TOSHIBA TLP185

TLP185
TOSHIBA Photocoupler
GaAs Ired & Photo−Transistor
TLP185
Office Machine
Programmable Controllers
AC Adapter
I/O Interface Board
Unit: mm
The TOSHIBA mini flat coupler TLP185 is a small outline coupler, suitable
for surface mount assembly.
TLP185 consist of a photo transistor optically coupled to a gallium arsenide
infrared emitting diode. Since TLP185 is smaller than DIP package, it’s
suitable for high-density surface mounting applications such as
programmable controllers
•
Collector−emitter voltage: 80V (min)
•
Current transfer ratio: 50% (min)
Rank GB: 100% (min)
•
Isolation voltage: 3750Vrms (min)
•
Operation Temperature:-55 to 110 ˚C
•
Safety Standards
TOSHIBA
UL approved: UL1577, File No. E67349
cUL approved: CSA Component Acceptance Service No. 5A
11-4M1S
Weight: 0.08 g (Typ.)
File No.E67349
•
BSI approved:
•
Option (V4) type
BS EN60065:2002, Certificate No. 9020
BS EN60950-1:2006, Certificate No. 9021
VDE approved: EN60747-5-2, Certificate No. 40009347
•
(Note): When a EN60747-5-2 approved type is needed,
Please designate “Option(V4)”
Construction mechanical rating
Creepage distance
: 5.0 mm(min)
Clearance
: 5.0 mm(min)
Insulation thickness
: 0.4 mm(min)
Pin Configuration(top view)
1
6
3
4
1: Anode
3: Cathode
4: Emitter
6: Collector
1
2012-02-14
TLP185
Current Transfer Ratio
Current Transfer Ratio (%)
(IC / IF)
Type
TLP185
Classification
Note1
IF = 5mA, VCE = 5V, Ta = 25°C
Marking Of Classification
Min
Max
Blank
50
400
Blank, YE, GR, GB, Y+, G, G+, B
Rank Y
50
150
YE
Rank GR
100
300
GR
Rank GB
100
400
GB
Rank YH
75
150
Y+
Rank GRL
100
200
G
Rank GRH
150
300
G+
Rank BLL
200
400
B
(Note1): Ex Rank GB: TLP185 (GB,E
(Note) Application, type name for certification test, please use standard product type name, i, e.
TLP185(GB,E: TLP185
2
2012-02-14
TLP185
Absolute Maximum Ratings (Ta = 25°C)
Characteristic
Symbol
Rating
Unit
IF
50
mA
ΔIF / °C
-1.5
mA / °C
IFP
1
A
Reverse voltage
VR
5
V
Junction temperature
Tj
125
°C
Collector−emitter voltage
VCEO
80
V
Emitter−collector voltage
VECO
7
V
Forward current
Detector
LED
Forward current derating (Ta ≥ 90°C)
Pulse forward current
(Note2)
Collector current
IC
50
mA
Collector power dissipation
PC
150
mW
ΔPC / °C
-1.5
mW / °C
Tj
125
°C
Operating temperature range
Topr
−55 to 110
°C
Storage temperature range
Tstg
−55 to 125
°C
Lead soldering temperature
Tsol
260 (10s)
°C
Total package power dissipation
PT
200
mW
ΔPT / °C
-2.0
mW / °C
BVS
3750
Vrms
Collector power dissipation derating
(Ta ≥ 25°C)
Junction temperature
Total package power dissipation derating (Ta ≥ 25°C)
Isolation voltage (AC, 1min., R.H. ≤ 60%)
(Note 3)
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even
if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum
ratings.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
Note 2: Pulse width ≤ 100 μs,f=100 Hz
Note 3: Device considered a two terminal device: Pins 1 and 3 shorted together and 4 and 6 shorted together.
Recommended Operating Conditions (Note)
Characteristic
Symbol
Min.
Typ.
Max.
Unit
Supply voltage
VCC
―
5
48
V
Forward current
IF
―
16
20
mA
Collector current
IC
―
1
10
mA
Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the
device. Additionally, each item is an independent guideline respectively. In developing designs using this
product, please confirm specified characteristics shown in this document.
3
2012-02-14
TLP185
Individual Electrical Characteristics (Ta = 25°C)
Detector
LED
Characteristic
Symbol
Test Condition
Min
Typ.
