ID = 2.9A ns RG=1.8Ω VGS = 0V pF VDS = 25V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Max. 10.2 2.9 Units mJ A Diode Characteristics Parameter IS Min. Continuous Source Current (Body Diode) Pulsed Source Current ISM VSD trr Qrr c (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ton Typ. Max. Units h ––– ––– 3.4 ––– ––– 14 ––– ––– ––– 15 1.3 23 Conditions MOSFET symbol D A showing the integral reverse V ns p-n junction diode. TJ = 25°C, IS = 2.9A, VGS = 0V TJ = 25°C, IF = 2.9A, VDD = 50V di/dt = 500A/μs ––– 45 68 nC Time is dominated by parasitic Inductance G S e e Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 f Junction-to-Case f Junction-to-Case g Junction-to-Ambient g Junction-to-Ambient Parameter Typ. ––– ––– ––– ––– Max. Units 12 85 °C/W 55 38 www.irf.com IRFHM792TRPbF/IRFHM792TR2PbF 100 100 10 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.3V 4.0V 1 0.1 4.0V 10 1 4.0V 0.1 0.01 1 BOTTOM ≤60μs PULSE WIDTH Tj = 150°C ≤60μs PULSE WIDTH Tj = 25°C 0.1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 100 2.4 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) T J = 150°C 10 T J = 25°C 1 VDS = 50V ≤60μs PULSE WIDTH 0.1 ID = 2.9A 2.2 VGS = 10V 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 2 4 6 8 10 12 14 -60 -40 -20 0 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 10000 14 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 1000 Ciss Coss 100 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.3V 4.0V Crss 10 ID= 2.9A 12 VDS= 80V VDS= 50V 10 VDS= 20V 8 6 4 2 0 1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 1 2 3 4 5 6 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRFHM792TRPbF/IRFHM792TR2PbF 100 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 10 T J = 150°C TJ = 25°C 1 10 100μsec 1 DC 0.1 0.2 0.4 0.6 0.8 1.0 1.2 0.10 VSD, Source-to-Drain Voltage (V) 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4.0 5.2 VGS(th) , Gate threshold Voltage (V) 4.8 Limited By Wirebond 4.4 4 ID, Drain Current (A) 1msec 10msec Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 Limited by Wirebond 3.6 3.2 2.8 2.4 2 1.6 1.2 0.8 3.5 3.0 ID = 10μA ID = 25μA 2.5 ID = 250μA ID = 1.0mA 2.0 0.4 1.5 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) °C/W 100 10 D = 0.50 0.20 0.10 0.05 0.02 0.01 1 0.1 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 45 400 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRFHM792TRPbF/IRFHM792TR2PbF ID = 2.9A 350 300 T J = 125°C 250 200 150 T J = 25°C 10 TOP 35 30 25 20 15 10 5 0 100 5 ID 0.43A 0.98A BOTTOM 2.90A 40 15 20 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFHM792TRPbF/IRFHM792TR2PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFHM792TRPbF/IRFHM792TR2PbF PQFN Dual 3.3x3.3 Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN Dual 3.3x3.3 Part Marking Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFHM792TRPbF/IRFHM792TR2PbF PQFN Dual 3.3x3.3 Tape and Reel 8 www.irf.com IRFHM792TRPbF/IRFHM792TR2PbF Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN Dual 3.3mm x 3.3mm †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D Yes ) Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 2.43mH, RG = 50Ω, IAS = 2.9A. Pulse width ≤ 400μs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 3.4A by wirebond capability. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/2011 www.irf.com 9