PD -97538A IRFH5025PbF HEXFET® Power MOSFET VDS 250 V RDS(on) max 100 mΩ Qg (typical) 37 nC RG (typical) ID 1.6 Ω 25 A (@VGS = 10V) (@Tc(Bottom) = 25°C) PQFN 5X6 mm Applications • Secondary Side Synchronous Rectification • Inverters for DC Motors • DC-DC Brick Applications • Boost Converters Features and Benefits Benefits Features Low RDSon Low Thermal Resistance to PCB (≤ 0.8°C/W) 100% Rg tested Low Profile (≤ 0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Orderable part number IRFH5025TRPBF IRFH5025TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm results in ⇒ Lower Conduction Losses Enable better thermal dissipation Increased Reliability Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC(Bottom) = 25°C ID @ TC(Bottom) = 100°C ID @ TC(Top) = 25°C ID @ TC(Top) = 100°C IDM PD @TA = 25°C PD @ TC(Top) = 25°C Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range g f Notes through are on page 8 www.irf.com c f Max. 250 ± 20 3.8 3.1 25 16 5.7 3.7 46 3.6 8.3 Units 0.07 -55 to + 150 W/°C V A W °C 1 09/19/12 IRFH5025PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ΔΒVDSS/ΔTJ RDS(on) VGS(th) ΔVGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Output Charge Min. 250 ––– ––– 3.0 ––– ––– ––– ––– ––– 13 ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.31 84 ––– -13 ––– ––– ––– ––– ––– 37 8.3 1.9 13 14 15 11 Max. Units Conditions ––– V VGS = 0V, ID = 250μA ––– V/°C Reference to 25°C, ID = 1mA 100 mΩ VGS = 10V, ID = 5.7A 5.0 V VDS = VGS, ID = 150μA ––– mV/°C 20 μA VDS = 250V, VGS = 0V VDS = 250V, VGS = 0V, TJ = 125°C 250 VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 50V, ID = 5.7A 56 VDS = 125V ––– VGS = 10V ––– nC ID = 5.7A ––– ––– See Fig.17 & 18 ––– ––– nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– 1.6 9.0 6.3 17 6.1 2150 150 40 ––– ––– ––– ––– ––– ––– ––– ––– Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) e Ω ns pF VDD = 125V, VGS = 10V ID = 5.7A RG=1.8Ω See Fig.15 VGS = 0V VDS = 50V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Units mJ A Max. 320 5.7 Diode Characteristics IS Parameter Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– 5.7 ––– ––– 46 A c Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 5.7A, VGS = 0V TJ = 25°C, IF = 5.7A, VDD = 125V di/dt = 500A/μs ––– ––– 1.3 V ––– 55 83 ns ––– 510 770 nC Time is dominated by parasitic Inductance e S e Thermal Resistance Parameter RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient f g g Typ. 0.5 ––– ––– ––– Max. 0.8 15 35 22 Units °C/W www.irf.com IRFH5025PbF 100 100 10 1 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.8V 4.5V 0.1 0.01 4.5V 0.001 10 BOTTOM 1 4.5V ≤ 60μs PULSE WIDTH Tj = 25°C 0.0001 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 100 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) ≤ 60μs PULSE WIDTH Tj = 150°C 0.1 0.1 10 TJ = 150°C 1 TJ = 25°C 0.1 VDS = 50V ≤ 60μs PULSE WIDTH 0.01 3.0 4.0 5.0 6.0 7.0 8.0 1.5 1.0 0.5 0.0 -60 -40 -20 20 40 60 80 100 120 140 160 Fig 4. Normalized On-Resistance Vs. Temperature 16 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 100000 ID = 5.7A VGS = 10V 2.0 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.8V 4.5V Ciss 1000 Coss 100 Crss ID= 5.7A VDS= 200V VDS= 125V 12 VDS= 50V 8 4 0 10 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 50 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage 3 IRFH5025PbF 1000 10 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 TJ = 150°C 1 TJ = 25°C OPERATION IN THIS AREA LIMITED BY RDS(on) 100 10 1msec 10msec Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1 1.0 10 100 1000 VDS , Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 6.0 VGS(th) Gate threshold Voltage (V) 6 ID , Drain Current (A) 100μsec 1 4 2 ID = 1.0A ID = 1.0mA ID = 500μA 5.0 ID = 150μA 4.0 3.0 2.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) TA , Ambient Temperature (°C) Fig 9. Maximum Drain Current Vs. Case (Top) Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response ( ZthJC ) 100 10 D = 0.50 0.20 0.10 0.05 0.02 0.01 1 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Top) 4 www.irf.com 240 EAS, Single Pulse Avalanche Energy (mJ) ( Ω) RDS (on), Drain-to -Source On Resistance m IRFH5025PbF ID = 5.7A 200 TJ = 125°C 160 120 80 TJ = 25°C 40 4 8 12 16 1400 I D 0.8A 1.2A BOTTOM 5.7A 1200 TOP 1000 800 600 400 200 0 20 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage 100 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 125°C and Tstart =25°C (Single Pulse) 10 1 0.1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 125°C. 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs. Pulsewidth www.irf.com 5 IRFH5025PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by R G Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER L VDS D.U.T RG + V - DD IAS 20V A 0.01Ω tp I AS Fig 16a. Unclamped Inductive Test Circuit Fig 16b. Unclamped Inductive Waveforms RD VDS VDS 90% VGS D.U.T. RG + -VDD 10% V10V GS VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 td(on) Fig 17a. Switching Time Test Circuit tr td(off) tf Fig 17b. Switching Time Waveforms Id Vds Vgs L DUT 0 1K VCC Vgs(th) S Qgs1 Qgs2 Fig 18a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18b. Gate Charge Waveform www.irf.com IRFH5025PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5025PbF PQFN Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Qualification information† Qualification level Moisture Sensitivity Level Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm RoHS compliant †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 19.6mH, RG = 25Ω, IAS = 5.7A. Pulse width ≤ 400μs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2012 8 www.irf.com