XC6108 Series ETR0205_007 Voltage Detector with Separated Sense Pin & Delay Type Capacitor ■GENERAL DESCRIPTION The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming technologies. Since the sense pin is separated from power supply, it allows the IC to monitor added power supply. Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when voltage of the monitored power supply drops to 0V. Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an arbitrary release delay time. Both CMOS and N-channel open drain output configurations are available. ■APPLICATIONS ■FEATURES ●Microprocessor reset circuitry Highly Accurate : +2% (Setting Detect Voltage≧1.5V) : +30mV (Setting Detect Voltage<1.5V) ●Charge voltage monitors Ultra Low Power Consumption ●Memory battery back-up switch circuits ●Power failure detection circuits : 0.8 A (TYP.) (VIN= 2.0V) Detect Voltage Range : 0.8V ~ 5.0V in 100mV increments Operating Voltage Range : 1.0V ~ 6.0V Detect Voltage Temperature Characteristics :± 100ppm/ ℃(TYP.) : CMOS or N-channel open drain Output Configuration Operating Temperature Range : -40 ℃ ~ +85 ℃ Separated Sense Pin Built-In Delay Circuit, Delay Capacitance Pin Available : USP-4 Ultra Small Package SOT-25 ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS ●Output Voltage vs. Sense Voltage VIN VSEN XC6108C25A GR 100k VOUT Cd Cd R VSS Ta=25℃ 7.0 No resistor needed for CMOS output product 6.0 Output Voltage : VOUT (V) Output V oltage: VO UT (V) VIN Added Power Supply V IN=6.0V 5.0 4.0 4.0V 3.0 2.0 1.0 1.0V 0.0 -1.0 0 1 2 3 4 5 6 Sense oltage: :VVSEN SEN (V) SenseVVoltage (V) 1/22 XC6108 Series ■PIN CONFIGURATION 5 4 Cd VSEN VOUT VSS USP-4 (BOTTOM VIEW) 1 * In the XC6108xxxA/B series, the dissipation pad should not be short-circuited with other pins. * In the XC6108xxxC/D series, when the dissipation pad is short-circuited with other pins, connect it to the NC pin (pin No.2) before use. VIN 2 3 SOT-25 (TOP VIEW) ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTION VOUT Output (Detect ”L”) 5 Cd Delay Capacitance (*1) - NC No Connection 3 4 VSEN Sense 4 3 VIN Input 5 2 VSS Ground (*2) USP- 4 SOT-25 1 1 2 2 NOTE: *1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5. *2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be used as the N.C. ■PRODUCT CLASSIFICATION ●Ordering Information XC6108 ①②③④⑤⑥ DESIGNATOR DESCRIPTION ① Output Configuration ② ③ Detect Voltage ④ Output Delay & Hysteresis (Options) SYMBOL C : CMOS output N : N-ch open drain output 08 ~ 50 ⑥ Package Device Orientation : e.g. 18→1.8V A : Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*) B G : Built-in delay capacitance pin, hysteresis less than 1%(Standard*) : No built-in delay capacitance pin, hysteresis 5% (TYP.) (Semi-custom) : No built-in delay capacitance pin, hysteresis less than 1% (Semi-custom) : USP-4 M : SOT-25 R : Embossed tape, standard feed L : Embossed tape, reverse feed C D ⑤ DESCRIPTION *When delay function isn’t used, open the delay capacitance pin before use. 2/22 XC6108 Series ■BLOCK DIAGRAMS (1) XC6108CxxA *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108CxxC (semi-custom). (2) XC6108CxxB *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108CxxD (semi-custom). (3) XC6108NxxA *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108NxxC (semi-custom). (4) XC6108NxxB *The delay capacitance pin (Cd) is not connected to the circuit in the block diagram of XC6108NxxD (semi-custom). 