Datasheet - Torex Semiconductor

XC6108 Series
ETR0205_010a
Voltage Detector with Separated Sense Pin & Delay Capacitor Pin
■GENERAL DESCRIPTION
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming
technologies.
Since the sense pin is separated from power supply, it allows the IC to monitor added power supply.
Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when
voltage of the monitored power supply drops to 0V.
Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an
arbitrary release delay time.
Both CMOS and N-channel open drain output configurations are available.
■APPLICATIONS
■FEATURES
●Microprocessor reset circuitry
Highly Accurate
: +2% (Detect Voltage≧1.5V)
+30mV (Detect Voltage<1.5V)
●Charge voltage monitors
Low Power Consumption
●Memory battery back-up switch circuits
: 0.6 μA TYP. (detect, VIN= 1.0V )
0.8 μA TYP. (release, VIN= 1.0V )
●Power failure detection circuits
: 0.8V ~ 5.0V in 0.1V increments
Detect Voltage Range
Operating Voltage Range : 1.0V ~ 6.0V
Temperature Stability
: ±100ppm/ ℃ TYP.
Output Configuration
: CMOS or N-channel open drain
Operating Temperature
: -40 ℃ ~ +85 ℃
Separated Sense Pin
: VSEN Pin Available
Built-In Delay Circuit
: Delay Time Adjustable
Packages
: USP-4, SOT-25
Environmentally Friendly : EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT
■TYPICAL PERFORMANCE
CHARACTERISTICS
●Output Voltage vs. Sense Voltage
XC6108C25A GR
(No Pull-Up resistor needed for
7.0
CMOS output product)
6.0
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Monitering
Power
supply
Ta=25℃
V IN=6.0V
5.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
6
Sense
oltage: VVSEN
(V)
SenseVVoltage:
SEN (V)
1/22
XC6108 Series
■PIN CONFIGURATION
5
4
Cd
VSEN
VOUT VSS
USP-4
(BOTTOM VIEW)
1
* In the XC6108xxxA/B series, the dissipation pad should
not be short-circuited with other pins.
* In the XC6108xxxC/D series, when the dissipation pad
is short-circuited with other pins, connect it to the NC
pin (No.2) pin before use.
VIN
2
3
SOT-25
(TOP VIEW)
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTION
USP- 4
SOT-25
1
1
VOUT
Output (Detect ”L”)
2
5
Cd
Delay Capacitance (*1)
2
-
NC
No Connection
3
4
VSEN
Sense
4
3
VIN
Input
5
2
VSS
Ground (*2)
NOTE:
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be
used as the N.C.
■PRODUCT CLASSIFICATION
●Ordering Information
XC6108 ①②③④⑤⑥-⑦(*1)
DESIGNATOR
DESCRIPTION
①
Output Configuration
②③
Detect Voltage
④
Output Delay & Hysteresis
(Options)
SYMBOL
C
CMOS output
N
N-ch open drain output
08 ~ 50
Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)
B
Built-in delay capacitance pin, hysteresis less than 1%(Standard*)
No built-in delay capacitance pin, hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin, hysteresis less than 1%
(Semi-custom)
USP-4
C
GR
Packages
Taping Type (*2)
e.g. 18→1.8V
A
D
⑤⑥-⑦
DESCRIPTION
GR-G
USP-4
MR
SOT-25
MR-G
SOT-25
*When delay function isn’t used, open the delay capacitance pin before use.
(*1)
(*2)
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or
representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)
2/22
XC6108
Series
■BLOCK DIAGRAMS
(1) XC6108CxxA
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram
of XC6108CxxC (semi-custom).
(2) XC6108CxxB
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108CxxD (semi-custom).
(3) XC6108NxxA
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxC (semi-custom).
(4) XC6108NxxB
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxD (semi-custom).
