TOREX XC6108C18AMR

◆CMOS
◆Highly Accurate
: +2%
◆Ultra Low Power Consumption
: 0.8µA(TYP.)
(VIN = 2.0V)
◆Separated Sense Pin
◆Built-In Delay Circuit, Delay Pin Available
■APPLICATIONS
■GENERAL DESCRIPTION
■FEATURES
The
XC6108
series
is
highly
precise,
low
power
●Microprocessor reset circuitry
●Charge voltage monitors
●Memory battery back-up switch circuits
●Power failure detection circuits
Highly Accurate
:+2% (Setting Detect Voltage≧1.5V)
:+30mV (Setting Detect Voltage<1.5V)
consumption voltage detector, manufactured using CMOS
Ultra Low Power Consumption
and laser trimming technologies.
Since the sense pin is separated from power supply, it allows
the IC to monitor added power supply.
Using the IC with the sense pin separated from power supply
enables output to maintain the state of detection even when
voltage of the monitored power supply drops to 0V.
Moreover, with the built-in delay circuit, connecting the delay
: 0.8 µA (TYP.) (VIN= 2.0V)
Detect Voltage Range
: 0.8V ~ 5.0V in 100mV increments
Operating Voltage Range : 1.0V ~ 6.0V
Detect Voltage Temperature Characteristics
: ±100ppm/ ℃(TYP.)
Output Configuration
: CMOS or N-channel open drain
Operating Temperature Range
capacitance pin to the capacitor enables the IC to provide an
arbitrary release delay time.
: -40 ℃ ~ +85 ℃
Ultra Small Package
: USP-4
Both CMOS and N-channel open drain output configurations
SOT-25
are available.
■TYPICAL APPLICATION CIRCUIT
■TYPICAL PERFORMANCE
CHARACTERISTICS
●Output Voltage vs. Sense Voltage
R
VIN
VOUT
VSEN
Cd
Cd
XC6108C25A GR
100kΩ
VSS
Ta=25℃
7.0
No resistor needed for
CMOS output product
6.0
Output Voltage: VOUT (V)
VIN
Added
Power
Supply
V IN=6.0V
5.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
6
Sense V oltage: V SEN (V )
XC6108 ETR0205_004.doc
1
XC6108 Series
■PIN CONFIGURATION
VIN 4
VSEN 3
5
VSS
1 VOUT
5
4
Cd
VSEN
2 Cd
VOUT VSS
USP-4
(BOTTOM VIEW)
1
* In the XC6108xxxA/B series, the dissipation pad should
not be short-circuited with other pins.
* In the XC6108xxxC/D series, when the dissipation pad
is short-circuited with other pins, connect it to the NC
pin (pin No.2) before use.
VIN
2
3
SOT-25
(TOP VIEW)
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTION
USP- 4
SOT-25
1
1
VOUT
Output (Detect ”L”)
2
5
Cd
Delay Capacitance (*1)
2
-
NC
No Connection
3
4
VSEN
Sense
4
3
VIN
Input
5
2
VSS
Ground (*2)
NOTE:
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.
*2: In the case of selecting no built-in delay pin type, the Cd pin will be used as the N.C.
■PRODUCT CLASSIFICATION
●Ordering Information
XC6108 ①②③④⑤⑥
DESIGNATOR
DESCRIPTION
①
Output Configuration
② ③
Detect Voltage
④
2
Output Delay & Hysteresis
(Options)
⑤
Package
⑥
Device Orientation
SYMBOL
DESCRIPTION
C
: CMOS output
N
: N-ch open drain output
08 ~ 50
: e.g. 18→1.8V
A
: Built-in delay pin, hysteresis 5% (TYP.)
B
: Built-in delay pin, hysteresis less than 1%
C
: No built-in delay pin, hysteresis 5% (TYP.)
D
: No built-in delay pin, hysteresis less than 1%
G
: USP-4
M
: SOT-25
R
: Embossed tape, standard feed
L
: Embossed tape, reverse feed
XC6108
Series
■PACKAGING INFORMATION
●USP-4
0. 7±0. 1
0. 3±0. 05
0. 2±0. 1
MAX0 . 6
0. 007 - 0 . 0 0 4
+0 . 0 0 5
1. 6±0. 08
1. 2±0. 08
* Soldering fillet surface is not formed
because the sides of the pins are plated.