3/22 XC6108 Series ■ABSOLUTE MAXIMUM RATINGS ●XC6108xxxA/B Ta = 25OC PARAMETER SYMBOL RATINGS VIN VSS−0.3 ~ 7.0 V Output Current IOUT 10 mA Output Voltage XC6108C (*1) XC6108N (*2) VOUT VSS−0.3 ~ VIN+0.3 VSS−0.3 ~ 7.0 V Sense Pin Voltage VSEN VSS−0.3 ~ 7.0 V Delay Capacitance Pin Voltage VCD VSS−0.3 ~ VIN+0.3 V Delay Capacitance Pin Current ICD 5.0 mA USP-4 Power Dissipation SOT-25 Pd 120 250 mW Operating Temperature Range Ta −40 ~+85 ℃ Storage Temperature Range Tstg −55 ~+125 ℃ O ●XC6108xxxC/D Ta = 25 C PARAMETER SYMBOL RATINGS UNITS Input Voltage VIN VSS−0.3 ~ 7.0 V Output Current IOUT 10 mA Output Voltage XC6108C (*1) XC6108N (*2) Sense Pin Voltage Power Dissipation VOUT VSEN USP-4 SOT-25 Pd VSS−0.3 ~ VIN+0.3 VSS−0.3 ~ 7.0 VSS−0.3 ~ 7.0 120 250 V V mW Operating Temperature Range Ta −40 ~+85 ℃ Storage Temperature Range Tstg −55 ~+125 ℃ NOTE: *1: CMOS output *2: N-ch open drain output 4/22 UNITS Input Voltage XC6108 Series ■ELECTRICAL CHARACTERISTICS ●XC6108xxxA Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-2 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 A 2 Supply Current 2 (*2) ISS2 A 2 mA 3 mA 4 ppm/ ℃ 1 M 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Delay Resistance (*5) Delay capacitance pin Sink Current IOUT - ± 0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VSEN = VDF x 1.1 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VSEN = 6.0V VDS = 0.5V (P-ch) VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ± 100 - ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V Rdelay VSEN = 6.0V, VIN = 5.0V, Cd = 0V 1.6 2.0 2.4 M 6 ICD VDS = 0.5V, VIN = 1.0V - 200 - A 6 VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6 VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V 7 VIN = VSEN = 0V ~ 0.7V - 0.3 0.4 V 8 30 230 s 9 30 200 s 9 Delay Capacitance Pin Threshold Voltage VTCD Unspecified Operating Voltage (*6) VUNS Detect Delay Time (*7) TDF0 Release Delay Time (*8) TDR0 VIN = 6.0V, VSEN = 6.0V→0.0V Cd: Open VIN = 6.0V, VSEN = 0.0V→6.0V Cd: Open E-4 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin. 5/22 XC6108 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxB Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 A 2 Supply Current 2 (*2) ISS2 A 2 mA 3 mA 4 ppm/ ℃ 1 M 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Delay Resistance (*5) Delay capacitance pin Sink Current IOUT ± 0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VSEN = VDF x 1.1 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VSEN = 6.0V VDS = 0.5V (P-ch) VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ± 100 - ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V Rdelay VSEN = 6.0V, VIN = 5.0V, Cd = 0V 1.6 2.0 2.4 M 6 ICD VDS = 0.5V, VIN = 1.0V - 200 - A 6 VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6 VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V 7 VIN = VSEN = 0V ~ 0.7V - 0.3 0.4 V 8 30 230 s 9 30 200 s 9 Delay Capacitance Pin Threshold Voltage VTCD Unspecified Operating Voltage (*6) VUNS Detect Delay Time (*7) Release Delay Time (*8) - TDF0 TDR0 VIN = 6.0V, VSEN = 6.0V→0.0V Cd: Open VIN = 6.0V, VSEN = 0.0V→6.0V Cd: Open E-4 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin. 6/22 XC6108 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxC Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-2 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 A 2 Supply Current 2 (*2) ISS2 A 2 mA 3 mA 4 ppm/ ℃ 1 M 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Unspecified Operating Voltage (*5) Detect Delay Time (*6) Release Delay Time (*7) IOUT - ± 0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VSEN = VDF x 1.1 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VSEN = 6.0V VDS = 0.5V (P-ch) VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ± 100 - ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V VUNS VIN = VSEN = 0V ~ 0.7V TDF0 TDR0 E-4 - 0.3 0.4 V 7 VIN = 6.0V, VSEN = 6.0V→0.0V 30 230 s 9 VIN = 6.0V, VSEN = 0.0V→6.0V 30 200 s 9 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises. 7/22 XC6108 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxD Ta=25℃ PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUITS Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 - 6.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 A 2 Supply Current 2 (*2) ISS2 A 2 mA 3 mA 4 ppm/ ℃ 1 M 5 Output Current (*3) IOUT - ± 0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VSEN = VDF x 1.1 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VSEN = 6.0V VDS = 0.5V (P-ch) VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ± 100 - Temperature Characteristics ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ Sense Resistance (*4) Unspecified Operating Voltage (*5) Detect Delay Time (*6) RSEN VSEN = 5.0V, VIN = 0V VUNS VIN = VSEN = 0V ~ 0.7V TDF0 TDR0 Release Delay Time (*7) E-4 - 0.3 0.4 V 7 VIN = 6.0V, VSEN = 6.0V→0.0V 30 230 s 9 VIN = 6.0V, VSEN = 0.0V→6.0V 30 200 s 9 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises. 8/22 XC6108 Series ■VOLTAGE CHART SYMBOL E-1 SETTING OUTPUT VOLTAGE DETECT VOLTAGE (*1) (V) VDF(T) (V) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 VDF MIN. 0.770 0.870 0.970 1.070 1.170 1.270 1.370 1.470 1.568 1.666 1.764 1.862 1.960 2.058 2.156 2.254 2.352 2.450 2.548 2.646 2.744 2.842 2.940 3.038 3.136 3.234 3.332 3.430 3.528 3.626 3.724 3.822 3.920 4.018 4.116 4.214 4.312 4.410 4.508 4.606 4.704 4.802 4.900 MAX. 0.830 0.930 1.030 1.130 1.230 1.330 1.430 1.530 1.632 1.734 1.836 1.938 2.040 2.142 2.244 2.346 2.448 2.550 2.652 2.754 2.856 2.958 3.060 3.162 3.264 3.366 3.468 3.570 3.672 3.774 3.876 3.978 4.080 4.182 4.284 4.386 4.488 4.590 4.692 4.794 4.896 4.998 5.100 E-2 HYSTERESIS RANGE (V) VHYS MIN. MAX. 0.015 0.066 0.017 0.074 0.019 0.082 0.021 0.090 0.023 0.098 0.025 0.106 0.027 0.114 0.029 0.122 0.031 0.131 0.033 0.085 0.035 0.147 0.037 0.155 0.039 0.163 0.041 0.171 0.043 0.180 0.045 0.188 0.047 0.196 0.049 0.204 0.051 0.212 0.053 0.220 0.055 0.228 0.057 0.237 0.059 0.245 0.061 0.253 0.063 0.261 0.065 0.269 0.067 0.277 0.069 0.286 0.071 0.294 0.073 0.302 0.074 0.310 0.076 0.318 0.078 0.326 0.080 0.335 0.082 0.343 0.084 0.351 0.086 0.359 0.088 0.367 0.090 0.375 0.092 0.384 0.094 0.392 0.096 0.400 0.098 0.408 E-3 HYSTERESIS RANGE (V) VHYS MIN. MAX. 