3/22
XC6108 Series
■ABSOLUTE MAXIMUM RATINGS
●XC6108xxxA/B
Ta = 25OC
PARAMETER
SYMBOL
Input Voltage
Output Current
Output Voltage
XC6108C
(*1)
XC6108N
(*2)
RATINGS
VIN
VSS-0.3 ~ 7.0
V
IOUT
10
mA
VOUT
VSS-0.3 ~ VIN+0.3
VSS-0.3 ~ 7.0
V
Sense Pin Voltage
VSEN
VSS-0.3 ~ 7.0
V
Delay Capacitance Pin Voltage
VCD
VSS-0.3 ~ VIN+0.3
V
Delay Capacitance Pin Current
ICD
5.0
mA
USP-4
Power Dissipation
Pd
SOT-25
120
250
mW
Operating Temperature Range
Ta
-40 ~+85
℃
Storage Temperature Range
Tstg
-55 ~+125
℃
O
Ta = 25 C
●XC6108xxxC/D
PARAMETER
SYMBOL
Input Voltage
Output Current
Output Voltage
XC6108C
(*1)
XC6108N
(*2)
Sense Pin Voltage
Power Dissipation
SOT-25
UNITS
VIN
VSS-0.3 ~ 7.0
V
IOUT
10
mA
VOUT
VSEN
USP-4
RATINGS
Pd
VSS-0.3 ~ VIN+0.3
VSS-0.3 ~ 7.0
VSS-0.3 ~ 7.0
120
250
V
V
mW
Operating Temperature Range
Ta
-40 ~+85
℃
Storage Temperature Range
Tstg
-55 ~+125
℃
NOTE:
*1: CMOS output
*2: N-ch open drain output
4/22
UNITS
XC6108
Series
■ELECTRICAL CHARACTERISTICS
●XC6108xxxA
PARAMETER
Ta=25℃
SYMBOL
Operating Voltage
CONDITIONS
VIN
VDF(T) = 0.8 ~ 5.0V
(*1)
MIN.
TYP.
MAX.
UNITS
CIRCUITS
1.0
-
6.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
①
Hysteresis Width
VHYS
VIN = 1.0 ~ 6.0V
E-2
V
①
Detect Voltage
Line Regulation
ΔVDF /
(ΔVIN・VDF)
VIN = 1.0 ~ 6.0V
%/V
①
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
μA
②
Supply Current 2 (*2)
ISS2
VSEN =
VDF x 1.1
μA
②
mA
③
mA
④
μA
③
ppm/
℃
①
MΩ
⑤
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch)
Output Current (*3)
Leakage
Current
CMOS
Output
Nch Open
Drain Output
ILEAK
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VIN = 1.0V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VIN = 6.0V
0.1
0.8
1.2
1.6
1.8
1.9
0.7
1.6
2.0
2.3
2.4
2.5
-
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
0.20
-
0.20
0.40
±100
-
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open
-
-40 ℃ ≦ Ta ≦ 85℃
-
Temperature Characteristics
ΔVDF /
(ΔTopr・VDF)
Sense Resistance (*4)
RSEN
VSEN = 5.0V, VIN = 0V
Rdelay
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
1.6
2.0
2.4
MΩ
⑥
ICD
VDS = 0.5V, VIN = 1.0V
-
200
-
μA
⑥
VSEN = 6.0V, VIN = 1.0V
0.4
0.5
0.6
VSEN = 6.0V, VIN = 6.0V
2.9
3.0
3.1
V
⑦
VIN = VSEN = 0V ~ 1.0V
-
0.3
0.4
V
⑧
30
230
μs
⑨
30
200
μs
⑨
Delay Resistance (*5)
Delay capacitance pin
Sink Current
Delay Capacitance Pin
Threshold Voltage
VTCD
Unspecified Operating
Voltage (*6)
VUNS
Detect Delay Time (*7)
tDF0
Release Delay Time (*8)
tDR0
VIN = 6.0V, VSEN = 6.0V→ 0.0V
Cd: Open
VIN = 6.0V, VSEN = 0.0V→ 6.0V
Cd: Open
E-4
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
5/22
XC6108 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxB
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
(*1)
MIN.
