TOREX XC6108_1

XC6108 Series
ETR0205_007
Voltage Detector with Separated Sense Pin & Delay Type Capacitor
■GENERAL DESCRIPTION
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming
technologies.
Since the sense pin is separated from power supply, it allows the IC to monitor added power supply.
Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when
voltage of the monitored power supply drops to 0V.
Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an
arbitrary release delay time.
Both CMOS and N-channel open drain output configurations are available.
■APPLICATIONS
■FEATURES
●Microprocessor reset circuitry
Highly Accurate
: +2% (Setting Detect Voltage≧1.5V)
: +30mV (Setting Detect Voltage<1.5V)
●Charge voltage monitors
Ultra Low Power Consumption
●Memory battery back-up switch circuits
●Power failure detection circuits
: 0.8 A (TYP.) (VIN= 2.0V)
Detect Voltage Range
: 0.8V ~ 5.0V in 100mV increments
Operating Voltage Range : 1.0V ~ 6.0V
Detect Voltage Temperature Characteristics
:±
100ppm/ ℃(TYP.)
: CMOS or N-channel open drain
Output Configuration
Operating Temperature Range
: -40 ℃ ~ +85 ℃
Separated Sense Pin
Built-In Delay Circuit, Delay Capacitance Pin Available
: USP-4
Ultra Small Package
SOT-25
■TYPICAL APPLICATION CIRCUIT
■TYPICAL PERFORMANCE
CHARACTERISTICS
●Output Voltage vs. Sense Voltage
VIN
VSEN
XC6108C25A GR
100k
VOUT
Cd
Cd
R
VSS
Ta=25℃
7.0
No resistor needed for
CMOS output product
6.0
Output Voltage : VOUT (V)
Output V oltage: VO UT (V)
VIN
Added
Power
Supply
V IN=6.0V
5.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
6
Sense
oltage: :VVSEN
SEN (V)
SenseVVoltage
(V)
1/22
XC6108 Series
■PIN CONFIGURATION
5
4
Cd
VSEN
VOUT VSS
USP-4
(BOTTOM VIEW)
1
* In the XC6108xxxA/B series, the dissipation pad should
not be short-circuited with other pins.
* In the XC6108xxxC/D series, when the dissipation pad
is short-circuited with other pins, connect it to the NC
pin (pin No.2) before use.
VIN
2
3
SOT-25
(TOP VIEW)
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTION
VOUT
Output (Detect ”L”)
5
Cd
Delay Capacitance (*1)
-
NC
No Connection
3
4
VSEN
Sense
4
3
VIN
Input
5
2
VSS
Ground (*2)
USP- 4
SOT-25
1
1
2
2
NOTE:
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be
used as the N.C.
■PRODUCT CLASSIFICATION
●Ordering Information
XC6108 ①②③④⑤⑥
DESIGNATOR
DESCRIPTION
①
Output Configuration
② ③
Detect Voltage
④
Output Delay & Hysteresis
(Options)
SYMBOL
C
: CMOS output
N
: N-ch open drain output
08 ~ 50
⑥
Package
Device Orientation
: e.g. 18→1.8V
A
: Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)
B
G
: Built-in delay capacitance pin, hysteresis less than 1%(Standard*)
: No built-in delay capacitance pin, hysteresis 5% (TYP.)
(Semi-custom)
: No built-in delay capacitance pin, hysteresis less than 1%
(Semi-custom)
: USP-4
M
: SOT-25
R
: Embossed tape, standard feed
L
: Embossed tape, reverse feed
C
D
⑤
DESCRIPTION
*When delay function isn’t used, open the delay capacitance pin before use.
2/22
XC6108
Series
■BLOCK DIAGRAMS
(1) XC6108CxxA
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram
of XC6108CxxC (semi-custom).
(2) XC6108CxxB
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108CxxD (semi-custom).
(3) XC6108NxxA
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxC (semi-custom).
(4) XC6108NxxB
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxD (semi-custom).
