PD -96265 IRFH5250PbF HEXFET® Power MOSFET VDS 25 RDS(on) max 1.15 m 52 1.3 nC (@VGS = 10V) Qg (typical) RG (typical) ID 100 (@Tc(Bottom) = 25°C) V : : h PQFN 5X6 mm A Applications • OR-ing MOSFET for 12V (typical) Bus in-Rush Current • Battery Operated DC Motor Inverter MOSFET Features and Benefits Benefits Features Low RDSon (<1.15 mΩ) Low Thermal Resistance to PCB (<0.5°C/W) 100% Rg tested Low Profile (<0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Orderable part number Package Type IRFH5250TRPBF IRFH5250TR2PBF PQFN 5mm x 6mm PQFN 5mm x 6mm Lower Conduction Losses Enable better thermal dissipation Increased Reliability results in Increased Power Density ⇒ Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 25 VGS ± 20 ID @ TA = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 31 ID @ TC(Bottom) = 25°C Continuous Drain Current, VGS @ 10V 100 ID @ TC(Bottom) = 100°C Continuous Drain Current, VGS Pulsed Drain Current 100 IDM c PD @TC(Bottom) = 25°C g Power Dissipation g TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range PD @TA = 25°C Power Dissipation h @ 10V h V 45 A 400 3.6 g Units 250 0.029 -55 to + 150 W W/°C °C Notes through are on page 8 www.irf.com 1 09/18/09 IRFH5250PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qg Qgs1 Qgs2 Qgd Min. Typ. Max. Units Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance 25 ––– ––– ––– 0.02 0.9 ––– ––– 1.15 Gate Threshold Voltage ––– 1.35 1.4 1.80 1.75 2.35 Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -6.3 ––– ––– 5.0 Gate-to-Source Forward Leakage ––– ––– ––– ––– 150 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 181 ––– ––– -100 ––– Total Gate Charge Total Gate Charge ––– ––– 110 52 ––– 78 Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– 13 7.8 ––– ––– ––– ––– 17 15 ––– ––– ––– ––– Qsw Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Qoss Output Charge ––– ––– 25 36 RG td(on) tr Gate Resistance Turn-On Delay Time ––– ––– 1.3 28 ––– ––– Rise Time Turn-Off Delay Time ––– ––– 46 30 ––– ––– Fall Time Input Capacitance ––– ––– 19 7174 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 1758 828 ––– ––– Qgodr td(off) tf Ciss Coss Crss Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 50A mΩ VGS = 4.5V, ID = 50A V VDS = VGS, ID = 150µA e e mV/°C µA nA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C VGS = 20V S VGS = -20V VDS = 13V, ID = 50A nC VGS = 10V, VDS = 13V, ID = 50A nC nC VDS = 13V VGS = 4.5V ID = 50A VDS = 16V, VGS = 0V Ω VDD = 13V, VGS = 4.5V ns ID = 50A RG=1.8Ω VGS = 0V pF VDS = 13V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c d Typ. ––– Max. 468 Units mJ ––– 50 A Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr Min. ––– ––– c (Body Diode) Diode Forward Voltage Reverse Recovery Time ––– ––– Reverse Recovery Charge Forward Turn-On Time ton Typ. ––– ––– ––– 37 Max. Units 100 D A showing the integral reverse V ns p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V TJ = 25°C, IF = 50A, VDD = 13V di/dt = 200A/µs 400 1.0 56 Conditions MOSFET symbol ––– 68 102 nC Time is dominated by parasitic Inductance G S e e Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 Parameter Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient f f g g Typ. ––– ––– ––– ––– Max. 0.5 15 35 21 Units °C/W www.irf.com IRFH5250PbF 1000 1000 VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.9V 2.7V 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP BOTTOM 100 10 2.7V 2.7V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 0.1 10 1 10 0.1 100 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 1.6 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 100 T J = 150°C 10 T J = 25°C 1 VDS = 15V ≤60µs PULSE WIDTH 0.1 ID = 50A VGS = 10V 1.4 1.2 1.0 0.8 0.6 1 1.5 2 2.5 3 3.5 4 4.5 5 -60 -40 -20 0 Fig 4. Normalized On-Resistance Vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 50A C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.9V 2.7V Crss 12.0 VDS= 20V VDS= 13V 10.0 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 120 140 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage 3 IRFH5250PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C 10 T J = 25°C 1 VGS = 0V 100µsec 0.4 0.6 0.8 1.0 1.2 1.4 1msec 100 10msec 10 Tc = 25°C Tj = 150°C Single Pulse 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS(ON) 1 1.6 0 VSD, Source-to-Drain Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 400 VGS(th) , Gate threshold Voltage (V) 3.0 350 ID, Drain Current (A) 1 Limited By Package 300 250 200 150 100 50 0 25 50 75 100 125 150 2.5 2.0 1.5 ID = 1.0A ID = 1.0mA ID = 500µA ID = 150µA 1.0 0.5 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 4 2000 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRFH5250PbF ID = 50A ID 18A 24A BOTTOM 50A 1800 TOP 1600 3 1400 1200 2 1000 T J = 125°C 1 T J = 25°C 0 2 4 6 8 10 12 14 16 18 20 800 600 400 200 0 25 VGS, Gate -to -Source Voltage (V) 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFH5250PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFH5250PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5250PbF PQFN 5x6 Outline "B" Tape and Reel Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.37mH, RG = 25Ω, IAS = 50A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2009 8 www.irf.com