TYP.
MAX.
UNITS
CIRCUITS
1.0
-
6.0
V
-
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
①
Hysteresis Width
VHYS
VIN = 1.0 ~ 6.0V
E-3
V
①
Detect Voltage
Line Regulation
ΔVDF /
(ΔVIN・VDF)
VIN = 1.0 ~ 6.0V
%/V
①
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
μA
②
Supply Current 2 (*2)
ISS2
VSEN =
VDF x 1.1
μA
②
mA
③
mA
④
μA
③
ppm/
℃
①
MΩ
⑤
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch)
Output Current (*3)
Leakage
Current
CMOS
Output
Nch Open
Drain Output
ILEAK
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VIN = 1.0V
0.1
0.7
-
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VIN = 6.0V
0.8
1.2
1.6
1.8
1.9
1.6
2.0
2.3
2.4
2.5
-
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
-
-2.00
-0.70
0.20
-
0.20
0.40
±100
-
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open
-
-
Temperature Characteristics
ΔVDF /
(ΔTopr・VDF)
-40 ℃ ≦ Ta ≦ 85℃
Sense Resistance (*4)
RSEN
VSEN = 5.0V, VIN = 0V
Rdelay
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
1.6
2.0
2.4
MΩ
⑥
ICD
VDS = 0.5V, VIN = 1.0V
-
200
-
μA
⑥
VSEN = 6.0V, VIN = 1.0V
0.4
0.5
0.6
VSEN = 6.0V, VIN = 6.0V
2.9
3.0
3.1
V
⑦
VIN = VSEN = 0V ~ 1.0V
-
0.3
0.4
V
⑧
30
230
μs
⑨
30
200
μs
⑨
Delay Resistance
(*5)
Delay capacitance pin
Sink Current
Delay Capacitance Pin
Threshold Voltage
VTCD
Unspecified Operating
Voltage (*6)
VUNS
Detect Delay Time (*7)
tDF0
Release Delay Time (*8)
tDR0
VIN = 6.0V, VSEN = 6.0V→ 0.0V
Cd: Open
VIN = 6.0V, VSEN = 0.0V→ 6.0V
Cd: Open
E-4
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: Calculated from the voltage value of the VIN and the current value of the Cd.
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
6/22
XC6108
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxC
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
(*1)
MIN.
TYP.
MAX.
UNITS
CIRCUITS
1.0
-
6.0
V
-
Operating Voltage
VIN
VDF(T) = 0.8 ~ 5.0V
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
①
Hysteresis Width
VHYS
VIN = 1.0 ~ 6.0V
E-2
V
①
Detect Voltage
Line Regulation
ΔVDF /
(ΔVIN・VDF)
VIN = 1.0 ~ 6.0V
%/V
①
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
μA
②
Supply Current 2 (*2)
ISS2
VSEN =
VDF x 1.1
μA
②
mA
③
mA
④
μA
③
ppm/
℃
①
MΩ
⑤
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch)
Output Current (*3)
Leakage
Current
CMOS
Output
Nch Open
Drain Output
ILEAK
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VIN = 1.0V
0.1
0.7
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VIN = 6.0V
0.8
1.2
1.6
1.8
1.9
1.6
2.0
2.3
2.4
2.5
VIN = 1.0V
-
-0.30
VIN = 6.0V
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open
-
-
Temperature Characteristics
ΔVDF/
(ΔTopr・VDF)
-40 ℃ ≦ Ta ≦ 85℃
Sense Resistance (*4)
RSEN
VSEN = 5.0V, VIN = 0V
VUNS
VIN = VSEN = 0V ~ 1.0V
tDF0
tDR0
Unspecified Operating
Voltage (*5)
Detect Delay Time (*6)
Release Delay Time
(*7)
-
-
-0.08
-2.00
-0.70
0.20
-
0.20
0.40
±100
-
E-4
-
0.3
0.4
V
⑦
VIN = 6.0V, VSEN = 6.0V→ 0.0V
30
230
μs
⑨
VIN = 6.0V, VSEN = 0.0V→ 6.0V
30
200
μs
⑨
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
7/22
XC6108 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6108xxxD
Ta=25℃
PARAMETER
SYMBOL
Operating Voltage
CONDITIONS
VIN
VDF(T) = 0.8 ~ 5.0V
(*1)
MIN.
