◆CMOS ◆Highly Accurate : +2% ◆Ultra Low Power Consumption : 0.8µA(TYP.) (VIN = 2.0V) ◆Separated Sense Pin ◆Built-In Delay Circuit, Delay Pin Available ■APPLICATIONS ■GENERAL DESCRIPTION ■FEATURES The XC6108 series is highly precise, low power ●Microprocessor reset circuitry ●Charge voltage monitors ●Memory battery back-up switch circuits ●Power failure detection circuits Highly Accurate :+2% (Setting Detect Voltage≧1.5V) :+30mV (Setting Detect Voltage<1.5V) consumption voltage detector, manufactured using CMOS Ultra Low Power Consumption and laser trimming technologies. Since the sense pin is separated from power supply, it allows the IC to monitor added power supply. Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when voltage of the monitored power supply drops to 0V. Moreover, with the built-in delay circuit, connecting the delay : 0.8 µA (TYP.) (VIN= 2.0V) Detect Voltage Range : 0.8V ~ 5.0V in 100mV increments Operating Voltage Range : 1.0V ~ 6.0V Detect Voltage Temperature Characteristics : ±100ppm/ ℃(TYP.) Output Configuration : CMOS or N-channel open drain Operating Temperature Range capacitance pin to the capacitor enables the IC to provide an arbitrary release delay time. : -40 ℃ ~ +85 ℃ Ultra Small Package : USP-4 Both CMOS and N-channel open drain output configurations SOT-25 are available. ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS ●Output Voltage vs. Sense Voltage R VIN VOUT VSEN Cd Cd XC6108C25A GR 100kΩ VSS Ta=25℃ 7.0 No resistor needed for CMOS output product 6.0 Output Voltage: VOUT (V) VIN Added Power Supply V IN=6.0V 5.0 4.0 4.0V 3.0 2.0 1.0 1.0V 0.0 -1.0 0 1 2 3 4 5 6 Sense V oltage: V SEN (V ) XC6108 ETR0205_004.doc 1 XC6108 Series ■PIN CONFIGURATION VIN 4 VSEN 3 5 VSS 1 VOUT 5 4 Cd VSEN 2 Cd VOUT VSS USP-4 (BOTTOM VIEW) 1 * In the XC6108xxxA/B series, the dissipation pad should not be short-circuited with other pins. * In the XC6108xxxC/D series, when the dissipation pad is short-circuited with other pins, connect it to the NC pin (pin No.2) before use. VIN 2 3 SOT-25 (TOP VIEW) ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTION USP- 4 SOT-25 1 1 VOUT Output (Detect ”L”) 2 5 Cd Delay Capacitance (*1) 2 - NC No Connection 3 4 VSEN Sense 4 3 VIN Input 5 2 VSS Ground (*2) NOTE: *1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5. *2: In the case of selecting no built-in delay pin type, the Cd pin will be used as the N.C. ■PRODUCT CLASSIFICATION ●Ordering Information XC6108 ①②③④⑤⑥ DESIGNATOR DESCRIPTION ① Output Configuration ② ③ Detect Voltage ④ 2 Output Delay & Hysteresis (Options) ⑤ Package ⑥ Device Orientation SYMBOL DESCRIPTION C : CMOS output N : N-ch open drain output 08 ~ 50 : e.g. 18→1.8V A : Built-in delay pin, hysteresis 5% (TYP.) B : Built-in delay pin, hysteresis less than 1% C : No built-in delay pin, hysteresis 5% (TYP.) D : No built-in delay pin, hysteresis less than 1% G : USP-4 M : SOT-25 R : Embossed tape, standard feed L : Embossed tape, reverse feed XC6108 Series ■PACKAGING INFORMATION ●USP-4 0. 7±0. 1 0. 3±0. 05 0. 2±0. 1 MAX0 . 6 0. 007 - 0 . 0 0 4 +0 . 0 0 5 1. 6±0. 08 1. 2±0. 08 * Soldering fillet surface is not formed because the sides of the pins are plated. 1. 0±0. 1 ( 0. 