Max
Unit
Forward voltage
VF
IF = 10 mA
1.1
1.25
1.4
V
Reverse current
IR
VR = 5 V
—
—
5
μA
Capacitance
CT
V = 0, f = 1 MHz
—
30
—
pF
Collector−emitter
breakdown voltage
V(BR) CEO
IC = 0.5 mA
80
—
—
V
Emitter−collector
breakdown voltage
V(BR) ECO
IE = 0.1 mA
7
—
—
V
VCE = 48 V
—
0.01
0.08
μA
VCE = 48 V, Ta = 85°C
—
2
50
μA
V = 0, f = 1 MHz
—
10
—
pF
MIn
Typ.
Max
Unit
50
—
400
100
—
400
Collector dark current
ICEO
Capacitance
(collector to emitter)
CCE
Coupled Electrical Characteristics (Ta = 25°C)
Characteristic
Current transfer ratio
Saturated CTR
Collector−emitter
saturation voltage
Off−state collector current
Symbol
IC / IF
IC / IF (sat)
VCE (sat)
IC (off)
Test Condition
IF = 5 mA, VCE = 5 V
Rank GB
%
IF = 1 mA, VCE = 0.4 V
Rank GB
—
60
—
30
—
—
IC = 2.4 mA, IF = 8 mA
—
—
0.3
IC = 0.2 mA, IF = 1 mA
Rank GB
—
0.2
—
—
—
0.3
VF = 0.7V, VCE = 48 V
—
1
10
μA
Min
Typ.
Max
Unit
—
0.8
—
pF
—
Ω
%
V
Isolation Characteristics (Ta = 25°C)
Characteristic
Symbol
Test Condition
Capacitance
(input to output)
CS
VS = 0V, f = 1 MHz
Isolation resistance
RS
VS = 500 V, R.H. ≤ 60%
AC, 1 minute
Isolation voltage
BVS
1×10
12
10
14
3750
—
—
AC, 1 second, in oil
—
10000
—
DC, 1 minute, in oil
—
10000
—
4
Vrms
Vdc
2012-02-14
TLP185
Switching Characteristics (Ta = 25°C)
Characteristic
Symbol
Rise time
tr
Fall time
tf
Test Condition
VCC = 10 V, IC = 2 mA
RL = 100Ω
Min
Typ.
Max
—
5
—
—
9
—
—
9
—
Turn−on time
ton
Turn−off time
toff
—
9
—
Turn−on time
ton
—
2
—
—
30
—
—
70
—
Storage time
ts
Turn−off time
toff
Fig. 1
RL = 1.9 kΩ
VCC = 5 V, IF = 16 mA
(Fig.1)
Unit
μs
μs
Switching time test circuit
IF
IF
RL
tS
VCC
VCE
VCE
VCC
4.5V
0.5V
tton
ON
5
off
ttOFF
2012-02-14
TLP185
I F - Ta
P C - Ta
160
(mW)
100
140
120
PC
I F (mA)
80
Collector power dissipation
Forward current
60
40
20
This curve shows the maximum
limit to the forward current.
0
-20
0
20
40
60
80
Ambient temperature
Ta
100
120
100
80
60
40
This curve shows the
20
maximum limit to the
collector power dissipation.
0
-20
0
20
80
Ta
100
120
(˚C)
IF-VF
3000
100
Pulse width≤100μs
(mA)
Ta=25˚C
300
IF
500
Forward current
IFP
1000
Pulse forward current
(mA)
60
Ambient temperature
(˚C)
IFP-DR
100
50
30
This curve shows the maximum
limit to the pulse forward current.
10
10-1
10-2
10-3
Duty cycle ratio
10
110˚C
85˚C
50˚C
25˚C
0˚C
-25˚C
-55˚C
1
0.1
100
0.6
0.8
DR
1
1.2
1.4
Forward voltage
∆ V F / ∆ Ta - I F
1.6
VF
1.8
2
(V)
IFP – VFP
1000
-3.2
-2.4
-2
-1.6
-1.2
-0.8
-0.4
0.1
1
Forward current
10
IF
IFP
(mA)
-2.8
100
Pulse forward current
Forward voltage temperature coefficient
ΔVF /ΔTa (mV/°C)
40
10
Pulse width≤10μs
Repetitive frequency=100Hz
Ta=25°C
1
100
0.6
(mA)
1
1.4
1.8
2.2
Pulse forward voltage
2.6
VFP
3
3.4
(V)
*The above graphs show typical characteristic.