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.026 0.027 0.028 0.029 0 0.030 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.050 0.051 E-4 SENSE RESISTANCE ( M Ω ) RSEN MIN. TYP. 10 20 13 24 15 28 NOTE: *1: When VDF(T)≦1.4V, the detection accuracy is ±30mV. When VDF(T)≧1.5V, the detection accuracy is ±2%. 9/22 XC6108 Series ■TEST CIRCUITS Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5 10/22 XC6108 Series ■TEST CIRCUITS (Continued) Circuit 6 Circuit 7 Circuit 8 Circuit 9 R=100kΩ (No resistor needed for CMOS output products) VIN VSEN VOUT Waveform Measurement Point Cd VSS * No delay capacitance pin available in the XC6108xxxC/D series. 11/22 XC6108 Series ■OPERATIONAL EXPLANATION A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14. ① As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN). * If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected. ② When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor (M3) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level (=VSS). The detect delay time [TDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level (especially, when the Cd pin is not connected: TDF0). ③ While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to reach the release voltage (VSEN< VDF +VHYS). ④ When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M3) for the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF). ⑤ While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series circuit. Assuming the time to the release delay time (TDR), it can be given by the formula (1). TDR = −Rdelay×Cd×In (1−VTCD / VIN) …(1) * In = a natural logarithm The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and the delay capacitance pin voltage is VIN /2 (TYP.) TDR = 2.0e6×Cd×0.69…(2) As an example, presuming that the delay capacitance is 0.68μF, TDR is : 2.0e6×0.68e−6×0.69 = 938 (ms) * Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the ground (=VSS) level because time described in ③ is short. ⑥ When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter (Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. TDR0 is defined as time which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd. ⑦ While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN) level. 12/22 XC6108 Series ■OPERATIONAL EXPLANATION (Continued) ●Function Chart VSEN Cd L H L H L H L H L H TRANSITION OF VOUT CONDITION* ① ② L ⇒ L ⇒ L H L ⇒ H ⇒ H *VOUT transits from condition ① to ② because of the combination of VSEN and Cd. ●Example ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ ( VDR≧VSEN), Cd=’H’ (VTCD≧Cd) while VOUT is ‘L’. ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1. ●Release Delay Time Chart 0.010 0.022 0.047 0.100 RELEASE DELAY TIME [TDR] (TYP.) (ms) 13.8 30.4 64.9 138 RELEASE DELAY TIME [TDR] (MIN. ~ MAX.) (ms) 11.0 ~ 16.6 24.3 ~ 36.4 51.9 ~ 77.8 110 ~ 166 0.220 0.470 1.000 304 649 1380 243~ 364 519 ~ 778 1100 ~ 1660 DELAY CAPACITANCE [Cd] (μF) 13/22 XC6108 Series ■OPERATIONAL EXPLANATION (Continued) Figure 1: Typical application circuit example *The XC6108N series (N-ch open drain output) requires a pull-up resistor for pulling up output. Figure 2: The timing chart of Figure 1 14/22 XC6108 Series ■NOTES ON USE 1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device. 