6) ●SOT-25 3 XC6108 Series ■BLOCK DIAGRAMS ●XC6108CxxA/B ●XC6108CxxC/D ●XC6108NxxA/B ●XC6108NxxC/D 4 XC6108 Series ■ABSOLUTE MAXIMUM RATINGS ●XC6108xxxA/B Ta = 25OC PARAMETER SYMBOL RATINGS UNITS Input Voltage VIN VSS-0.3 ~ 7.0 V Output Current IOUT 10 mA Output Voltage XC6108C (*1) XC6108N (*2) VOUT VSS-0.3 ~ VIN+0.3 VSS-0.3 ~ 7.0 V V Sense Pin Voltage VSEN VSS-0.3 ~ 7.0 Delay Pin Voltage VCD VSS-0.3 ~ VIN+0.3 V Delay Pin Current ICD 5.0 mA USP-4 Power Dissipation SOT-25 Pd 120 250 mW Operating Temperature Range Ta -40 ~+85 ℃ Storage Temperature Range Tstg -55 ~+125 ℃ O Ta = 25 C ●XC6108xxxC/D PARAMETER SYMBOL RATINGS UNITS Input Voltage VIN VSS-0.3 ~ 7.0 V Output Current IOUT 10 mA Output Voltage XC6108C (*1) XC6108N (*2) Sense Pin Voltage Power Dissipation VOUT VSEN USP-4 SOT-25 Pd VSS-0.3 ~ VIN+0.3 VSS-0.3 ~ 7.0 VSS-0.3 ~ 7.0 120 250 V V mW Operating Temperature Range Ta -40 ~+85 ℃ Storage Temperature Range Tstg -55 ~+125 ℃ NOTE: *1: CMOS output *2: N-ch open drain output 5 XC6108 Series ■ELECTRICAL CHARACTERISTICS ●XC6108xxxA PARAMETER Ta=25℃ SYMBOL CONDITIONS MIN. Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-2 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 µA 2 Supply Current 2 (*2) ISS2 µA 2 mA 3 mA 4 ppm/ ℃ 1 MΩ 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Delay Resistance (*5) Delay pin Sink Current Delay Capacitance Pin Threshold Voltage Unspecified Operating Voltage (*6) Detect Delay Time (*7) Release Delay Time (*8) IOUT TYP. MAX. - 6.0 - ±0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VSEN = VDF x 1.1 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VSEN = 6.0V VDS = 0.5V (P-ch) VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ±100 - UNITS CIRCUITS ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V Rdelay VSEN = 6.0V, VIN = 5.0V, Cd = 0V 1.6 2.0 2.4 MΩ 6 ICD VDS = 0.5V, VIN = 1.0V - 200 - µA 6 VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6 VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V 7 VIN = VSEN = 0V ~ 0.7V - 0.3 0.4 V 8 30 230 µs 9 30 200 µs 9 VTCD VUNS TDF0 TDR0 VIN = 6.0V, VSEN = 6.0V→0.0V Cd: Open VIN = 6.0V, VSEN = 0.0V→6.0V Cd: Open E-4 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin. 6 XC6108 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxB PARAMETER Ta=25℃ SYMBOL CONDITIONS MIN. Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 µA 2 Supply Current 2 (*2) ISS2 µA 2 mA 3 mA 4 ppm/ ℃ 1 MΩ 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Delay Resistance (*5) Delay pin Sink Current Delay Capacitance Pin Threshold Voltage Unspecified Operating Voltage (*6) Detect Delay Time (*7) Release Delay Time (*8) IOUT TYP. MAX. - 6.0 - ±0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VSEN = VDF x 1.1 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ±100 - VSEN = 6.0V VDS = 0.5V (P-ch) UNITS CIRCUITS ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V Rdelay VSEN = 6.0V, VIN = 5.0V, Cd = 0V 1.6 2.0 2.4 MΩ 6 ICD VDS = 0.5V, VIN = 1.0V - 200 - µA 6 VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6 VSEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1 V 7 VIN = VSEN = 0V ~ 0.7V - 0.3 0.4 V 8 30 230 µs 9 30 200 µs 9 VTCD VUNS TDF0 TDR0 VIN = 6.0V, VSEN = 6.0V→0.0V Cd: Open VIN = 6.0V, VSEN = 0.0V→6.0V Cd: Open E-4 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: Calculated from the voltage value of the VIN and the current value of the Cd. *6: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin. *8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin. 7 XC6108 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxC PARAMETER Ta=25℃ SYMBOL CONDITIONS MIN. Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-2 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 µA 2 Supply Current 2 (*2) ISS2 VSEN = VDF x 1.1 µA 2 mA 3 mA 4 ppm/ ℃ 1 MΩ 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Unspecified Operating Voltage (*5) Detect Delay Time (*6) Release Delay Time (*7) IOUT VSEN =0V VDS = 0.5V (N-ch) VSEN = 6.0V VDS = 0.5V (P-ch) TYP. MAX. - 6.0 - ±0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ±100 - ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V VUNS VIN = VSEN = 0V ~ 0.7V TDF0 TDR0 E-4 - UNITS 0.3 0.4 V 7 VIN = 6.0V, VSEN = 6.0V→0.0V 30 230 µs 9 VIN = 6.0V, VSEN = 0.0V→6.0V 30 200 µs 9 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises. 8 CIRCUITS XC6108 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC6108xxxD PARAMETER Ta=25℃ SYMBOL CONDITIONS MIN. Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V (*1) 1.0 V - Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1 Hysteresis Range1 VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1 Detect Voltage Line Regulation ΔVDF ΔVIN・VDF VIN = 1.0 ~ 6.0V %/V 1 Supply Current 1 (*2) ISS1 VSEN = VDF x 0.9 µA 2 Supply Current 2 (*2) ISS2 VSEN = VDF x 1.1 µA 2 mA 3 mA 4 ppm/ ℃ 1 MΩ 5 Output Current (*3) Temperature Characteristics Sense Resistance (*4) Unspecified Operating Voltage (*5) Detect Delay Time (*6) Release Delay Time (*7) IOUT TYP. MAX. - 6.0 - ±0.1 - VIN = 1.0V - 0.6 1.5 VIN = 6.0V - 0.7 1.6 VIN = 1.0V - 0.8 1.7 VIN = 6.0V - 0.9 1.8 VSEN =0V VDS = 0.5V (N-ch) VIN = 1.0V 0.08 0.20 - VIN = 6.0V 1.20 2.00 - VSEN = 6.0V VDS = 0.5V (P-ch) VIN = 1.0V - -0.30 -0.08 VIN = 6.0V - -2.00 -0.70 - ±100 - ΔVDF ΔTa・VDF -40 ℃ ≦ Ta ≦ 85℃ RSEN VSEN = 5.0V, VIN = 0V VUNS VIN = VSEN = 0V ~ 0.7V TDF0 TDR0 E-4 - UNITS CIRCUITS 0.3 0.4 V 7 VIN = 6.0V, VSEN = 6.0V→0.0V 30 230 µs 9 VIN = 6.0V, VSEN = 0.0V→6.0V 30 200 µs 9 NOTE: *1: VDF(T): Setting detect voltage *2: Current flows the sense resistor is not included. *3: This numerical value is applied only to the XC6108C series (CMOS output). *4: Calculated from the voltage value and the current value of the VSEN. *5: The maximum voltage of the VOUT in the range of the VIN 0V to 0.7V when the VIN and the VSEN are short-circuited This numerical value is applied only to the XC6108C series (CMOS output). *6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls. *7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises. 9 XC6108 Series ■VOLTAGE CHART SYMBOL E-1 SETTING OUTPUT VOLTAGE DETECT VOLTAGE (*1) (V) VDF(T) (V) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 VDF MIN. 0.770 0.870 0.970 1.070 1.170 1.270 1.370 1.470 1.568 1.666 1.764 1.862 1.960 2.058 2.156 2.254 2.352 2.450 2.548 2.646 2.744 2.842 2.940 3.038 3.136 3.234 3.332 3.430 3.528 3.626 3.724 3.822 3.920 4.018 4.116 4.214 4.312 4.410 4.508 4.606 4.704 4.802 4.900 MAX. 0.830 0.930 1.030 1.230 1.230 1.330 1.430 1.530 1.632 1.734 1.836 1.938 2.040 2.142 2.244 2.346 2.448 2.550 2.652 2.754 2.856 2.958 3.060 3.162 3.264 3.366 3.468 3.570 3.672 3.774 3.876 3.978 4.080 4.182 4.284 4.386 4.488 4.590 4.692 4.794 4.896 4.998 5.100 E-2 HYSTERESIS RANGE (V) VHYS MIN. MAX. 0.015 0.066 0.017 0.074 0.019 0.082 0.021 0.090 0.023 0.098 0.025 0.106 0.027 0.114 0.029 0.122 0.031 0.131 0.033 0.085 0.035 0.147 0.037 0.155 0.039 0.163 0.041 0.171 0.043 0.180 0.045 0.188 0.047 0.196 0.049 0.204 0.051 0.212 0.053 0.220 0.055 0.228 0.057 0.237 0.059 0.245 0.061 0.253 0.063 0.261 0.065 0.269 0.067 0.277 0.069 0.286 0.071 0.294 0.073 0.302 0.074 0.310 0.076 0.318 0.078 0.326 0.080 0.335 0.082 0.343 0.084 0.351 0.086 0.359 0.088 0.367 0.090 0.375 0.092 0.384 0.094 0.392 0.096 0.400 0.098 0.408 NOTE: *1: When VDF(T)≦1.4V, the detection accuracy is ±30mV. When VDF(T)≧1.5V, the detection accuracy is ±2%. 