TYP.
MAX.
UNITS
CIRCUITS
1.0
-
6.0
V
-
Detect Voltage
VDF
VIN = 1.0 ~ 6.0V
E-1
V
1
Hysteresis Width
VHYS1
VIN = 1.0 ~ 6.0V
E-3
V
1
Detect Voltage
Line Regulation
ΔVDF /
(ΔVIN・VDF)
VIN = 1.0 ~ 6.0V
%/V
1
Supply Current 1 (*2)
ISS1
VSEN =
VDF x 0.9
μA
2
Supply Current 2 (*2)
ISS2
VSEN =
VDF x 1.1
μA
2
mA
3
mA
4
μA
3
ppm/
℃
1
MΩ
5
Output Current
Leakage
Current
IOUT1
VSEN =0V
VDS = 0.5V
(N-ch)
IOUT2
VSEN = 6.0V
VDS = 0.5V
(P-ch)
(*3)
CMOS
Output
Nch Open
Drain Output
ILEAK
-
±0.1
-
VIN = 1.0V
-
0.6
1.5
VIN = 6.0V
-
0.7
1.6
VIN = 1.0V
-
0.8
1.7
VIN = 6.0V
-
0.9
1.8
VIN = 1.0V
VIN = 2.0V
VIN = 3.0V
VIN = 4.0V
VIN = 5.0V
VIN = 6.0V
0.1
0.8
1.2
1.6
1.8
1.9
0.7
1.6
2.0
2.3
2.4
2.5
-
VIN = 1.0V
-
-0.30
-0.08
VIN = 6.0V
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open
-
-
Temperature Characteristics
ΔVDF /
(ΔTopr・VDF)
-40 ℃ ≦ Ta ≦ 85℃
Sense Resistance (*4)
RSEN
VSEN = 5.0V, VIN = 0V
VUNS
VIN = VSEN = 0V ~ 1.0V
tDF0
tDR0
Unspecified Operating
Voltage (*5)
Detect Delay Time (*6)
Release Delay Time
(*7)
-
-2.00
-0.70
0.20
-
0.20
0.40
±100
-
E-4
-
0.3
0.4
V
7
VIN = 6.0V, VSEN = 6.0V→ 0.0V
30
230
μs
9
VIN = 6.0V, VSEN = 0.0V→ 6.0V
30
200
μs
9
NOTE:
*1: VDF(T): Nominal detect voltage
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the VSEN.
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
This value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
8/22
XC6108
Series
■VOLTAGE CHART
SYMBOL
NOMINAL DETECT
VOLTAGE
VDF(T)
(V)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
E-1
DETECT VOLTAGE
(V)
(*1)
VDF
MIN.
0.770
0.870
0.970
1.070
1.170
1.270
1.370
1.470
1.568
1.666
1.764
1.862
1.960
2.058
2.156
2.254
2.352
2.450
2.548
2.646
2.744
2.842
2.940
3.038
3.136
3.234
3.332
3.430
3.528
3.626
3.724
3.822
3.920
4.018
4.116
4.214
4.312
4.410
4.508
4.606
4.704
4.802
4.900
MAX.
0.830
0.930
1.030
1.130
1.230
1.330
1.430
1.530
1.632
1.734
1.836
1.938
2.040
2.142
2.244
2.346
2.448
2.550
2.652
2.754
2.856
2.958
3.060
3.162
3.264
3.366
3.468
3.570
3.672
3.774
3.876
3.978
4.080
4.182
4.284
4.386
4.488
4.590
4.692
4.794
4.896
4.998
5.100
E-2
HYSTERESIS
RANGE
(V)
VHYS
MIN.