3/22
XC6108 Series
■ABSOLUTE MAXIMUM RATINGS
●XC6108xxxA/B
Ta = 25OC
PARAMETER
SYMBOL
RATINGS
VIN
VSS−0.3 ~ 7.0
V
Output Current
IOUT
10
mA
Output Voltage
XC6108C (*1)
XC6108N (*2)
VOUT
VSS−0.3 ~ VIN+0.3
VSS−0.3 ~ 7.0
V
Sense Pin Voltage
VSEN
VSS−0.3 ~ 7.0
V
Delay Capacitance Pin Voltage
VCD
VSS−0.3 ~ VIN+0.3
V
Delay Capacitance Pin Current
ICD
5.0
mA
USP-4
Power Dissipation
SOT-25
Pd
120
250
mW
Operating Temperature Range
Ta
−40 ~+85
℃
Storage Temperature Range
Tstg
−55 ~+125
℃
O
●XC6108xxxC/D
Ta = 25 C
PARAMETER
SYMBOL
RATINGS
UNITS
Input Voltage
VIN
VSS−0.3 ~ 7.0
V
Output Current
IOUT
10
mA
Output Voltage
XC6108C (*1)
XC6108N (*2)
Sense Pin Voltage
Power Dissipation
VOUT
VSEN
USP-4
SOT-25
Pd
VSS−0.3 ~ VIN+0.3
VSS−0.3 ~ 7.0
VSS−0.3 ~ 7.0
120
250
V
V
mW
Operating Temperature Range
Ta
−40 ~+85
℃
Storage Temperature Range
Tstg
−55 ~+125
℃
NOTE:
*1: CMOS output
*2: N-ch open drain output
4/22
UNITS
Input Voltage
XC6108
Series
■ELECTRICAL CHARACTERISTICS
●XC6108xxxA
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
UNITS
CIRCUITS
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
-
6.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-2
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
A
2
Supply Current 2 (*2)
ISS2
A
2
mA
3
mA
4
ppm/
℃
1
M
5
Output Current
(*3)
Temperature
Characteristics
Sense Resistance
(*4)
Delay Resistance
(*5)
Delay capacitance pin
Sink Current
IOUT
-
±
0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VSEN =
VDF x 1.1
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±
100
-
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
Rdelay
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
1.6
2.0
2.4
M
6
ICD
VDS = 0.5V, VIN = 1.0V
-
200
-
A
6
VSEN = 6.0V, VIN = 1.0V
0.4
0.5
0.6
VSEN = 6.0V, VIN = 6.0V
2.9
3.0
3.1
V
7
VIN = VSEN = 0V ~ 0.7V
-
0.3
0.4
V
8
30
230
s
9
30
200
s
9
Delay Capacitance Pin
Threshold Voltage
VTCD
Unspecified Operating
Voltage (*6)
VUNS
Detect Delay Time (*7)
TDF0
Release Delay Time
(*8)
TDR0
VIN = 6.0V, VSEN = 6.0V→0.0V
Cd: Open
VIN = 6.0V, VSEN = 0.0V→6.0V
Cd: Open
E-4
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
5/22
XC6108 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxB
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
UNITS
CIRCUITS
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
-
6.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-3
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
A
2
Supply Current 2 (*2)
ISS2
A
2
mA
3
mA
4
ppm/
℃
1
M
5
Output Current (*3)
Temperature
Characteristics
Sense Resistance
(*4)
Delay Resistance
(*5)
Delay capacitance pin
Sink Current
IOUT
±
0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VSEN =
VDF x 1.1
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±
100
-
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
Rdelay
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
1.6
2.0
2.4
M
6
ICD
VDS = 0.5V, VIN = 1.0V
-
200
-
A
6
VSEN = 6.0V, VIN = 1.0V
0.4
0.5
0.6
VSEN = 6.0V, VIN = 6.0V
2.9
3.0
3.1
V
7
VIN = VSEN = 0V ~ 0.7V
-
0.3
0.4
V
8
30
230
s
9
30
200
s
9
Delay Capacitance Pin
Threshold Voltage
VTCD
Unspecified Operating
Voltage (*6)
VUNS
Detect Delay Time
(*7)
Release Delay Time
(*8)
-
TDF0
TDR0
VIN = 6.0V, VSEN = 6.0V→0.0V
Cd: Open
VIN = 6.0V, VSEN = 0.0V→6.0V
Cd: Open
E-4
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