1. 0±0. 1
( 0. 6)
●SOT-25
3
XC6108 Series
■BLOCK DIAGRAMS
●XC6108CxxA/B
●XC6108CxxC/D
●XC6108NxxA/B
●XC6108NxxC/D
4
XC6108
Series
■ABSOLUTE MAXIMUM RATINGS
●XC6108xxxA/B
Ta = 25OC
PARAMETER
SYMBOL
RATINGS
UNITS
Input Voltage
VIN
VSS-0.3 ~ 7.0
V
Output Current
IOUT
10
mA
Output Voltage
XC6108C (*1)
XC6108N (*2)
VOUT
VSS-0.3 ~ VIN+0.3
VSS-0.3 ~ 7.0
V
V
Sense Pin Voltage
VSEN
VSS-0.3 ~ 7.0
Delay Pin Voltage
VCD
VSS-0.3 ~ VIN+0.3
V
Delay Pin Current
ICD
5.0
mA
USP-4
Power Dissipation
SOT-25
Pd
120
250
mW
Operating Temperature Range
Ta
-40 ~+85
℃
Storage Temperature Range
Tstg
-55 ~+125
℃
O
Ta = 25 C
●XC6108xxxC/D
PARAMETER
SYMBOL
RATINGS
UNITS
Input Voltage
VIN
VSS-0.3 ~ 7.0
V
Output Current
IOUT
10
mA
Output Voltage
XC6108C (*1)
XC6108N (*2)
Sense Pin Voltage
Power Dissipation
VOUT
VSEN
USP-4
SOT-25
Pd
VSS-0.3 ~ VIN+0.3
VSS-0.3 ~ 7.0
VSS-0.3 ~ 7.0
120
250
V
V
mW
Operating Temperature Range
Ta
-40 ~+85
℃
Storage Temperature Range
Tstg
-55 ~+125
℃
NOTE:
*1: CMOS output
*2: N-ch open drain output
5
XC6108 Series
■ELECTRICAL CHARACTERISTICS
●XC6108xxxA
PARAMETER
Ta=25℃
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-2
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
µA
2
Supply Current 2
(*2)
ISS2
µA
2
mA
3
mA
4
ppm/
℃
1
MΩ
5
Output Current
(*3)
Temperature
Characteristics
Sense Resistance
(*4)
Delay Resistance
(*5)
Delay pin
Sink Current
Delay Capacitance Pin
Threshold Voltage
Unspecified Operating
Voltage (*6)
Detect Delay Time (*7)
Release Delay Time
(*8)
IOUT
TYP.
MAX.
-
6.0
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VSEN =
VDF x 1.1
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±100
-
UNITS
CIRCUITS
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
Rdelay
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
1.6
2.0
2.4
MΩ
6
ICD
VDS = 0.5V, VIN = 1.0V
-
200
-
µA
6
VSEN = 6.0V, VIN = 1.0V
0.4
0.5
0.6
VSEN = 6.0V, VIN = 6.0V
2.9
3.0
3.1
V
7
VIN = VSEN = 0V ~ 0.7V
-
0.3
0.4
V
8
30
230
µs
9
30
200
µs
9
VTCD
VUNS
TDF0
TDR0
VIN = 6.0V, VSEN = 6.0V→0.0V
Cd: Open
VIN = 6.0V, VSEN = 0.0V→6.0V
Cd: Open
E-4
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
6
XC6108
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxB
PARAMETER
Ta=25℃
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-3
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
µA
2
Supply Current 2
(*2)
ISS2
µA
2
mA
3
mA
4
ppm/
℃
1
MΩ
5
Output Current
(*3)
Temperature
Characteristics
Sense Resistance
(*4)
Delay Resistance
(*5)
Delay pin
Sink Current
Delay Capacitance Pin
Threshold Voltage
Unspecified Operating
Voltage (*6)
Detect Delay Time
(*7)
Release Delay Time
(*8)
IOUT
TYP.
MAX.
