IRF IRFHM792TRPBF

PD - 96368A
IRFHM792TRPbF
IRFHM792TR2PbF
VDS
Vgs
max
RDS(on) max
(@VGS = 10V)
Qg typ
100
V
± 20
V
195
mΩ
4.2
ID
3.4
(@Tc(Bottom) = 25°C)
HEXFET® Power MOSFET
TOP VIEW
D
7
D
8
D
6
D
5
S
nC
h
A
G
S
G
D
D
D
1
S
2
G
3
S
4
G
D
D
D
PQFN Dual 3.3X3.3 mm
Applications
• DC-DC Primary Switch
• 48V Battery Monitoring
Features and Benefits
Features
Low RDSon (<195mΩ)
Low Thermal Resistance to PCB (< 12°C/W)
Low Profile (<1.2mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
Package Type
IRFHM792TRPBF
IRFHM792TR2PBF
PQFN Dual 3.3mm x 3.3mm
PQFN Dual 3.3mm x 3.3mm
Benefits
Lower Conduction Losses
Enable better thermal dissipation
results in Increased Power Density
⇒
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
100
VGS
± 20
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 25°C
IDM
Continuous Drain Current, VGS @ 10V (Wirebond Limited)
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
c
PD @TC(Bottom) = 25°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
V
2.3
1.8
4.8
h
3.1
3.4
A
h
14
2.3
g
Units
10.4
0.018
-55 to + 150
W
W/°C
°C
Notes  through † are on page 9
www.irf.com
1
05/10/11
IRFHM792TRPbF/IRFHM792TR2PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
VGS(th)
ΔVGS(th)
IDSS
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Min.
Typ.
Drain-to-Source Breakdown Voltage
100
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.11
164
–––
195
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
2.0
–––
–––
3.0
-8.2
–––
4.0
–––
20
Gate-to-Source Forward Leakage
–––
–––
–––
–––
250
100
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
–––
3.5
–––
–––
–––
4.2
-100
–––
6.3
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
0.7
0.3
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
1.3
1.9
–––
–––
Output Charge
–––
–––
1.6
6.7
–––
–––
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.6
3.4
4.7
–––
–––
–––
Turn-Off Delay Time
Fall Time
Input Capacitance
–––
–––
–––
5.2
2.6
–––
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
251
31
13
Max. Units
–––
–––
Conditions
VGS = 0V, ID = 250μA
V
V/°C Reference to 25°C, ID = 1.0mA
mΩ VGS = 10V, ID = 2.9A
VDS = VGS, ID = 10μA
V
e
mV/°C
VDS = 100V, VGS = 0V
μA
mA
VDS = 100V, VGS = 0V, TJ = 125°C
VGS = 20V
nA
VGS = -20V
VDS = 50V, ID = 2.9A
S
VDS = 50V
VGS = 10V
nC
ID = 2.9A
VDS = 16V, VGS = 0V
nC
Ω
VDD = 50V, VGS = 10V
ID = 2.9A
ns
RG=1.8Ω
VGS = 0V
pF
VDS = 25V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
Typ.
–––
–––
d
Max.
10.2
2.9
Units
mJ
A
Diode Characteristics
Parameter
IS
Min.
Continuous Source Current
(Body Diode)
Pulsed Source Current
ISM
VSD
trr
Qrr
c
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
ton
Typ.
Max. Units
h
–––
–––
3.4
–––
–––
14
–––
–––
–––
15
1.3
23
Conditions
MOSFET symbol
D
A
showing the
integral reverse
V
ns
p-n junction diode.
TJ = 25°C, IS = 2.9A, VGS = 0V
TJ = 25°C, IF = 2.9A, VDD = 50V
di/dt = 500A/μs
–––
45
68
nC
Time is dominated by parasitic Inductance
G
S
e
e
Thermal Resistance
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA (<10s)
2
f
Junction-to-Case f
Junction-to-Case
g
Junction-to-Ambient g
Junction-to-Ambient
Parameter
Typ.
–––
–––
–––
–––
Max.
Units
12
85
°C/W
55
38
www.irf.com
IRFHM792TRPbF/IRFHM792TR2PbF
100
100
10
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.0V
4.5V
4.3V
4.0V
1
0.1
4.0V
10
1
4.0V
0.1
0.01
1
BOTTOM
≤60μs PULSE WIDTH Tj = 150°C
≤60μs PULSE WIDTH Tj = 25°C
0.1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
100
2.4
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
T J = 150°C
10
T J = 25°C
1
VDS = 50V
≤60μs PULSE WIDTH
0.1
ID = 2.9A
2.2
VGS = 10V
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
2
4
6
8
10
12
14
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
10000
14
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
1000
Ciss
Coss
100
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.0V
4.5V
4.3V
4.0V
Crss
10
ID= 2.9A
12
VDS= 80V
VDS= 50V
10
VDS= 20V
8
6
4
2
0
1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
1
2
3
4
5
6
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRFHM792TRPbF/IRFHM792TR2PbF
100
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
10
T J = 150°C
TJ = 25°C
1
10
100μsec
1
DC
0.1
0.2
0.4
0.6
0.8
1.0
1.2
0.10
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4.0
5.2
VGS(th) , Gate threshold Voltage (V)
4.8
Limited By Wirebond
4.4
4
ID, Drain Current (A)
1msec
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
Limited by
Wirebond
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
3.5
3.0
ID = 10μA
ID = 25μA
2.5
ID = 250μA
ID = 1.0mA
2.0
0.4
1.5
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
100
10
D = 0.50
0.20
0.10
0.05
0.02
0.01
1
0.1
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
45
400
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFHM792TRPbF/IRFHM792TR2PbF
ID = 2.9A
350
300
T J = 125°C
250
200
150
T J = 25°C
10
TOP
35
30
25
20
15
10
5
0
100
5
ID
0.43A
0.98A
BOTTOM 2.90A
40
15
20
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
Fig 14b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
+
-VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 15a. Switching Time Test Circuit
www.irf.com
I AS
0.01Ω
tp
10%
VGS
td(on)
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
5
IRFHM792TRPbF/IRFHM792TR2PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
L
DUT
0
1K
S
VCC
Vgs(th)
Qgs1 Qgs2
Fig 17. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 18. Gate Charge Waveform
www.irf.com
IRFHM792TRPbF/IRFHM792TR2PbF
PQFN Dual 3.3x3.3 Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN Dual 3.3x3.3 Part Marking
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRFHM792TRPbF/IRFHM792TR2PbF
PQFN Dual 3.3x3.3 Tape and Reel
8
www.irf.com
IRFHM792TRPbF/IRFHM792TR2PbF
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
†
††
†††
Indus trial
(per JE DE C JE S D47F
PQFN Dual 3.3mm x 3.3mm
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
Yes
)
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 2.43mH, RG = 50Ω, IAS = 2.9A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature. Package is limited to 3.4A by wirebond capability.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 05/2011
www.irf.com
9