IRF IRFH5250TR2PBF

PD -96265
IRFH5250PbF
HEXFET® Power MOSFET
VDS
25
RDS(on) max
1.15
m
52
1.3
nC
(@VGS = 10V)
Qg (typical)
RG (typical)
ID
100
(@Tc(Bottom) = 25°C)
V
:
:
h
PQFN 5X6 mm
A
Applications
• OR-ing MOSFET for 12V (typical) Bus in-Rush Current
• Battery Operated DC Motor Inverter MOSFET
Features and Benefits
Benefits
Features
Low RDSon (<1.15 mΩ)
Low Thermal Resistance to PCB (<0.5°C/W)
100% Rg tested
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
Package Type
IRFH5250TRPBF
IRFH5250TR2PBF
PQFN 5mm x 6mm
PQFN 5mm x 6mm
Lower Conduction Losses
Enable better thermal dissipation
Increased Reliability
results in Increased Power Density
⇒
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
25
VGS
± 20
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
31
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
100
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS
Pulsed Drain Current
100
IDM
c
PD @TC(Bottom) = 25°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
PD @TA = 25°C
Power Dissipation
h
@ 10V h
V
45
A
400
3.6
g
Units
250
0.029
-55 to + 150
W
W/°C
°C
Notes  through † are on page 8
www.irf.com
1
09/18/09
IRFH5250PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
∆VGS(th)
IDSS
IGSS
gfs
Qg
Qg
Qgs1
Qgs2
Qgd
Min.
Typ.
Max. Units
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
25
–––
–––
–––
0.02
0.9
–––
–––
1.15
Gate Threshold Voltage
–––
1.35
1.4
1.80
1.75
2.35
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-6.3
–––
–––
5.0
Gate-to-Source Forward Leakage
–––
–––
–––
–––
150
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
181
–––
–––
-100
–––
Total Gate Charge
Total Gate Charge
–––
–––
110
52
–––
78
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
13
7.8
–––
–––
–––
–––
17
15
–––
–––
–––
–––
Qsw
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
Qoss
Output Charge
–––
–––
25
36
RG
td(on)
tr
Gate Resistance
Turn-On Delay Time
–––
–––
1.3
28
–––
–––
Rise Time
Turn-Off Delay Time
–––
–––
46
30
–––
–––
Fall Time
Input Capacitance
–––
–––
19
7174
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
1758
828
–––
–––
Qgodr
td(off)
tf
Ciss
Coss
Crss
Conditions
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
VGS = 10V, ID = 50A
mΩ
VGS = 4.5V, ID = 50A
V
VDS = VGS, ID = 150µA
e
e
mV/°C
µA
nA
VDS = 20V, VGS = 0V
VDS = 20V, VGS = 0V, TJ = 125°C
VGS = 20V
S
VGS = -20V
VDS = 13V, ID = 50A
nC
VGS = 10V, VDS = 13V, ID = 50A
nC
nC
VDS = 13V
VGS = 4.5V
ID = 50A
VDS = 16V, VGS = 0V
Ω
VDD = 13V, VGS = 4.5V
ns
ID = 50A
RG=1.8Ω
VGS = 0V
pF
VDS = 13V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
d
Typ.
–––
Max.
468
Units
mJ
–––
50
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
Min.
–––
–––
c
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
–––
–––
Reverse Recovery Charge
Forward Turn-On Time
ton
Typ.
–––
–––
–––
37
Max. Units
100
D
A
showing the
integral reverse
V
ns
p-n junction diode.
TJ = 25°C, IS = 50A, VGS = 0V
TJ = 25°C, IF = 50A, VDD = 13V
di/dt = 200A/µs
400
1.0
56
Conditions
MOSFET symbol
–––
68
102
nC
Time is dominated by parasitic Inductance
G
S
e
e
Thermal Resistance
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA (<10s)
2
Parameter
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
f
f
g
g
Typ.
–––
–––
–––
–––
Max.
0.5
15
35
21
Units
°C/W
www.irf.com
IRFH5250PbF
1000
1000
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
100
10
2.7V
2.7V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
10
1
10
0.1
100
10
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 150°C
10
T J = 25°C
1
VDS = 15V
≤60µs PULSE WIDTH
0.1
ID = 50A
VGS = 10V
1.4
1.2
1.0
0.8
0.6
1
1.5
2
2.5
3
3.5
4
4.5
5
-60 -40 -20 0
Fig 4. Normalized On-Resistance Vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 50A
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
Crss
12.0
VDS= 20V
VDS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
120
140
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
3
IRFH5250PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 150°C
10
T J = 25°C
1
VGS = 0V
100µsec
0.4
0.6
0.8
1.0
1.2
1.4
1msec
100
10msec
10
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0.2
OPERATION IN THIS AREA
LIMITED BY R DS(ON)
1
1.6
0
VSD, Source-to-Drain Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
400
VGS(th) , Gate threshold Voltage (V)
3.0
350
ID, Drain Current (A)
1
Limited By Package
300
250
200
150
100
50
0
25
50
75
100
125
150
2.5
2.0
1.5
ID = 1.0A
ID = 1.0mA
ID = 500µA
ID = 150µA
1.0
0.5
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9. Maximum Drain Current Vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage Vs. Temperature
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
4
2000
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFH5250PbF
ID = 50A
ID
18A
24A
BOTTOM 50A
1800
TOP
1600
3
1400
1200
2
1000
T J = 125°C
1
T J = 25°C
0
2
4
6
8
10
12
14
16
18
20
800
600
400
200
0
25
VGS, Gate -to -Source Voltage (V)
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
Fig 14b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
+
-VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 15a. Switching Time Test Circuit
www.irf.com
I AS
0.01Ω
tp
10%
VGS
td(on)
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
5
IRFH5250PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
L
DUT
0
1K
S
VCC
Vgs(th)
Qgs1 Qgs2
Fig 17. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 18. Gate Charge Waveform
www.irf.com
IRFH5250PbF
PQFN 5x6 Outline "B" Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "B" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRFH5250PbF
PQFN 5x6 Outline "B" Tape and Reel
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
†
††
†††
Indus trial
(per JE DE C JE S D47F
PQFN 5mm x 6mm
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.37mH, RG = 25Ω, IAS = 50A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production
test capability
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2009
8
www.irf.com