6
2012-02-14
TLP185
IC-VCE
IC-VCE
30
Ta=25˚C
Ta=25˚C
(mA)
PC (max)
30
IC
50
30
20
40
15
Collector current
Collector current
IC
(mA)
50
10
20
10
IF=5mA
0
20
50
30
20
15
10
10
5
I F= 2 m A
0
0
2
4
Collector-emitter voltage
6
VCE
8
10
0
0.2
0.4
0.6
0.8
Collector-emitter voltage
(V)
IC-IF
VCE
1
(V)
I C E O - Ta
10
100
Collector current
IC
(mA)
Collector dark current ID (ICEO) (μA)
Ta=25˚C
10
1
VCE=10V
VCE=5V
VCE=0.4V
1
Forward current
10
IF
0.1
VCE=48V
24V
10V
5V
0.01
0.001
0.0001
0.1
0.1
1
0
100
(mA)
20
40
60
Ambient temperature
80
100
Ta
(°C)
120
IC/IF -IF
1000
VCE=10V
VCE=5V
Current transfer ratio
IC / IF (%)
VCE=0.4V
100
10
0.1
1
Forward current
10
IF
100
(mA)
*The above graphs show typical characteristic.
7
2012-02-14
TLP185
V C E ( s a t ) - Ta
I C - Ta
0.28
100
25
10
(mA)
0.20
Collector current IC
Collector-Emitter saturation
Voltage VCE(sat) (V)
0.24
0.16
0.12
0.08
IF=8mA, IC=2.4mA
0.04
5
10
1
1
IF=0.5mA
IF=1mA, IC=0.2mA
VCE=5V
0.00
-60 -40 -20
0
20
40
Ambient temperature
60
80
Ta
0.1
-60 -40 -20
100 120
(°C)
Switching time - RL
0
20
40
60
Ambient temperature
Ta
80 100 120
(°C)
S w i t c h i n g t i m e - Ta
1000
10000
Ta=25˚C
IF=16mA
VCC=5V
toff
1000
100
ts
(μs)
ts
100
Switching time
Switching time
(μs)
toff
10
10
toff
1
IF=16mA
VCC=5V
RL=1.9kΩ
ton
0.1
-60 -40 -20
1
1
10
Load resistance
100
RL (kΩ)
0
20
40
60
Ambient temperature
Ta
80
100 120
(°C)
*The above graphs show typical characteristic.
8
2012-02-14
TLP185
Soldering and Storage
1. Soldering
1.1 Soldering
When using a soldering iron or medium infrared ray/hot air reflow, avoid a rise in device temperature as
much as possible by observing the following conditions.
1) Using solder reflow
·Temperature profile example of lead (Pb) solder
(°C)
This profile is based on the device’s
maximum heat resistance guaranteed
value.
Set the preheat temperature/heating
temperature to the optimum temperature
corresponding to the solder paste
type used by the customer within the
described profile.
Package surface temperature
240
210
160
140
less than 30s
60 to 120s
Time
(s)
·Temperature profile example of using lead (Pb)-free solder
(°C)
This profile is based on the device’s
maximum heat resistance guaranteed
value.
Set the preheat temperature/heating
temperature to the optimum temperature
corresponding to the solder paste
type used by the customer within the
described profile.
Package surface temperature
260
230
190
180
60 to 120s
30 to 50s
Time
(s)
2) Using solder flow (for lead (Pb) solder, or lead (Pb)-free solder)
Please preheat it at 150°C between 60 and 120 seconds.
Complete soldering within 10 seconds below 260°C. Each pin may be heated at most once.
3) Using a soldering iron
Complete soldering within 10 seconds below 260°C, or within 3 seconds at 350°C. Each pin
may be heated at most once.
9
2012-02-14
TLP185
2. Storage
1) Avoid storage locations where devices may be exposed to moisture or direct sunlight.
2) Follow the precautions printed on the packing label of the device for transportation and storage.
3) Keep the storage location temperature and humidity within a range of 5°C to 35°C and 45% to 75%,
respectively.
4) Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty
conditions.
5) Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during
storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the
solderability of the leads.
6) When restoring devices after removal from their packing, use anti-static containers.
7) Do not allow loads to be applied directly to devices while they are in storage.
8) If devices have been stored for more than two years under normal storage conditions, it is recommended
that you check the leads for ease of soldering prior to use.
10
2012-02-14
TLP185
RESTRICTIONS ON PRODUCT USE
• Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information
in this document, and related hardware, software and systems (collectively “Product”) without notice.
• This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with
TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
• Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily
injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the
Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of
all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes
for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the
instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their
own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such
design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts,
diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating
parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR
APPLICATIONS.
• Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring
equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document.
Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or
reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious
public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used
in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling
equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric
power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this
document.
• Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
• Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
applicable laws or regulations.
• The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
• ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
• GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or
vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
• Do not use or otherwise make available Product or related software or technology for any military purposes, including without
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
technology products (mass destruction weapons). Product and related software and technology may be controlled under the
Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product
or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
• Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,
including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
11
2012-02-14