MAX.
0.015
0.066
0.017
0.074
0.019
0.082
0.021
0.090
0.023
0.098
0.025
0.106
0.027
0.114
0.029
0.122
0.031
0.131
0.033
0.085
0.035
0.147
0.037
0.155
0.039
0.163
0.041
0.171
0.043
0.180
0.045
0.188
0.047
0.196
0.049
0.204
0.051
0.212
0.053
0.220
0.055
0.228
0.057
0.237
0.059
0.245
0.061
0.253
0.063
0.261
0.065
0.269
0.067
0.277
0.069
0.286
0.071
0.294
0.073
0.302
0.074
0.310
0.076
0.318
0.078
0.326
0.080
0.335
0.082
0.343
0.084
0.351
0.086
0.359
0.088
0.367
0.090
0.375
0.092
0.384
0.094
0.392
0.096
0.400
0.098
0.408
E-3
HYSTERESIS
RANGE
(V)
VHYS
MIN.
MAX.
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.026
0.027
0.028
0.029
0
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049
0.050
0.051
E-4
SENSE
RESISTANCE
(MΩ)
RSEN
MIN.
TYP.
10
20
13
24
15
28
NOTE:
*1: When VDF(T)≦1.4V, the detection accuracy is ±30mV.
When VDF(T)≧1.5V, the detection accuracy is ±2%.
9/22
XC6108 Series
■TEST CIRCUITS
Circuit 1
R=100kΩ
(No resistor needed for CMOS output products)
XC6108 Series
Circuit 2
XC6108 Series
Circuit 3
XC6108 Series
Circuit 4
XC6108 Series
Circuit 5
XC6108 Series
10/22
XC6108
Series
■TEST CIRCUITS (Continued)
Circuit 6
XC6108 Series
Circuit 7
(No resistor needed for CMOS output products)
XC6108 Series
Circuit 8
XC6108 Series
Circuit 9
(No resistor needed for CMOS output products)
Waveform Measurement Point
XC6108 Series
*No delay capacitance pin available in the XC6108xxxC/D series.
11/22
XC6108 Series
■OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.
① As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
* If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.
② When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor
(M1) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An
inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level
(=VSS). The detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level
(especially, when the Cd pin is not connected: tDF0).
③ While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground
voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to
reach the release voltage (VSEN< VDF +VHYS).
④ When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay
resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic
Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).
⑤ While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC
series circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1).
tDR = -Rdelay×Cd×In (1-VTCD / VIN) …(1)
* In = a natural logarithm
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and
the delay capacitance pin voltage is VIN /2 (TYP.)
tDR = Rdelay×Cd×0.69…(2)
*:Rdelay is 2.0MΩ(TYP.)
As an example, presuming that the delay capacitance is 0.68μF, tDR is :
2.0×106×0.68×10-6×0.69=938(ms)
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the
ground (=VSS) level because time described in ③ is short.
⑥ When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. tDR0 is defined as time
which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.
⑦ While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN)
level.
12/22
XC6108
Series
■OPERATIONAL EXPLANATION (Continued)
●Function Chart
VSEN
Cd
L
H
L
H
L
H
L
H
L
H
TRANSITION OF VOUT CONDITION *1
①
②
L
⇒
L
⇒
L
H
L
H
⇒
⇒
H
*1: VOUT transits from condition ① to ② because of the combination of VSEN and Cd.
●Example
ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDR≧VSEN), Cd=’H’ (VTCD≧Cd) while VOUT is ‘L’.
ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1.
●Release Delay Time Chart
DELAY CAPACITANCE [Cd]
(μF)
0.010
0.022
0.047
0.100
0.220
0.470
1.000
RELEASE DELAY TIME [tDR]
(TYP.)
(ms)
13.8
30.4
64.9
138
304
649
1380
RELEASE DELAY TIME [tDR] *2
(MIN. ~ MAX.)