6/22
XC6108
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxC
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
UNITS
CIRCUITS
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
-
6.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-2
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
A
2
Supply Current 2
(*2)
ISS2
A
2
mA
3
mA
4
ppm/
℃
1
M
5
Output Current
(*3)
Temperature
Characteristics
Sense Resistance
(*4)
Unspecified Operating
Voltage (*5)
Detect Delay Time (*6)
Release Delay Time
(*7)
IOUT
-
±
0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VSEN =
VDF x 1.1
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±
100
-
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
VUNS
VIN = VSEN = 0V ~ 0.7V
TDF0
TDR0
E-4
-
0.3
0.4
V
7
VIN = 6.0V, VSEN = 6.0V→0.0V
30
230
s
9
VIN = 6.0V, VSEN = 0.0V→6.0V
30
200
s
9
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
7/22
XC6108 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxD
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
UNITS
CIRCUITS
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
-
6.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-3
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
A
2
Supply Current 2 (*2)
ISS2
A
2
mA
3
mA
4
ppm/
℃
1
M
5
Output Current (*3)
IOUT
-
±
0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VSEN =
VDF x 1.1
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±
100
-
Temperature
Characteristics
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
Sense Resistance (*4)
Unspecified Operating
Voltage (*5)
Detect Delay Time (*6)
RSEN
VSEN = 5.0V, VIN = 0V
VUNS
VIN = VSEN = 0V ~ 0.7V
TDF0
TDR0
Release Delay Time
(*7)
E-4
-
0.3
0.4
V
7
VIN = 6.0V, VSEN = 6.0V→0.0V
30
230
s
9
VIN = 6.0V, VSEN = 0.0V→6.0V
30
200
s
9
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
8/22
XC6108
Series
■VOLTAGE CHART
SYMBOL
E-1
SETTING OUTPUT
VOLTAGE
DETECT VOLTAGE
(*1) (V)
VDF(T)
(V)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
VDF
MIN.
0.770
0.870
0.970
1.070
1.170
1.270
1.370
1.470
1.568
1.666
1.764
1.862
1.960
2.058
2.156
2.254
2.352
2.450
2.548
2.646
2.744
2.842
2.940
3.038
3.136
3.234
3.332
3.430
3.528
3.626
3.724
3.822
3.920
4.018
4.116
4.214
4.312
4.410
4.508
4.606
4.704
4.802
4.900
MAX.
0.830
0.930
1.030
1.130
1.230
1.330
1.430
1.530
1.632
1.734
1.836
1.938
2.040
2.142
2.244
2.346
2.448
2.550
2.652
2.754
2.856
2.958
3.060
3.162
3.264
3.366
3.468
3.570
3.672
3.774
3.876
3.978
4.080
4.182
4.284
4.386
4.488
4.590
4.692
4.794
4.896
4.998
5.100
E-2
HYSTERESIS
RANGE
(V)
VHYS
MIN.
MAX.
0.015
0.066
0.017
0.074
0.019
0.082
0.021
0.090
0.023
0.098
0.025
0.106
0.027
0.114
0.029
0.122
0.031
0.131
0.033
0.085
0.035
0.147
0.037
0.155
0.039
0.163
0.041
0.171
0.043
0.180
0.045
0.188
0.047
0.196
0.049
0.204
0.051
0.212
0.053
0.220
0.055
0.228
0.057
0.237
0.059
0.245
0.061
0.253
0.063
0.261
0.065
0.269
0.067
0.277
0.069
0.286
0.071
0.294
0.073
0.302
0.074
0.310
0.076
0.318
0.078
0.326
0.080
0.335
0.082
0.343
0.084
0.351
0.086
0.359
0.088
0.367
0.090
0.375
0.092
0.384
0.094
0.392
0.096
0.400
0.098
0.408
E-3
HYSTERESIS
RANGE
(V)
VHYS
MIN.
MAX.
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.026
0.027
0.028
0.029
0
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049
0.050
0.051
E-4
SENSE
RESISTANCE
(
M
Ω
)
RSEN
MIN.
TYP.