-
6.0
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VSEN =
VDF x 1.1
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±100
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
UNITS
CIRCUITS
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
Rdelay
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
1.6
2.0
2.4
MΩ
6
ICD
VDS = 0.5V, VIN = 1.0V
-
200
-
µA
6
VSEN = 6.0V, VIN = 1.0V
0.4
0.5
0.6
VSEN = 6.0V, VIN = 6.0V
2.9
3.0
3.1
V
7
VIN = VSEN = 0V ~ 0.7V
-
0.3
0.4
V
8
30
230
µs
9
30
200
µs
9
VTCD
VUNS
TDF0
TDR0
VIN = 6.0V, VSEN = 6.0V→0.0V
Cd: Open
VIN = 6.0V, VSEN = 0.0V→6.0V
Cd: Open
E-4
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
7
XC6108 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxC
PARAMETER
Ta=25℃
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-2
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
µA
2
Supply Current 2
(*2)
ISS2
VSEN =
VDF x 1.1
µA
2
mA
3
mA
4
ppm/
℃
1
MΩ
5
Output Current
(*3)
Temperature
Characteristics
Sense Resistance
(*4)
Unspecified Operating
Voltage (*5)
Detect Delay Time (*6)
Release Delay Time
(*7)
IOUT
VSEN =0V
VDS = 0.5V (N-ch)
VSEN = 6.0V
VDS = 0.5V (P-ch)
TYP.
MAX.
-
6.0
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±100
-
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
VUNS
VIN = VSEN = 0V ~ 0.7V
TDF0
TDR0
E-4
-
UNITS
0.3
0.4
V
7
VIN = 6.0V, VSEN = 6.0V→0.0V
30
230
µs
9
VIN = 6.0V, VSEN = 0.0V→6.0V
30
200
µs
9
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
8
CIRCUITS
XC6108
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxD
PARAMETER
Ta=25℃
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V (*1)
1.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Range1
VHYS1
VIN = 1.0 ~ 6.0V
E-3
V
1
Detect Voltage
Line Regulation
ΔVDF
ΔVIN・VDF
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
µA
2
Supply Current 2
(*2)
ISS2
VSEN =
VDF x 1.1
µA
2
mA
3
mA
4
ppm/
℃
1
MΩ
5
Output Current
(*3)
Temperature
Characteristics
Sense Resistance
(*4)
Unspecified Operating
Voltage (*5)
Detect Delay Time (*6)
Release Delay Time
(*7)
IOUT
TYP.
MAX.
-
6.0
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VSEN =0V
VDS = 0.5V (N-ch)
VIN = 1.0V
0.08
0.20
-
VIN = 6.0V
1.20
2.00
-
VSEN = 6.0V
VDS = 0.5V (P-ch)
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
-
±100
-
ΔVDF
ΔTa・VDF
-40 ℃ ≦ Ta ≦ 85℃
RSEN
VSEN = 5.0V, VIN = 0V
VUNS
VIN = VSEN = 0V ~ 0.7V
TDF0
TDR0
E-4
-
UNITS
CIRCUITS
0.3
0.4
V
7
VIN = 6.0V, VSEN = 6.0V→0.0V
30
230
µs
9
VIN = 6.0V, VSEN = 0.0V→6.0V
30
200
µs
9
NOTE:
*1: VDF(T): Setting detect voltage
*2: Current flows the sense resistor is not included.
*3: This numerical value is applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited
This numerical value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
9
XC6108 Series
■VOLTAGE CHART
SYMBOL
E-1
SETTING OUTPUT
VOLTAGE
DETECT VOLTAGE
(*1) (V)
VDF(T)
(V)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
VDF
MIN.
0.770
0.870
0.970
1.070
1.170
1.270
1.370
1.470
1.568
1.666
1.764
1.862
1.960
2.058
2.156
2.254
2.352
2.450
2.548
2.646
2.744
2.842
2.940
3.038
3.136
3.234
3.332
3.430
3.528
3.626
3.724
3.822
3.920
4.018
4.116
4.214
4.312
4.410
4.508
4.606
4.704
4.802
4.900
MAX.
0.830
0.930
1.030
1.230
1.230
1.330
1.430
1.530
1.632
1.734
1.836
1.938
2.040
2.142
2.244
2.346
2.448
2.550
2.652
2.754
2.856
2.958
3.060
3.162
3.264
3.366
3.468
3.570
3.672
3.774
3.876
3.978
4.080
4.182
4.284
4.386
4.488
4.590
4.692
4.794
4.896
4.998
5.100
E-2
HYSTERESIS
RANGE
(V)
VHYS
MIN.
MAX.