(ms)
11.0 ~ 16.6
24.3 ~ 36.4
51.9 ~ 77.8
110 ~ 166
243~ 364
519 ~ 778
1100 ~ 1660
* The release delay time values above are calculated by using the formula (2).
*2: The release delay time (tDR) is influenced by the delay capacitance Cd.
13/22
XC6108 Series
■OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
*The XC6108N series (N-ch open
drain output) requires a pull-up
resistor for pulling up output.
VIN
M2
VSEN
M4
RSEN=R1+R2+R3
Rdelay
Comparator
Inverter
VOUT
R1
VIN
VSEN
R2
R3
M3
Vref
M5
M1
VSS
Cd
Cd
Figure 2: The timing chart of Figure 1
VSEN (MIN.:0V, MAX.:6.0V)
VDF+VHYS
VDF
VCD(MIN.:VSS, MAX.:VIN)
VTCD
VOUT (MIN.:VSS, MAX:VIN)
14/22
XC6108
Series
■NOTES ON USE
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage
to the device.
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current
at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the
minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage
similarly occur.
Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of
the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis
voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over
1.0V to the VIN pin.
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.
5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND and
test on the board carefully.
6. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation
with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin
and the Cd pin as the Figure 3 shown below.
6. In N channel open drain output, VOUT voltage at detect and release is determined by resistance of a pull up resistor
connected at the VOUT pin. Please choose proper resistance values with reffering to Figure 4;
During detection : VOUT = Vpull / (1+Rpull / RON)
Vpull: Pull up voltage
RON(※1):On resistance of N channel driver M3 can be calculated as VDS / IOUT1 from electrical characteristics,
For example, when (※2) RON = 0.5 / 0.8×10-3 = 625Ω(MIN.)at VIN=2.0V, Vpull = 3.0V and VOUT ≦0.1V at detect,
Rpull= (Vpull /VOUT-1)×RON= (3 / 0.1-1)×625≒18kΩ
In this case, Rpull should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during
detection.
(※1) RON is bigger when VIN is smaller, be noted.
(※2) For calculation, Minimum VIN should be chosen among the input voltage range.
During releasing:VOUT = Vpull / (1 + Rpull / Roff)
Vpull:Pull up voltage
Roff:On resistance of N channel driver M3 is 15MΩ(MIN.) when the driver is off (as to VOUT / ILEAK)
For example:when Vpull = 6.0V and VOUT ≧ 5.99V,
Rpull = (Vpull / VOUT-1)×Roff = (6/5.99-1)×15×106 ≒25kΩ
In this case, Rpull should be selected smaller or equal to 25kΩ in order to obtain output voltage higher than 5.99V
during releasing.
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode
Figure 4: Circuit example of XC6108N Series
Vpull
VIN
M2
R=100kΩ
VIN
(No resistor needed for
CMOS output products)
VSEN
VIN
VOUT
VSEN
VSEN
Rpull
Rdelay
Comparator
Inverter
ILEA
K
R1
VOUT