10
20
13
24
15
28
NOTE:
*1: When VDF(T)≦1.4V, the detection accuracy is ±30mV.
When VDF(T)≧1.5V, the detection accuracy is ±2%.
9/22
XC6108 Series
■TEST CIRCUITS
Circuit 1
Circuit 2
Circuit 3
Circuit 4
Circuit 5
10/22
XC6108
Series
■TEST CIRCUITS (Continued)
Circuit 6
Circuit 7
Circuit 8
Circuit 9
R=100kΩ
(No resistor needed for
CMOS output products)
VIN
VSEN
VOUT
Waveform Measurement Point
Cd
VSS
* No delay capacitance pin available
in the XC6108xxxC/D series.
11/22
XC6108 Series
■OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.
① As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
* If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.
② When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor
(M3) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An
inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level
(=VSS). The detect delay time [TDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level
(especially, when the Cd pin is not connected: TDF0).
③ While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground
voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to
reach the release voltage (VSEN< VDF +VHYS).
④ When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M3) for
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay
resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic
Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).
⑤ While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC
series circuit. Assuming the time to the release delay time (TDR), it can be given by the formula (1).
TDR = −Rdelay×Cd×In (1−VTCD / VIN) …(1)
* In = a natural logarithm
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and
the delay capacitance pin voltage is VIN /2 (TYP.)
TDR = 2.0e6×Cd×0.69…(2)
As an example, presuming that the delay capacitance is 0.68μF, TDR is :
2.0e6×0.68e−6×0.69 = 938 (ms)
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the
ground (=VSS) level because time described in ③ is short.
⑥ When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. TDR0 is defined as time
which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.
⑦ While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN)
level.
12/22
XC6108
Series
■OPERATIONAL EXPLANATION (Continued)
●Function Chart
VSEN
Cd
L
H
L
H
L
H
L
H
L
H
TRANSITION OF VOUT CONDITION*
①
②
L
⇒
L
⇒
L
H
L
⇒
H
⇒
H
*VOUT transits from condition ① to ② because of the combination of VSEN and Cd.
●Example
ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (
VDR≧VSEN), Cd=’H’ (VTCD≧Cd) while VOUT is ‘L’.
ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1.
●Release Delay Time Chart
0.010
0.022
0.047
0.100
RELEASE DELAY TIME [TDR]
(TYP.)
(ms)
13.8
30.4
64.9
138
RELEASE DELAY TIME [TDR]
(MIN. ~ MAX.)
(ms)
11.0 ~ 16.6
24.3 ~ 36.4
51.9 ~ 77.8
110 ~ 166
0.220
0.470
1.000
304
649
1380
243~ 364
519 ~ 778
1100 ~ 1660
DELAY CAPACITANCE [Cd]
(μF)
13/22
XC6108 Series
■OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
*The XC6108N series (N-ch open
drain output) requires a pull-up
resistor for pulling up output.
Figure 2: The timing chart of Figure 1
14/22
XC6108
Series
■NOTES ON USE
1. Use this IC within the stated maximum ratings.
Operation beyond these limits may cause degrading or permanent
damage to the device.
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through
current at operation of the IC.
At this time, the operation may be wrong if the power supply input pin voltage falls below
the minimum operating voltage range.
similarly occur.
In CMOS output, for output current, drops in the power supply input pin voltage
Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used,
oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed
the hysteresis voltage.
Note it especially when you use the IC with the VIN pin connected to a resistor.
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage
over 1.0V to the VIN pin.
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.
5. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release
operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between
the VIN pin and the Cd pin as the Figure 3 shown below.