0.015
0.066
0.017
0.074
0.019
0.082
0.021
0.090
0.023
0.098
0.025
0.106
0.027
0.114
0.029
0.122
0.031
0.131
0.033
0.085
0.035
0.147
0.037
0.155
0.039
0.163
0.041
0.171
0.043
0.180
0.045
0.188
0.047
0.196
0.049
0.204
0.051
0.212
0.053
0.220
0.055
0.228
0.057
0.237
0.059
0.245
0.061
0.253
0.063
0.261
0.065
0.269
0.067
0.277
0.069
0.286
0.071
0.294
0.073
0.302
0.074
0.310
0.076
0.318
0.078
0.326
0.080
0.335
0.082
0.343
0.084
0.351
0.086
0.359
0.088
0.367
0.090
0.375
0.092
0.384
0.094
0.392
0.096
0.400
0.098
0.408
NOTE:
*1: When VDF(T)≦1.4V, the detection accuracy is ±30mV.
When VDF(T)≧1.5V, the detection accuracy is ±2%.
10
E-3
HYSTERESIS
RANGE
(V)
VHYS
MIN.
MAX.
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.026
0.027
0.028
0.029
0
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049
0.050
0.051
E-4
SENSE
RESISTANCE
(MΩ)
RSEN
MIN.
TYP.
10
20
13
24
15
28
XC6108
Series
■TEST CIRCUITS
Circuit 1
Circuit 2
Circuit 3
Circuit 4
Circuit 5
11
XC6108 Series
■TEST CIRCUITS (Continued)
Circuit 6
Circuit 7
Circuit 8
Circuit 9
R=100kΩ
(No resistor needed for
CMOS output products)
VIN
VOUT
VSEN
Waveform Measurement Point
Cd
VSS
12
* No delay capacitance pin available
in the XC6108xxxC/D series.
XC6108
Series
■OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on the next page.
① As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
* If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.
② When the sense pin voltage keeps dropping and becomes equal to the detect voltage, an N-ch transistor for the delay
capacitance discharge is turned ON, and starts to discharge the delay capacitance. For the internal circuit, which uses
the delay capacitance pin as power input, the reference voltage operates as a comparator of VIN, and the output voltage
changes into the “Low” level (=VSS). The detect delay time [TDF] is defined as time which ranges from VSEN=VDF to the
VOUT of “Low” level (especially, when the Cd pin is not connected: TDF0).
③ While the sense pin voltage keeps below the detect voltage, the delay capacitance is discharged to the ground voltage
(=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to reach the
release voltage (VSEN< VDF +VHYS).
④ When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor for the
delay capacitance discharge will be turned OFF, and the delay capacitance will start discharging via a delay resistor
(Rdelay). The internal circuit, which uses the delay capacitance pin as power input, will operate as a hysteresis
comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the sense pin voltage keeps
higher than the detect voltage (VSEN > VDF).
⑤ While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC
series circuit. Assuming the time to the release delay time (TDR), it can be given by the formula (1).
TDR = -Rdelay×Cd×In (1-VTCD / VIN) …(1)
* In = a natural logarithm
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and
the delay capacitance pin voltage is VIN /2 (TYP.)
TDR = 2.0e6×Cd×0.69…(2)
As an example, presuming that the delay capacitance is 0.68μF, TDR is :
2.0e6×0.68e-6×0.69 = 938 (ms)
* Note that the release delay time may remarkably be short when the delay capacitance is not discharged to the ground
(=VSS) level because time described in ③ is short.
⑥ When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), output of an
internal circuit, which uses the delay capacitance pin as power input will be inverted. As a result, the output voltage
changes into the “High” (=VIN) level. TDR0 is defined as time which ranges from VSEN=VDF+VHYS to the VOUT of “High”
level without connecting to the Cd.
⑦ While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN)
level.
●Release Delay Time Chart
Delay Capacitance [Cd]
(μF)
0.010
0.022
0.047
0.100
0.220
0.470
1.000
Release Delay Time [TDR]
(TYP.)
(ms)
13.8
30.4
64.9
138
304
649
1380
Release Delay Time [TDR]
(MIN. ~ MAX.)
(ms)
11.0 ~ 16.6
24.3 ~ 36.4
51.9 ~ 77.8
110 ~ 166
243~ 364
519 ~ 778
1100 ~ 1660
13
XC6108 Series
■OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
The circuit which uses the delay
capacitance pin as power input.
VIN
VSEN
RSEN
=R1+R2+R3
R1
VIN
VSEN
R2
VOUT
Rdelay
+
-
Vref
R3
Cd
N-ch transistor for the
delay capacitance
discharge
Figure 2: The timing chart of Figure 1
14
External Delay
Capacitor [Cd]
VSS
* In the XC6108N series (N-ch open
drain output), a pull-up resistor for
pulling up output is required.
XC6108
Series
■NOTES ON USE
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent
damage to the device.
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through
current at operation of the IC.