2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the minimum operating voltage range. similarly occur. In CMOS output, for output current, drops in the power supply input pin voltage Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. Note it especially when you use the IC with the VIN pin connected to a resistor. 3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over 1.0V to the VIN pin. 4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation. 5. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and the Cd pin as the Figure 3 shown below. 6. In N-ch open drain output, a pull-up resistor connected to the output voltage pin should be 100k-200kΩ. Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode 15/22 XC6108 Series Su p p l y C u r r e n t : I SS ( μ A ) Su p p l y C u r r e n t : I SS ( μ A ) ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Supply Current vs. Sense Voltage XC6108C25A GR VIN=3.0V 2.0 Ta=85℃ 1.5 25℃ 1.0 0.5 -40℃ 0.0 1 2 3 4 5 Sense Voltage VSEN (V)) V oltage:: V SEN (V 6 Su p p l y C u r r e n t : I SS ( μ A ) Su p p l y C u r r e n t : I SS ( μ A ) Su p p l y C u r r e n t : I SS ( μ A ) Su p p l y C u r r e n t : I SS ( μ A ) 0 (2) Supply Current vs. Input Voltage XC6108C25AGR VSEN =2.25V 1.2 1.0 Ta=85℃ 0.8 25℃ 0.6 0.4 -40℃ 0.2 XC6108C25AGR VSEN =2.75V 1.2 Ta=85℃ 1.0 0.8 0.6 25℃ 0.4 -40℃ 0.2 0.0 0.0 0 1 2 3 4 5 InputVoltage Voltage: VIN(V) (V) Input : VIN 6 0 1 2 3 4 5 6 Input Voltage Voltage:: VIN VIN(V) (V) (3) Detect Voltage vs. Ambient Temperature (4) Detect Voltage vs. Input Voltage XC6108C25AGR XC6108C25AGR VIN=4.0V 2.55 Ta=25℃ Detect Voltage : VDF (V) Detect Voltage: VDF (V) Detect Voltage : VDF (V) Detect Voltage: VDF (V) 2.55 2.50 2.45 2.50 -40℃ 2.45 -50 16/22 85℃ -25 0 25 50 75 AAmbient mbient Temperature: Temperature :Ta Ta( (℃) ℃) 100 1.0 2.0 3.0 4.0 5.0 Input Voltage: VIN (V) Input Voltage : VIN (V) 6.0 XC6108 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (5) Hysteresis Voltage vs. Ambient Temperature (6) CD Pin Sink Current vs. Input Voltage XC6108C25AGR XC6108C25AGR VIN=4.0V VSEN =0V, VD S=0.5V 3.0 Cd PIN Sink Current : ICD (mA) Cd PIN Sink Current: ICD (mA) Hysteresis Voltage : Hy st eresis V oltage: VHYS (V) VHYS (V) 0.20 0.15 0.10 0.05 -50 -25 0 25 50 75 Ambient A mbientTemperature Temperature:: Ta Ta(℃) ( ℃) 2.5 Ta=-40℃ 2.0 25℃ 1.5 1.0 0.5 85℃ 0.0 100 (7) Output Voltage vs. Sense Voltage 0 1 2 3 4 5 Input InputVoltage: Voltage : VIN VIN (V) (V) 6 (8) Output Voltage vs. Input Voltage XC6108C25A GR XC6108N25AGR Ta=25℃ 7.0 VSEN =VIN , Pull-up=VIN , R =100k Ω 4.0 V IN=6.0V 5.0 Output : VOUT O utputVoltage Volt age: VOUT(V) (V) Output Voltage : VOUT (V) Output V oltage: VO UT (V) 6.0 4.0 4.0V 3.0 2.0 1.0 1.0V 0.0 -1.0 0 1 2 3 4 5 6 3.0 Ta=85℃ 2.0 25℃ 1.0 -40℃ 0.0 -1.0 0 Sense SenseVVoltage oltage: :VVSEN SEN (V) (V) 0.5 1 1.5 2 2.5 Input Input Voltage: Voltage : VIN VIN (V) (V) 3 (9) Output Current vs. Input Voltage XC6108C25AGR XC6108C25AGR VDS(N ch)=0.5V VDS(Pch)=0.5V 0.0 3.5 Output Current: IOUT(mA) (mA) Output Current : IOUT Output : IOUT OutputCurrent Current: IOUT(mA) (mA) 4.0 Ta=-40℃ 3.0 2.5 25℃ 2.0 1.5 85℃ 1.0 0.5 0.0 -0.5 Ta=85℃ -1.0 25℃ -1.5 -40℃ -2.0 0 1 2 3 4 5 Input Voltage Voltage:: VIN VIN(V) (V) Input 6 0 1 2 3 4 5 Input Voltage: VIN (V) Input Voltage : VIN (V) 6 17/22 XC6108 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10) Delay