VISHAY TLCR5800

TLC.58..
VISHAY
Vishay Semiconductors
Ultrabright LED, ∅ 5 mm Untinted Non-Diffused
\
94 8631
Description
The TLC.58.. series is a clear, non diffused 5 mm LED
for high end applications where supreme luminous
intensity and a very small emission angle is required.
These lamps with clear untinted plastic case utilize
the highly developed ultrabright AlInGaP and GaP
technologies.
The very small viewing angle of these devices provide
a very high luminous intensity.
Features
• Untinted non diffused lens
• Utilizing ultrabright AllnGaP and InGaN technology
• Very high luminous intensity
• Very small emission angle
• High operating temperature: Tj (chip junction temperature) up to 125 °C for AllnGaP devices
• Luminous intensity and color categorized for each
packing unit
• ESD-withstand voltage: 2 kV acc. to MIL STD 883
D, Method 3015.7 for AllnGaP, 1 kV for InGaN
Applications
Interior and exterior lighting
Outdoor LED panels, displays
Instrumentation and front panel indicators
Central high mounted stop lights (CHMSL) for motor
vehicles
Replaces incandescent lamps
Traffic signals and signs
Light guide design
Parts Table
Part
Color, Luminous Intensity
Technology
TLCR5800
Red, IV > 7500 mcd
AllGaP on GaAs
TLCY5800
Yellow, IV > 5750 mcd
AllGaP on GaAs
TLCTG5800
True green, IV > 2400 mcd
InGaN on SiC
TLCB5800
Blue, IV > 750 mcd
InGaN on SiC
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLCR5800 , TLCY5800 , TLCTG5800 , TLCB5800
Parameter
Test condition
Part
Symbol
Value
VR
5
V
TLCR5800
IF
50
mA
Tamb ≤ 85°C
TLCR5800
IF
50
mA
Tamb ≤ 60°C
TLCTG5800
IF
30
mA
Tamb ≤ 60°C
TLCTG5800
IF
30
mA
Reverse voltage
DC forward current
Document Number 83178
Rev. 2, 03-Apr-03
Tamb ≤ 85°C
Unit
www.vishay.com
1
TLC.58..
VISHAY
Vishay Semiconductors
Parameter
Surge forward current
Power dissipation
Part
Symbol
Value
Unit
tp ≤ 10 µs
Test condition
TLCR5800
IFSM
1
A
tp ≤ 10 µs
TLCR5800
IFSM
1
A
tp ≤ 10 µs
TLCTG5800
IFSM
0.1
A
tp ≤ 10 µs
TLCTG5800
IFSM
0.1
A
Tamb ≤ 85°C
TLCR5800
PV
135
mW
Tamb ≤ 85°C
TLCR5800
PV
135
mW
Tamb ≤ 60°C
TLCTG5800
PV
135
mW
Tamb ≤ 60°C
TLCTG5800
PV
135
mW
TLCR5800
Tj
125
°C
TLCR5800
Tj
125
°C
TLCTG5800
Tj
100
°C
Junction temperature
Tj
100
°C
Operating temperature range
TLCTG5800
Tamb
- 40 to + 100
°C
Storage temperature range
Tstg
- 40 to + 100
°C
Tsd
260
°C
RthJA
300
K/W
Soldering temperature
t ≤ 5 s, 2 mm from body
Thermal resistance junction/
ambient
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Red
TLCR5800
Parameter
Luminous intensity
1)
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLCR5800
IV
7500
20000
611
616
Max
Unit
622
nm
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
622
nm
Spectral bandwidth at 50 % Irel
IF = 50 mA
∆λ
18
nm
max
Angle of half intensity
IF = 50 mA
ϕ
±4
Forward voltage
IF = 50 mA
VF
2.1
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 50 mA
TC VF
- 3.5
mV/K
Temperature coefficient of λd
IF = 50 mA
TCλd
0.05
nm/K
1)
V
V
in one Packing Unit IVMax./IVMin. ≤ 1.6
www.vishay.com
2
5
deg
2.7
Document Number 83178
Rev. 2, 03-Apr-03
TLC.58..
VISHAY
Vishay Semiconductors
Yellow
TLCY5800
Parameter
Luminous intensity
1)
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLCY5800
IV
5750
14000
585
590
Max
Unit
mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
593
nm
Spectral bandwidth at 50 % Irel
IF = 50 mA
∆λ
17
nm
597
nm
max
Angle of half intensity
IF = 50 mA
ϕ
±4
Forward voltage
IF = 50 mA
VF
2.1
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 50 mA
TC VF
- 3.5
mV/K
Temperature coefficient of λd
IF = 50 mA
TCλd
0.1
nm/K
1)
deg
2.7
5
V
V
in one Packing Unit IVMax./IVMin. ≤ 1.6
Pure green
Parameter
Test condition
Part
Symbol
Min
Typ.