6. In N-ch open drain output, a pull-up resistor connected to the output voltage pin should be 100k-200kΩ.
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode
15/22
XC6108 Series
Su
p
p
l
y
C
u
r
r
e
n
t
:
I
SS (
μ
A
)
Su
p
p
l
y
C
u
r
r
e
n
t
:
I
SS (
μ
A
)
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
XC6108C25A GR
VIN=3.0V
2.0
Ta=85℃
1.5
25℃
1.0
0.5
-40℃
0.0
1
2
3
4
5
Sense Voltage
VSEN
(V))
V oltage:: V
SEN (V
6
Su
p
p
l
y
C
u
r
r
e
n
t
:
I
SS (
μ
A
)
Su
p
p
l
y
C
u
r
r
e
n
t
:
I
SS (
μ
A
)
Su
p
p
l
y
C
u
r
r
e
n
t
:
I
SS
(
μ
A
)
Su
p
p
l
y
C
u
r
r
e
n
t
:
I
SS
(
μ
A
)
0
(2) Supply Current vs. Input Voltage
XC6108C25AGR
VSEN =2.25V
1.2
1.0
Ta=85℃
0.8
25℃
0.6
0.4
-40℃
0.2
XC6108C25AGR
VSEN =2.75V
1.2
Ta=85℃
1.0
0.8
0.6
25℃
0.4
-40℃
0.2
0.0
0.0
0
1
2
3
4
5
InputVoltage
Voltage:
VIN(V)
(V)
Input
: VIN
6
0
1
2
3
4
5
6
Input Voltage
Voltage:: VIN
VIN(V)
(V)
(3) Detect Voltage vs. Ambient Temperature
(4) Detect Voltage vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
VIN=4.0V
2.55
Ta=25℃
Detect Voltage : VDF (V)
Detect Voltage: VDF (V)
Detect Voltage : VDF (V)
Detect Voltage: VDF (V)
2.55
2.50
2.45
2.50
-40℃
2.45
-50
16/22
85℃
-25
0
25
50
75
AAmbient
mbient Temperature:
Temperature :Ta
Ta( (℃)
℃)
100
1.0
2.0
3.0
4.0
5.0
Input
Voltage:
VIN
(V)
Input Voltage : VIN (V)
6.0
XC6108
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature
(6) CD Pin Sink Current vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
VIN=4.0V
VSEN =0V, VD S=0.5V
3.0
Cd PIN Sink Current : ICD (mA)
Cd PIN Sink Current: ICD (mA)
Hysteresis Voltage :
Hy st eresis V oltage:
VHYS (V)
VHYS (V)
0.20
0.15
0.10
0.05
-50
-25
0
25
50
75
Ambient
A mbientTemperature
Temperature:: Ta
Ta(℃)
( ℃)
2.5
Ta=-40℃
2.0
25℃
1.5
1.0
0.5
85℃
0.0
100
(7) Output Voltage vs. Sense Voltage
0
1
2
3
4
5
Input
InputVoltage:
Voltage : VIN
VIN (V)
(V)
6
(8) Output Voltage vs. Input Voltage
XC6108C25A GR
XC6108N25AGR
Ta=25℃
7.0
VSEN =VIN , Pull-up=VIN , R =100k Ω
4.0
V IN=6.0V
5.0
Output
: VOUT
O utputVoltage
Volt age:
VOUT(V)
(V)
Output Voltage : VOUT (V)
Output V oltage: VO UT (V)
6.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
6
3.0
Ta=85℃
2.0
25℃
1.0
-40℃
0.0
-1.0
0
Sense
SenseVVoltage
oltage: :VVSEN
SEN (V)
(V)
0.5
1
1.5
2
2.5
Input
Input Voltage:
Voltage : VIN
VIN (V)
(V)
3
(9) Output Current vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
VDS(N ch)=0.5V
VDS(Pch)=0.5V
0.0
3.5
Output
Current:
IOUT(mA)
(mA)
Output
Current
: IOUT
Output
: IOUT
OutputCurrent
Current:
IOUT(mA)
(mA)
4.0
Ta=-40℃
3.0
2.5
25℃
2.0
1.5
85℃
1.0
0.5
0.0
-0.5
Ta=85℃
-1.0
25℃
-1.5
-40℃
-2.0
0
1
2
3
4
5
Input Voltage
Voltage:: VIN
VIN(V)
(V)
Input
6
0
1
2
3
4
5
Input
Voltage:
VIN
(V)
Input Voltage : VIN (V)
6
17/22
XC6108 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature
(11) Release Delay Time vs. Delay Capacitance
XC6108C25A GR
XC6108C25AGR
VSEN=6.0V, VCD=0.0V, VIN=5.0V
3.5
3
2.5
2
1.5
1
-50
-25
0
25
50
75
100
D
e
t
e
c
t
D
e
l
a
y
T
i
m
e
:
T
D
F
(
μ
Detect
Delay
Time:
TDF
(s
s)
m)
Ambient Temperature
Temperature:: Ta
Ta ((℃)
℃)
(12) Detect Delay Time vs. Delay Capacitance
XC6108C25AGR
Ta=25℃
1000
V IN=6.0V
4.0V
100
2.0V
10
1.0V
1
0.0001
18/22
3.0V
0.001
0.01
0.1
1
DelayCapacitance
Capacitance:
Cd
(m
F)
Delay
:
C
d(
μ
F
)
Ta=25℃
10000
Release
Delay
Time
: TDR
(ms)
Release
Delay
Time:
T DR
(ms)
Ω)
DelayResistance
Resistanc e:
Rdelay(M
(M Ω)
Delay
: Rdelay
4
1000
100
VIN=1.0V
3.0V
6.0V
10
1
0.1
0.0001
T
D
R
=
C
d×
2
.
