IRF IRFH5025TRPBF

PD -97538A
IRFH5025PbF
HEXFET® Power MOSFET
VDS
250
V
RDS(on) max
100
mΩ
Qg (typical)
37
nC
RG (typical)
ID
1.6
Ω
25
A
(@VGS = 10V)
(@Tc(Bottom) = 25°C)
PQFN 5X6 mm
Applications
• Secondary Side Synchronous Rectification
• Inverters for DC Motors
• DC-DC Brick Applications
• Boost Converters
Features and Benefits
Benefits
Features
Low RDSon
Low Thermal Resistance to PCB (≤ 0.8°C/W)
100% Rg tested
Low Profile (≤ 0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
IRFH5025TRPBF
IRFH5025TR2PBF
Package Type
PQFN 5mm x 6mm
PQFN 5mm x 6mm
results in
⇒
Lower Conduction Losses
Enable better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC(Bottom) = 25°C
ID @ TC(Bottom) = 100°C
ID @ TC(Top) = 25°C
ID @ TC(Top) = 100°C
IDM
PD @TA = 25°C
PD @ TC(Top) = 25°C
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
TJ
TSTG
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
f
Notes  through … are on page 8
www.irf.com
c
f
Max.
250
± 20
3.8
3.1
25
16
5.7
3.7
46
3.6
8.3
Units
0.07
-55 to + 150
W/°C
V
A
W
°C
1
09/19/12
IRFH5025PbF
Static @ TJ = 25°C (unless otherwise specified)
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
VGS(th)
ΔVGS(th)
IDSS
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Output Charge
Min.
250
–––
–––
3.0
–––
–––
–––
–––
–––
13
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.31
84
–––
-13
–––
–––
–––
–––
–––
37
8.3
1.9
13
14
15
11
Max. Units
Conditions
–––
V VGS = 0V, ID = 250μA
––– V/°C Reference to 25°C, ID = 1mA
100
mΩ VGS = 10V, ID = 5.7A
5.0
V
VDS = VGS, ID = 150μA
––– mV/°C
20
μA VDS = 250V, VGS = 0V
VDS = 250V, VGS = 0V, TJ = 125°C
250
VGS = 20V
100
nA
-100
VGS = -20V
–––
S VDS = 50V, ID = 5.7A
56
VDS = 125V
–––
VGS = 10V
–––
nC
ID = 5.7A
–––
–––
See Fig.17 & 18
–––
–––
nC VDS = 16V, VGS = 0V
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
–––
–––
–––
–––
–––
1.6
9.0
6.3
17
6.1
2150
150
40
–––
–––
–––
–––
–––
–––
–––
–––
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
e
Ω
ns
pF
VDD = 125V, VGS = 10V
ID = 5.7A
RG=1.8Ω
See Fig.15
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
Typ.
–––
–––
d
Units
mJ
A
Max.
320
5.7
Diode Characteristics
IS
Parameter
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min.
Typ.
Max. Units
–––
–––
5.7
–––
–––
46
A
c
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 5.7A, VGS = 0V
TJ = 25°C, IF = 5.7A, VDD = 125V
di/dt = 500A/μs
–––
–––
1.3
V
–––
55
83
ns
–––
510
770
nC
Time is dominated by parasitic Inductance
e
S
e
Thermal Resistance
Parameter
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA (<10s)
2
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
f
g
g
Typ.
0.5
–––
–––
–––
Max.
0.8
15
35
22
Units
°C/W
www.irf.com
IRFH5025PbF
100
100
10
1
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.8V
4.5V
0.1
0.01
4.5V
0.001
10
BOTTOM
1
4.5V
≤ 60μs PULSE WIDTH
Tj = 25°C
0.0001
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
100
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
≤ 60μs PULSE WIDTH
Tj = 150°C
0.1
0.1
10
TJ = 150°C
1
TJ = 25°C
0.1
VDS = 50V
≤ 60μs PULSE WIDTH
0.01
3.0
4.0
5.0
6.0
7.0
8.0
1.5
1.0
0.5
0.0
-60 -40 -20
20
40
60
80 100 120 140 160
Fig 4. Normalized On-Resistance Vs. Temperature
16
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
10000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
100000
ID = 5.7A
VGS = 10V
2.0
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.8V
4.5V
Ciss
1000
Coss
100
Crss
ID= 5.7A
VDS= 200V
VDS= 125V
12
VDS= 50V
8
4
0
10
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
3
IRFH5025PbF
1000
10
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
TJ = 150°C
1
TJ = 25°C
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
10
1msec
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1
1.0
10
100
1000
VDS , Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
6.0
VGS(th) Gate threshold Voltage (V)
6
ID , Drain Current (A)
100μsec
1
4
2
ID = 1.0A
ID = 1.0mA
ID = 500μA
5.0
ID = 150μA
4.0
3.0
2.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
TJ , Temperature ( °C )
TA , Ambient Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Case (Top) Temperature
Fig 10. Threshold Voltage Vs. Temperature
Thermal Response ( ZthJC )
100
10
D = 0.50
0.20
0.10
0.05
0.02
0.01
1
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Top)
4
www.irf.com
240
EAS, Single Pulse Avalanche Energy (mJ)
( Ω)
RDS (on), Drain-to -Source On Resistance m
IRFH5025PbF
ID = 5.7A
200
TJ = 125°C
160
120
80
TJ = 25°C
40
4
8
12
16
1400
I D
0.8A
1.2A
BOTTOM 5.7A
1200
TOP
1000
800
600
400
200
0
20
25
VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
100
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 125°C and
Tstart =25°C (Single Pulse)
10
1
0.1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 125°C.
0.01
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
www.irf.com
5
IRFH5025PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by R G
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
0.01Ω
tp
I AS
Fig 16a. Unclamped Inductive Test
Circuit
Fig 16b. Unclamped Inductive Waveforms
RD
VDS
VDS
90%
VGS
D.U.T.
RG
+
-VDD
10%
V10V
GS
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
td(on)
Fig 17a. Switching Time Test Circuit
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
S
Qgs1 Qgs2
Fig 18a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 18b. Gate Charge Waveform
www.irf.com
IRFH5025PbF
PQFN 5x6 Outline "B" Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "B" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRFH5025PbF
PQFN Tape and Reel
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Qualification information†
Qualification level
Moisture Sensitivity Level
Indus trial
(per JE DE C JE S D47F
PQFN 5mm x 6mm
RoHS compliant
†
††
†††
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 19.6mH, RG = 25Ω, IAS = 5.7A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2012
8
www.irf.com