10 E-3 HYSTERESIS RANGE (V) VHYS MIN. MAX. 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.026 0.027 0.028 0.029 0 0.030 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.050 0.051 E-4 SENSE RESISTANCE (MΩ) RSEN MIN. TYP. 10 20 13 24 15 28 XC6108 Series ■TEST CIRCUITS Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5 11 XC6108 Series ■TEST CIRCUITS (Continued) Circuit 6 Circuit 7 Circuit 8 Circuit 9 R=100kΩ (No resistor needed for CMOS output products) VIN VOUT VSEN Waveform Measurement Point Cd VSS 12 * No delay capacitance pin available in the XC6108xxxC/D series. XC6108 Series ■OPERATIONAL EXPLANATION A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on the next page. ① As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN). * If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected. ② When the sense pin voltage keeps dropping and becomes equal to the detect voltage, an N-ch transistor for the delay capacitance discharge is turned ON, and starts to discharge the delay capacitance. For the internal circuit, which uses the delay capacitance pin as power input, the reference voltage operates as a comparator of VIN, and the output voltage changes into the “Low” level (=VSS). The detect delay time [TDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level (especially, when the Cd pin is not connected: TDF0). ③ While the sense pin voltage keeps below the detect voltage, the delay capacitance is discharged to the ground voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to reach the release voltage (VSEN< VDF +VHYS). ④ When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor for the delay capacitance discharge will be turned OFF, and the delay capacitance will start discharging via a delay resistor (Rdelay). The internal circuit, which uses the delay capacitance pin as power input, will operate as a hysteresis comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF). ⑤ While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series circuit. Assuming the time to the release delay time (TDR), it can be given by the formula (1). TDR = -Rdelay×Cd×In (1-VTCD / VIN) …(1) * In = a natural logarithm The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and the delay capacitance pin voltage is VIN /2 (TYP.) TDR = 2.0e6×Cd×0.69…(2) As an example, presuming that the delay capacitance is 0.68μF, TDR is : 2.0e6×0.68e-6×0.69 = 938 (ms) * Note that the release delay time may remarkably be short when the delay capacitance is not discharged to the ground (=VSS) level because time described in ③ is short. ⑥ When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), output of an internal circuit, which uses the delay capacitance pin as power input will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. TDR0 is defined as time which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd. ⑦ While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN) level. ●Release Delay Time Chart Delay Capacitance [Cd] (μF) 0.010 0.022 0.047 0.100 0.220 0.470 1.000 Release Delay Time [TDR] (TYP.) (ms) 13.8 30.4 64.9 138 304 649 1380 Release Delay Time [TDR] (MIN. ~ MAX.) (ms) 11.0 ~ 16.6 24.3 ~ 36.4 51.9 ~ 77.8 110 ~ 166 243~ 364 519 ~ 778 1100 ~ 1660 13 XC6108 Series ■OPERATIONAL EXPLANATION (Continued) Figure 1: Typical application circuit example The circuit which uses the delay capacitance pin as power input. VIN VSEN RSEN =R1+R2+R3 R1 VIN VSEN R2 VOUT Rdelay + - Vref R3 Cd N-ch transistor for the delay capacitance discharge Figure 2: The timing chart of Figure 1 14 External Delay Capacitor [Cd] VSS * In the XC6108N series (N-ch open drain output), a pull-up resistor for pulling up output is required. XC6108 Series ■NOTES ON USE 1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device. 