0
e
6×
0
.
69
0.001
0.01
0.1
1
Delay
Capacitance:
Cd
(
F)
m
Delay Capacitance :
C
d(
μ
F
)
XC6108
Series
■PACKAGING INFORMATION
●USP-4
0. 7±0. 1
0. 3±0. 05
0.2 ±0. 1
0.007
MA X0 . 6
+ 0 .0 0 5
-0 .0 0 4
1. 6±0. 08
1. 2±0. 08
* Soldering fillet s urface is not form ed
becaus e the s ides of the pins are plated.
1. 0±0. 1
( 0. 6)
●SOT-25
19/22
XC6108 Series
■PACKAGING INFORMATION (Continued)
●USP-4 Recommended Pattern Layout
●USP-4Recommended Metal Mask Design
■MARKING RULE
●SOT-25
①Represents output configuration and integer number of detect voltage
CMOS Output (XC6108C Series)
5
4
MARK
A
B
C
D
E
F
① ② ③ ④
1
2
3
SOT-25
(TOP VIEW)
VOLTAGE (V)
0.x
1.x
2.x
3.x
4.x
5.x
N-ch Open Drain Output (XC6108N Series)
MARK
K
L
M
N
P
R
VOLTAGE (V)
0.x
1.x
2.x
3.x
4.x
5.x
②Represents decimal number of detect voltage
(ex.)
MARK
3
0
VOLTAGE (V)
x.3
x.0
PRODUCT SERIES
XC6108xx3xxx
XC6108xx0xxx
③Represents options
MARK
A
B
C
D
OPTIONS
Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom)
④Represents production lot number
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.
(G, I, J, O, Q, W excepted.)
20/22
PRODUCT SERIES
XC6108xxxAxx
XC6108xxxBxx
XC6108xxxCxx
XC6108xxxDxx
XC6108
Series
■MARKING RULE (Continued)
①Represents output configuration and integer number of detect voltage
●USP-4
①②
2
③④
1
4
CMOS Output (XC6108C Series)
MARK
A
B
C
D
E
F
3
USP-4
(TOP VIEW)
N-ch Open Drain Output (XC6108N Series)
VOLTAGE (V)
0.x
1.x
2.x
3.x
4.x
5.x
MARK
K
L
M
N
P
R
VOLTAGE (V)
0.x
1.x
2.x
3.x
4.x
5.x
②Represents decimal number of detect voltage
(ex.)
MARK
3
0
VOLTAGE (V)
x.3
x.0
PRODUCT SERIES
XC6108xx3xxx
XC6108xx0xxx
③Represents options
MARK
A
B
C
D
OPTIONS
Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom)
PRODUCT
SERIES
XC6108xxxAxx
XC6108xxxBxx
XC6108xxxCxx
XC6108xxxDxx
④Represents production lot number
0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.)
*No character inversion used.
21/22
XC6108 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this catalog is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this catalog.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this catalog.
4. The products in this catalog are not developed, designed, or approved for use with such
equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this catalog within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this catalog may be copied or reproduced without the
prior permission of Torex Semiconductor Ltd.
22/22