TLC.58.. VISHAY Vishay Semiconductors Ultrabright LED, ∅ 5 mm Untinted Non-Diffused \ 94 8631 Description The TLC.58.. series is a clear, non diffused 5 mm LED for high end applications where supreme luminous intensity and a very small emission angle is required. These lamps with clear untinted plastic case utilize the highly developed ultrabright AlInGaP and GaP technologies. The very small viewing angle of these devices provide a very high luminous intensity. Features • Untinted non diffused lens • Utilizing ultrabright AllnGaP and InGaN technology • Very high luminous intensity • Very small emission angle • High operating temperature: Tj (chip junction temperature) up to 125 °C for AllnGaP devices • Luminous intensity and color categorized for each packing unit • ESD-withstand voltage: 2 kV acc. to MIL STD 883 D, Method 3015.7 for AllnGaP, 1 kV for InGaN Applications Interior and exterior lighting Outdoor LED panels, displays Instrumentation and front panel indicators Central high mounted stop lights (CHMSL) for motor vehicles Replaces incandescent lamps Traffic signals and signs Light guide design Parts Table Part Color, Luminous Intensity Technology TLCR5800 Red, IV > 7500 mcd AllGaP on GaAs TLCY5800 Yellow, IV > 5750 mcd AllGaP on GaAs TLCTG5800 True green, IV > 2400 mcd InGaN on SiC TLCB5800 Blue, IV > 750 mcd InGaN on SiC Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified TLCR5800 , TLCY5800 , TLCTG5800 , TLCB5800 Parameter Test condition Part Symbol Value VR 5 V TLCR5800 IF 50 mA Tamb ≤ 85°C TLCR5800 IF 50 mA Tamb ≤ 60°C TLCTG5800 IF 30 mA Tamb ≤ 60°C TLCTG5800 IF 30 mA Reverse voltage DC forward current Document Number 83178 Rev. 2, 03-Apr-03 Tamb ≤ 85°C Unit www.vishay.com 1 TLC.58.. VISHAY Vishay Semiconductors Parameter Surge forward current Power dissipation Part Symbol Value Unit tp ≤ 10 µs Test condition TLCR5800 IFSM 1 A tp ≤ 10 µs TLCR5800 IFSM 1 A tp ≤ 10 µs TLCTG5800 IFSM 0.1 A tp ≤ 10 µs TLCTG5800 IFSM 0.1 A Tamb ≤ 85°C TLCR5800 PV 135 mW Tamb ≤ 85°C TLCR5800 PV 135 mW Tamb ≤ 60°C TLCTG5800 PV 135 mW Tamb ≤ 60°C TLCTG5800 PV 135 mW TLCR5800 Tj 125 °C TLCR5800 Tj 125 °C TLCTG5800 Tj 100 °C Junction temperature Tj 100 °C Operating temperature range TLCTG5800 Tamb - 40 to + 100 °C Storage temperature range Tstg - 40 to + 100 °C Tsd 260 °C RthJA 300 K/W Soldering temperature t ≤ 5 s, 2 mm from body Thermal resistance junction/ ambient Optical and Electrical Characteristics Tamb = 25 °C, unless otherwise specified Red TLCR5800 Parameter Luminous intensity 1) Test condition IF = 50 mA Part Symbol Min Typ. TLCR5800 IV 7500 20000 611 616 Max Unit 622 nm Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 622 nm Spectral bandwidth at 50 % Irel IF = 50 mA ∆λ 18 nm max Angle of half intensity IF = 50 mA ϕ ±4 Forward voltage IF = 50 mA VF 2.1 Reverse voltage IR = 10 µA VR Temperature coefficient of VF IF = 50 mA TC VF - 3.5 mV/K Temperature coefficient of λd IF = 50 mA TCλd 0.05 nm/K 1) V V in one Packing Unit IVMax./IVMin. ≤ 1.6 www.vishay.com 2 5 deg 2.7 Document Number 83178 Rev. 2, 03-Apr-03 TLC.58.. VISHAY Vishay Semiconductors Yellow TLCY5800 Parameter Luminous intensity 1) Test condition IF = 50 mA Part Symbol Min Typ. TLCY5800 IV 5750 14000 585 590 Max Unit mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 593 nm Spectral bandwidth at 50 % Irel IF = 50 mA ∆λ 17 nm 597 nm max Angle of half intensity IF = 50 mA ϕ ±4 Forward voltage IF = 50 mA VF 2.1 Reverse voltage IR = 10 µA VR Temperature coefficient of VF IF = 50 mA TC VF - 3.5 mV/K Temperature coefficient of λd IF = 50 mA TCλd 0.1 nm/K 1) deg 2.7 5 V V in one Packing Unit IVMax./IVMin. ≤ 1.6 Pure green Parameter Test condition Part Symbol Min Typ. TLCTG5800 IV 2400 7000 λd 515 525 Max Unit Luminous intensity 1) IF = 30 mA mcd Dominant wavelength IF = 30 mA Peak wavelength IF = 30 mA λp 520 nm Spectral bandwidth at 50 % Irel IF = 30 mA ∆λ 37 nm 535 nm max Angle of half intensity IF = 30 mA ϕ ±4 