2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage similarly occur. Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. Note it especially when you use the IC with the VIN pin connected to a resistor. 3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over 1.0V to the VIN pin. 4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation. 5. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and the Cd pin as the Figure 3 shown below. 6. In N-ch open drain output, a pull-up resistor connected to the output voltage pin should be 100k-200kΩ. Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode 15 XC6108 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Supply Current vs. Sense Voltage XC6108C25A GR VIN=3.0V Supply Current: ISS (µA) 2.0 Ta=85℃ 1.5 25℃ 1.0 0.5 -40℃ 0.0 0 1 2 3 4 5 Sense Voltage: VSEN (V) 6 (2) Supply Current vs. Input Voltage XC6108C25AGR XC6108C25AGR 1.2 1.0 1.0 Supply Current: ISS (µA) Supply Current: ISS (µA) VSEN=2.25V 1.2 Ta=85℃ 0.8 25℃ 0.6 0.4 -40℃ 0.2 VSEN=2.75V Ta=85℃ 0.8 0.6 25℃ 0.4 -40℃ 0.2 0.0 0.0 0 1 2 3 4 5 Input Voltage: VIN (V) 0 6 1 2 3 4 5 6 Input Voltage: VIN (V) (3) Detect Voltage vs. Ambient Temperature (4) Detect Voltage vs. Input Voltage XC6108C25AGR XC6108C25AGR VIN=4.0V 2.55 2.55 Detect Voltage: VDF (V) Detect Voltage: VDF (V) Ta=25℃ 2.50 2.45 2.50 -40℃ 2.45 -50 16 85℃ -25 0 25 50 75 A mbient Temperature: Ta ( ℃ ) 100 1.0 2.0 3.0 4.0 5.0 Input Voltage: VIN (V) 6.0 XC6108 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (5) Hysteresis Voltage vs. Ambient Temperature (6) CD Pin Sink Current vs. Input Voltage XC6108C25AGR XC6108C25A GR VIN=4.0V VSEN=0V, VDS=0.5V 3.0 Cd PIN Sink Current: ICD (mA) Hysteresis Voltage: VHYS (V) 0.20 0.15 0.10 2.5 Ta=-40℃ 2.0 25℃ 1.5 1.0 85℃ 0.5 0.05 0.0 -50 -25 0 25 50 75 A mbient Temperature: Ta ( ℃ ) 100 (7) Output Voltage vs. Sense Voltage 0 1 2 3 4 5 Input Voltage: VIN (V) 6 (8) Output Voltage vs. Input Voltage XC6108C25AGR XC6108N25AGR Ta=25℃ 7.0 VSEN=VIN, Pull-up=VIN, R=100kΩ 4.0 VIN=6.0V 5.0 Output Voltage: VOUT (V) Output Voltage: VOUT (V) 6.0 4.0 4.0V 3.0 2.0 1.0 1.0V 0.0 -1.0 0 1 2 3 4 5 6 3.0 Ta=85℃ 2.0 25℃ 1.0 -40℃ 0.0 -1.0 0 Sense Voltage: VSEN (V ) 0.5 1 1.5 2 2.5 Input Voltage: VIN (V) 3 (9) Output Current vs. Input Voltage XC6108C25AGR VDS(Nch)=0.5V 4.0 3.5 Ta=-40℃ 3.0 25℃ 2.5 2.0 1.5 85℃ 1.0 0.5 0.0 VDS(Pch)=0.5V 0.0 Output Current: IOUT (mA) Output Current: IOUT (mA) XC6108C25AGR -0.5 Ta=85℃ -1.0 25℃ -1.5 -40℃ -2.0 0 1 2 3 4 5 Input Voltage: VIN (V) 6 0 1 2 3 4 5 Input Voltage: VIN (V) 6 17 XC6108 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10) Delay Resistance vs. Ambient Temperature (11) Release Delay Time vs. Delay Capacitance XC6108C25A GR XC6108C25AGR VSEN=6.0V, VCD=0.0V, VIN=5.0V 3.5 3 2.5 2 1.5 1 -50 -25 0 25 50 75 100 Ambient Temperature: Ta ( ℃ ) (12) Detect Delay Time vs. Delay Capacitance XC6108C25A GR Ta=25℃ Detect Delay Time: TDF ( µs) 1000 VIN=6.0V 4.0V 100 2.0V 1.0V 1 0.0001 18 3.0V 10 0.001 0.01 0.1 Delay Capacitance: Cd ( µF) Ta=25℃ 10000 Release Delay Time: TDR (ms) Delay Resistance: Rdelay (M Ω ) 4 1 1000 V IN=1.0V 3.0V 6.0V 100 10 1 0.1 0.0001 TDR=Cd×2.0e6×0.69 0.001 0.01 0.1 Delay Capacitance: Cd ( µF) 1