PD - 97565A IRLHM620PbF VDS 20 V VGS max ±12 V RDS(on) max 2.5 mΩ (@VGS = 4.5V) RDS(on) max 3.5 mΩ Qg (typical) 52 nC ID 40h A (@VGS = 2.5V) (@Tc(Bottom) = 25°C) HEXFET® Power MOSFET D 5 4 G D 6 3 S D 7 2 S D 8 1 S 3.3mm x 3.3mm PQFN Applications • Battery Operated DC Motor Inverter MOSFET • Secondary Side Synchronous Rectification MOSFET Features and Benefits Features Low RDSon (<2.5mΩ) Low Thermal Resistance to PCB (<3.4°C/W) Low Profile (<1.0mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Orderable part number IRLHM620TRPBF IRLHM620TR2PBF Package Type PQFN 3.3mm x 3.3mm PQFN 3.3mm x 3.3mm Benefits Lower Conduction Losses Enable better thermal dissipation results in Increased Power Density ⇒ Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 20 VGS ±12 ID @ TA = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 4.5V ID @ TA = 70°C Continuous Drain Current, VGS @ 4.5V 21 ID @ TC(Bottom) = 25°C Continuous Drain Current, VGS @ 4.5V 40 ID @ TC(Bottom) = 100°C 40 IDM Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current 160 PD @TA = 25°C Power Dissipation 2.7 c PD @TC(Bottom) = 25°C g Power Dissipation g TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range g Units V 26 37 0.022 -55 to + 150 A W W/°C °C Notes through are on page 8 www.irf.com 1 11/4/2010 IRLHM620PbF Static @ TJ = 25°C (unless otherwise specified) Min. Typ. BVDSS ∆ΒVDSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Parameter 20 ––– ––– 5.4 ––– ––– Static Drain-to-Source On-Resistance ––– ––– 2.0 2.7 2.5 3.5 VGS(th) ∆VGS(th) Gate Threshold Voltage Gate Threshold Voltage Coefficient 0.5 ––– 0.8 -4.3 1.1 ––– IDSS Drain-to-Source Leakage Current ––– ––– 1.0 Gate-to-Source Forward Leakage ––– ––– ––– ––– 150 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 58 ––– ––– -100 ––– Total Gate Charge Gate-to-Source Charge ––– ––– 52 6.3 78 ––– Gate-to-Drain Charge ––– 25 ––– Gate Resistance Turn-On Delay Time Rise Time ––– ––– ––– 2.6 7.5 25 ––– ––– ––– Turn-Off Delay Time ––– 57 ––– Fall Time Input Capacitance ––– ––– 37 3620 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 900 620 ––– ––– IGSS gfs Qg Qgs Qgd RG td(on) tr td(off) tf Ciss Coss Crss Max. Units Conditions V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 4.5V, ID = 20A VGS = 2.5V, ID = 20A V VDS = VGS, ID = 50µA mV/°C µA nA S nC e e VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C VGS = 12V VGS = -12V VDS = 10V, ID = 20A VDS = 10V VGS = 4.5V ID = 20A (See Fig.17 & 18) Ω ns VDD = 10V, VGS = 4.5V ID = 20A RG=1.0Ω See Fig.15 VGS = 0V pF VDS = 10V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c d Typ. ––– Max. 120 Units mJ ––– 20 A Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton Min. ––– Typ. ––– Max. Units Conditions MOSFET symbol 40 A showing the integral reverse D G (Body Diode) Diode Forward Voltage ––– ––– 160 ––– ––– 1.2 V p-n junction diode. TJ = 25°C, IS = 20A, VGS = 0V Reverse Recovery Time Reverse Recovery Charge ––– ––– 41 68 62 100 ns nC TJ = 25°C, IF = 20A, VDD = 10V di/dt = 220A/µs c Forward Turn-On Time S e e Time is dominated by parasitic Inductance Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 Parameter Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient f f g g Typ. ––– ––– ––– ––– Max. 3.4 37 46 31 Units °C/W www.irf.com IRLHM620PbF 1000 1000 ID, Drain-to-Source Current (A) Tj = 25°C TOP 100 BOTTOM VGS 10V 4.5V 3.5V 2.5V 2.0V 1.8V 1.5V 1.3V ≤60µs PULSE WIDTH Tj = 150°C ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH 100 10 1 1.3V 0.1 BOTTOM 10 1.3V 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 1.6 VDS = 10V ≤60µs PULSE WIDTH RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) VGS 10V 4.5V 3.5V 2.5V 2.0V 1.8V 1.5V 1.3V 1 0.1 100 TJ = 150°C TJ = 25°C 10 1.0 ID = 20A VGS = 4.5V 1.4 1.2 1.0 0.8 0.6 0.5 1.0 1.5 2.0 2.5 -60 -40 -20 0 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 20A C oss = C ds + C gd 10000 Ciss Coss Crss 1000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) TOP 100 12.0 VDS= 16V VDS= 10V 10.0 VDS= 4.0V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 120 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRLHM620PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 1msec DC 10 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1.0 1 0.0 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 1.6 90 VGS(th) , Gate threshold Voltage (V) 100 Limited By Package 80 ID, Drain Current (A) 10msec 70 60 50 40 30 20 10 1.4 1.2 1.0 0.8 ID = 50µA 0.6 ID = 250µA 0.4 ID = 1.0mA ID = 1.0A 0.2 0.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) °C/W 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 7 500 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRLHM620PbF ID = 20A 6 5 4 T J = 125°C 3 2 T J = 25°C 1 ID TOP 5.8A 12A BOTTOM 20A 400 300 200 100 0 0 2 4 6 8 10 12 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRLHM620PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRLHM620PbF PQFN 3.3x3.3 Outline Package Details 8 1 7 2 6 3 5 4 For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 3.3x3.3 Outline Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER :::: !;99! ::::: PART NUMBER MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRLHM620PbF PQFN 3.3x3.3 Outline Tape and Reel NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. REEL DIMENSIONS STANDARD OPTION METRIC MIN CODE MAX 326.0 A 330.25 20.2 B 20.45 C 12.8 13.50 D 1.5 2.5 102.0 REF E 17.8 F 18.3 12.4 G 12.9 (QTY 4000) IMPERIAL MIN MAX 12.835 13.002 0.795 0.805 0.504 0.531 0.059 0.098 4.016 REF 0.701 0.720 0.488 0.508 CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.319 7.90 8.10 0.311 0.161 3.90 4.10 0.154 0.484 11.70 12.30 0.461 5.45 5.55 0.215 0.219 0.146 3.50 3.70 0.138 3.50 3.70 0.138 0.146 0.25 0.35 0.010 0.014 1.10 1.30 0.043 0.051 Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN 3.3mm x 3.3mm †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.59mH, RG = 50Ω, IAS = 20A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 40A by production test capability. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/2010 8 www.irf.com