TLCTG5800
IV
2400
7000
λd
515
525
Max
Unit
Luminous intensity 1)
IF = 30 mA
mcd
Dominant wavelength
IF = 30 mA
Peak wavelength
IF = 30 mA
λp
520
nm
Spectral bandwidth at 50 % Irel
IF = 30 mA
∆λ
37
nm
535
nm
max
Angle of half intensity
IF = 30 mA
ϕ
±4
Forward voltage
IF = 30 mA
VF
3.9
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 30 mA
TC VF
- 4.5
mV/K
Temperature coefficient of λd
IF = 30 mA
TCλd
0.02
nm/K
1)
deg
4.5
5
V
V
in one Packing Unit IVMax./IVMin. ≤ 1.6
Blue
TLCB5800
Parameter
Test condition
Part
Symbol
Min
Typ.
TLCB5800
IV
750
2500
λd
462
470
Max
Unit
Luminous intensity 1)
IF = 30 mA
mcd
Dominant wavelength
IF = 30 mA
Peak wavelength
IF = 30 mA
λp
464
nm
Spectral bandwidth at 50 % Irel
IF = 30 mA
∆λ
25
nm
Angle of half intensity
IF = 30 mA
ϕ
±4
deg
Forward voltage
IF = 30 mA
VF
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 30 mA
TC VF
- 5.0
mV/K
Temperature coefficient of λd
IF = 30 mA
TCλd
0.02
nm/K
476
nm
max
1)
3.9
5
4.5
V
V
in one Packing Unit IVMax./IVMin. ≤ 1.6
Document Number 83178
Rev. 2, 03-Apr-03
www.vishay.com
3
TLC.58..
VISHAY
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
60
140
I F–Forward Current ( mA )
PV –Power Dissipation (mW)
160
120
Yellow
Red
100
80
60
40
20
0
20
40
60
80
100
20
40
60
80
100
120
Tamb – Ambient Temperature ( °C )
Figure 4. Forward Current vs. Ambient Temperature
60
140
120
Blue
Truegreen
100
80
60
40
I F–Forward Current ( mA )
PV –Power Dissipation (mW)
10
0
160
20
0
50
Blue
Truegreen
40
30
20
10
0
0
10 20 30 40 50 60 70 80 90 100
Tamb – Ambient Temperature ( °C )
0
Figure 5. Forward Current vs. Ambient Temperature
100
100
90
90
Red
Yellow
70
60
50
40
30
20
10
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
V F – Forward Voltage ( V )
Figure 3. Forward Current vs. Forward Voltage
www.vishay.com
I F – Forward Current ( mA )
80
10 20 30 40 50 60 70 80 90 100
Tamb – Ambient Temperature ( °C )
16711
Figure 2. Power Dissipation vs. Ambient Temperature
I F – Forward Current ( mA )
20
16710
Figure 1. Power Dissipation vs. Ambient Temperature
4
Yellow
Red
30
120
Tamb – Ambient Temperature ( °C )
16708
15974
40
0
0
16709
50
80
Blue
Truegreen
70
60
50
40
30
20
10
0
2.5
16040
3.0
3.5
4.0
4.5
5.0
VF – Forward Voltage ( V )
5.5
Figure 6. Forward Current vs. Forward Voltage
Document Number 83178
Rev. 2, 03-Apr-03
TLC.58..
VISHAY
Vishay Semiconductors
10.00
IV rel - Relative Luminous Intensity
I Vrel– Relative Luminous Intensity
10.00
Red
1.00
0.10
Yellow
1.00
0.10
0.01
0.01
1
10
IF – Forward Current ( mA )
15978
1
100
10
100
IF - Forward Current ( mA )
15979
10.00
10.00
I Vrel– Relative Luminous Intensity
Figure 10. Relative Luminous Flux vs. Forward Current
I Vrel– Relative Luminous Intensity
Figure 7. Relative Luminous Flux vs. Forward Current
Blue
1.00
0.10
0.01
1
16042
10
IF – Forward Current ( mA )
Figure 9. Relative Intensity vs. Wavelength
Rev. 2, 03-Apr-03
0.10
0.01
1
16039
10
IF – Forward Current ( mA )
100
Figure 11. Relative Luminous Flux vs. Forward Current
I Vrel– Relative Luminous Intensity
I Vrel– Relative Luminous Intensity
1.2
Red
IF = 50 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
570 580 590 600 610 620 630 640 650 660 670
l – Wavelength ( nm )
Document Number 83178
1.00
100
Figure 8. Relative Luminous Flux vs. Forward Current
16007
True Green
16008
1.2
Yellow
IF = 50 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
540 550 560 570 580 590 600 610 620 630 640
l – Wavelength ( nm )
Figure 12. Relative Intensity vs. Wavelength
www.vishay.com
5
TLC.58..
VISHAY
1.2
True Green
IF = 30 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
460 480 500 520 540 560 580 600 620
l – Wavelength ( nm )
16068
Figure 13. Relative Intensity vs. Wavelength
I rel – Relative Intensity
IVrel– Relative Luminous Intensity
Vishay Semiconductors
17539
1.2
Blue
IF = 30 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
400 420 440 460 480 500 520 540 560
l – Wavelength ( nm )
Figure 14. Relative Intensity vs. Wavelength
Package Dimensions in mm
9511476
www.vishay.com
6
Document Number 83178
Rev. 2, 03-Apr-03
TLC.58..
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83178
Rev. 2, 03-Apr-03
www.vishay.com
7