At this time, the operation may be wrong if the power supply input pin voltage falls below
the minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage
similarly occur.
Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used,
oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed
the hysteresis voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage
over 1.0V to the VIN pin.
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.
5. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release
operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between
the VIN pin and the Cd pin as the Figure 3 shown below.
6. In N-ch open drain output, a pull-up resistor connected to the output voltage pin should be 100k-200kΩ.
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode
15
XC6108 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
XC6108C25A GR
VIN=3.0V
Supply Current: ISS (µA)
2.0
Ta=85℃
1.5
25℃
1.0
0.5
-40℃
0.0
0
1
2
3
4
5
Sense Voltage: VSEN (V)
6
(2) Supply Current vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
1.2
1.0
1.0
Supply Current: ISS (µA)
Supply Current: ISS (µA)
VSEN=2.25V
1.2
Ta=85℃
0.8
25℃
0.6
0.4
-40℃
0.2
VSEN=2.75V
Ta=85℃
0.8
0.6
25℃
0.4
-40℃
0.2
0.0
0.0
0
1
2
3
4
5
Input Voltage: VIN (V)
0
6
1
2
3
4
5
6
Input Voltage: VIN (V)
(3) Detect Voltage vs. Ambient Temperature
(4) Detect Voltage vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
VIN=4.0V
2.55
2.55
Detect Voltage: VDF (V)
Detect Voltage: VDF (V)
Ta=25℃
2.50
2.45
2.50
-40℃
2.45
-50
16
85℃
-25
0
25
50
75
A mbient Temperature: Ta ( ℃ )
100
1.0
2.0
3.0
4.0
5.0
Input Voltage: VIN (V)
6.0
XC6108
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature
(6) CD Pin Sink Current vs. Input Voltage
XC6108C25AGR
XC6108C25A GR
VIN=4.0V
VSEN=0V, VDS=0.5V
3.0
Cd PIN Sink Current: ICD (mA)
Hysteresis Voltage:
VHYS (V)
0.20
0.15
0.10
2.5
Ta=-40℃
2.0
25℃
1.5
1.0
85℃
0.5
0.05
0.0
-50
-25
0
25
50
75
A mbient Temperature: Ta ( ℃ )
100
(7) Output Voltage vs. Sense Voltage
0
1
2
3
4
5
Input Voltage: VIN (V)
6
(8) Output Voltage vs. Input Voltage
XC6108C25AGR
XC6108N25AGR
Ta=25℃
7.0
VSEN=VIN, Pull-up=VIN, R=100kΩ
4.0
VIN=6.0V
5.0
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
6.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
6
3.0
Ta=85℃
2.0
25℃
1.0
-40℃
0.0
-1.0
0
Sense Voltage: VSEN (V )
0.5
1
1.5
2
2.5
Input Voltage: VIN (V)
3
(9) Output Current vs. Input Voltage
XC6108C25AGR
VDS(Nch)=0.5V
4.0
3.5
Ta=-40℃
3.0
25℃
2.5
2.0
1.5
85℃
1.0
0.5
0.0
VDS(Pch)=0.5V
0.0
Output Current: IOUT (mA)
Output Current: IOUT (mA)
XC6108C25AGR
-0.5
Ta=85℃
-1.0
25℃
-1.5
-40℃
-2.0
0
1
2
3
4
5
Input Voltage: VIN (V)
6
0
1
2
3
4
5
Input Voltage: VIN (V)
6
17
XC6108 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature
(11) Release Delay Time vs. Delay Capacitance
XC6108C25A GR
XC6108C25AGR
VSEN=6.0V, VCD=0.0V, VIN=5.0V
3.5
3
2.5
2
1.5
1
-50
-25
0
25
50
75
100
Ambient Temperature: Ta ( ℃ )
(12) Detect Delay Time vs. Delay Capacitance
XC6108C25A GR
Ta=25℃
Detect Delay Time: TDF ( µs)
1000
VIN=6.0V
4.0V
100
2.0V
1.0V
1
0.0001
18
3.0V
10
0.001
0.01
0.1
Delay Capacitance: Cd ( µF)
Ta=25℃
10000
Release Delay Time: TDR (ms)
Delay Resistance: Rdelay (M Ω )
4
1
1000
V IN=1.0V
3.0V
6.0V
100
10
1
0.1
0.0001
TDR=Cd×2.0e6×0.69
0.001
0.01
0.1
Delay Capacitance: Cd ( µF)
1