Resistance vs. Ambient Temperature (11) Release Delay Time vs. Delay Capacitance XC6108C25A GR XC6108C25AGR VSEN=6.0V, VCD=0.0V, VIN=5.0V 3.5 3 2.5 2 1.5 1 -50 -25 0 25 50 75 100 D e t e c t D e l a y T i m e : T D F ( μ Detect Delay Time: TDF (s s) m) Ambient Temperature Temperature:: Ta Ta ((℃) ℃) (12) Detect Delay Time vs. Delay Capacitance XC6108C25AGR Ta=25℃ 1000 V IN=6.0V 4.0V 100 2.0V 10 1.0V 1 0.0001 18/22 3.0V 0.001 0.01 0.1 1 DelayCapacitance Capacitance: Cd (m F) Delay : C d( μ F ) Ta=25℃ 10000 Release Delay Time : TDR (ms) Release Delay Time: T DR (ms) Ω) DelayResistance Resistanc e: Rdelay(M (M Ω) Delay : Rdelay 4 1000 100 VIN=1.0V 3.0V 6.0V 10 1 0.1 0.0001 T D R = C d× 2 . 0 e 6× 0 . 69 0.001 0.01 0.1 1 Delay Capacitance: Cd ( F) m Delay Capacitance : C d( μ F ) XC6108 Series ■PACKAGING INFORMATION ●USP-4 0. 7±0. 1 0. 3±0. 05 0.2 ±0. 1 0.007 MA X0 . 6 + 0 .0 0 5 -0 .0 0 4 1. 6±0. 08 1. 2±0. 08 * Soldering fillet s urface is not form ed becaus e the s ides of the pins are plated. 1. 0±0. 1 ( 0. 6) ●SOT-25 19/22 XC6108 Series ■PACKAGING INFORMATION (Continued) ●USP-4 Recommended Pattern Layout ●USP-4Recommended Metal Mask Design ■MARKING RULE ●SOT-25 ①Represents output configuration and integer number of detect voltage CMOS Output (XC6108C Series) 5 4 MARK A B C D E F ① ② ③ ④ 1 2 3 SOT-25 (TOP VIEW) VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x N-ch Open Drain Output (XC6108N Series) MARK K L M N P R VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x ②Represents decimal number of detect voltage (ex.) MARK 3 0 VOLTAGE (V) x.3 x.0 PRODUCT SERIES XC6108xx3xxx XC6108xx0xxx ③Represents options MARK A B C D OPTIONS Built-in delay capacitance pin with hysteresis 5% (TYP.) (Standard) Built-in delay capacitance pin with hysteresis less than 1% (Standard) No built-in delay capacitance pin with hysteresis 5% (TYP.) (Semi-custom) No built-in delay capacitance pin with hysteresis less than 1% (Semi-custom) ④Represents production lot number 0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.) 20/22 PRODUCT SERIES XC6108xxxAxx XC6108xxxBxx XC6108xxxCxx XC6108xxxDxx XC6108 Series ■MARKING RULE (Continued) ①Represents output configuration and integer number of detect voltage ●USP-4 ①② 2 ③④ 1 4 CMOS Output (XC6108C Series) MARK A B C D E F 3 USP-4 (TOP VIEW) N-ch Open Drain Output (XC6108N Series) VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x MARK K L M N P R VOLTAGE (V) 0.x 1.x 2.x 3.x 4.x 5.x ②Represents decimal number of detect voltage (ex.) MARK 3 0 VOLTAGE (V) x.3 x.0 PRODUCT SERIES XC6108xx3xxx XC6108xx0xxx ③Represents options MARK A B C D OPTIONS Built-in delay capacitance pin with hysteresis 5% (TYP.) (Standard) Built-in delay capacitance pin with hysteresis less than 1% (Standard) No built-in delay capacitance pin with hysteresis 5% (TYP.) (Semi-custom) No built-in delay capacitance pin with hysteresis less than 1% (Semi-custom) PRODUCT SERIES XC6108xxxAxx XC6108xxxBxx XC6108xxxCxx XC6108xxxDxx ④Represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.) *No character inversion used. 21/22 XC6108 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog. 4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this catalog within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd. 22/22