Forward voltage IF = 30 mA VF 3.9 Reverse voltage IR = 10 µA VR Temperature coefficient of VF IF = 30 mA TC VF - 4.5 mV/K Temperature coefficient of λd IF = 30 mA TCλd 0.02 nm/K 1) deg 4.5 5 V V in one Packing Unit IVMax./IVMin. ≤ 1.6 Blue TLCB5800 Parameter Test condition Part Symbol Min Typ. TLCB5800 IV 750 2500 λd 462 470 Max Unit Luminous intensity 1) IF = 30 mA mcd Dominant wavelength IF = 30 mA Peak wavelength IF = 30 mA λp 464 nm Spectral bandwidth at 50 % Irel IF = 30 mA ∆λ 25 nm Angle of half intensity IF = 30 mA ϕ ±4 deg Forward voltage IF = 30 mA VF Reverse voltage IR = 10 µA VR Temperature coefficient of VF IF = 30 mA TC VF - 5.0 mV/K Temperature coefficient of λd IF = 30 mA TCλd 0.02 nm/K 476 nm max 1) 3.9 5 4.5 V V in one Packing Unit IVMax./IVMin. ≤ 1.6 Document Number 83178 Rev. 2, 03-Apr-03 www.vishay.com 3 TLC.58.. VISHAY Vishay Semiconductors Typical Characteristics (Tamb = 25 °C unless otherwise specified) 60 140 I F–Forward Current ( mA ) PV –Power Dissipation (mW) 160 120 Yellow Red 100 80 60 40 20 0 20 40 60 80 100 20 40 60 80 100 120 Tamb – Ambient Temperature ( °C ) Figure 4. Forward Current vs. Ambient Temperature 60 140 120 Blue Truegreen 100 80 60 40 I F–Forward Current ( mA ) PV –Power Dissipation (mW) 10 0 160 20 0 50 Blue Truegreen 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Tamb – Ambient Temperature ( °C ) 0 Figure 5. Forward Current vs. Ambient Temperature 100 100 90 90 Red Yellow 70 60 50 40 30 20 10 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 V F – Forward Voltage ( V ) Figure 3. Forward Current vs. Forward Voltage www.vishay.com I F – Forward Current ( mA ) 80 10 20 30 40 50 60 70 80 90 100 Tamb – Ambient Temperature ( °C ) 16711 Figure 2. Power Dissipation vs. Ambient Temperature I F – Forward Current ( mA ) 20 16710 Figure 1. Power Dissipation vs. Ambient Temperature 4 Yellow Red 30 120 Tamb – Ambient Temperature ( °C ) 16708 15974 40 0 0 16709 50 80 Blue Truegreen 70 60 50 40 30 20 10 0 2.5 16040 3.0 3.5 4.0 4.5 5.0 VF – Forward Voltage ( V ) 5.5 Figure 6. Forward Current vs. Forward Voltage Document Number 83178 Rev. 2, 03-Apr-03 TLC.58.. VISHAY Vishay Semiconductors 10.00 IV rel - Relative Luminous Intensity I Vrel– Relative Luminous Intensity 10.00 Red 1.00 0.10 Yellow 1.00 0.10 0.01 0.01 1 10 IF – Forward Current ( mA ) 15978 1 100 10 100 IF - Forward Current ( mA ) 15979 10.00 10.00 I Vrel– Relative Luminous Intensity Figure 10. Relative Luminous Flux vs. Forward Current I Vrel– Relative Luminous Intensity Figure 7. Relative Luminous Flux vs. Forward Current Blue 1.00 0.10 0.01 1 16042 10 IF – Forward Current ( mA ) Figure 9. Relative Intensity vs. Wavelength Rev. 2, 03-Apr-03 0.10 0.01 1 16039 10 IF – Forward Current ( mA ) 100 Figure 11. Relative Luminous Flux vs. Forward Current I Vrel– Relative Luminous Intensity I Vrel– Relative Luminous Intensity 1.2 Red IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 570 580 590 600 610 620 630 640 650 660 670 l – Wavelength ( nm ) Document Number 83178 1.00 100 Figure 8. Relative Luminous Flux vs. Forward Current 16007 True Green 16008 1.2 Yellow IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 540 550 560 570 580 590 600 610 620 630 640 l – Wavelength ( nm ) Figure 12. Relative Intensity vs. Wavelength www.vishay.com 5 TLC.58.. VISHAY 1.2 True Green IF = 30 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 460 480 500 520 540 560 580 600 620 l – Wavelength ( nm ) 16068 Figure 13. Relative Intensity vs. Wavelength I rel – Relative Intensity IVrel– Relative Luminous Intensity Vishay Semiconductors 17539 1.2 Blue IF = 30 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 420 440 460 480 500 520 540 560 l – Wavelength ( nm ) Figure 14. Relative Intensity vs. Wavelength Package Dimensions in mm 9511476 www.vishay.com 6 Document Number 83178 Rev. 2, 03-Apr-03 TLC.58.. VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 83178 Rev. 2, 03-Apr-03 www.vishay.com 7