VIN
VSEN
VOUT
M3
R2
Cd
Cd
RSEN=R1+R2+R3
Vref
VSS
R3
M5
M1
VSS
Cd
NOTE: Roff=VOUT/ILEAK
Figure 3
Figure 4
15/22
XC6108 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
XC6108C25A GR
VIN=3.0V
Supply Current : ISS (μA)
Supply Current: ISS (μA)
2.0
Ta=85℃
1.5
25℃
1.0
0.5
-40℃
0.0
0
1
2
3
4
5
VSEN
(V))
Sense Voltage
V oltage:: V
SEN (V
6
(2) Supply Current vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
1.2
1.0
1.0
Supply Current : ISS (μA)
Supply Current: ISS (μA)
Supply
Current
: ISSISS
(μA)
Supply
Current:
(μA)
VSEN =2.25V
1.2
Ta=85℃
0.8
25℃
0.6
0.4
-40℃
0.2
VSEN =2.75V
Ta=85℃
0.8
0.6
25℃
0.4
-40℃
0.2
0.0
0.0
0
1
2
3
4
5
InputVoltage
Voltage:
VIN(V)
(V)
Input
: VIN
0
6
1
2
3
4
5
6
Input Voltage
Voltage:: VIN
VIN(V)
(V)
(3) Detect Voltage vs. Ambient Temperature
(4) Detect Voltage vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
VIN=4.0V
2.55
2.55
Detect Voltage : VDF (V)
Detect Voltage: VDF (V)
Detect Voltage : VDF (V)
Detect Voltage: VDF (V)
Ta=25℃
2.50
2.45
2.50
-40℃
2.45
-50
16/22
85℃
-25
0
25
50
75
AAmbient
mbient Temperature:
Temperature :Ta
Ta( (℃)
℃)
100
1.0
2.0
3.0
4.0
5.0
Input
Voltage:
VIN
(V)
Input Voltage : VIN (V)
6.0
XC6108
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature
(6) CD Pin Sink Current vs. Input Voltage
XC6108C25AGR
XC6108C25AGR
VSEN =0V, VDS=0.5V
3.0
Cd PIN Sink Current : ICD (mA)
Cd PIN Sink Current: ICD (mA)
Hysteresis Voltage : VHYS (V)
Hysteresis Voltage:
VHYS (V)
VIN=4.0V
0.20
0.15
0.10
0.05
-50
-25
0
25
50
75
Ambient
A mbientTemperature
Temperature:: Ta
Ta(℃)
(℃)
2.5
Ta=-40℃
2.0
25℃
1.5
1.0
85℃
0.5
0.0
100
(7) Output Voltage vs. Sense Voltage
0
1
6
(8) Output Voltage vs. Input Voltage
XC6108C25A GR
XC6108N25AGR
V SEN=V IN Pull-up=V IN R=100kΩ
Ta=25℃
7.0
4.0
Output Voltage : VOUT (V)
Output Voltage: VOUT (V)
6.0
Output Voltage : VOUT (V)
Output Voltage: VOUT (V)
2
3
4
5
Input
InputVoltage:
Voltage : VIN
VIN (V)
(V)
V IN=6.0V
5.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
3.0
Ta=85℃
2.0
25℃
1.0
-40℃
0.0
-1.0
0
6
0.5
1
1.5
2
2.5
Input
Voltage
: VIN (V)
Supply
Voltage:
VIN
SEN (V)
Sense
oltage: :VVSEN
SenseVVoltage
(V)
3
(V)
(9) Output Current vs. Input Voltage
XC6108C25AGR
VD S(N ch)=0.5V
4.0
3.5
Ta=-40℃
3.0
25℃
2.5
2.0
1.5
85℃
1.0
VD S(Pch)=0.5V
0.0
Output
Current:
IOUT(mA)
(mA)
Output
Current
: IOUT
Output
OutputCurrent
Current:: IOUT
IOUT(mA)
(mA)
XC6108C25AGR
0.5
0.0
-0.5
Ta=85℃
-1.0
25℃
-1.5
-40℃
-2.0
0
1
2
3
4
5
Input Voltage
Voltage:: VIN
VIN(V)
(V)
Input
6
0
1
2
3
4
5
Input
Voltage:
VIN
(V)
Input Voltage : VIN (V)
6
17/22
XC6108 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature
(11) Release Delay Time vs. Delay Capacitance
XC6108C25AGR
XC6108C25AGR
Release
Time
: TDR
(ms)
ReleaseDelay
Delay
time:
TDR
(ms)
Delay Resistance: Rdelay
Delay Resistance : Rdelay (MΩ)
(MΩ)
V SEN=6.0V V CD=0.0V V IN=5.0V
4
3.5
3
2.5
2
1.5
1
-50
-25
0
25
50
75
Ta=25℃
10000
VIN=1.0V
3.0V
6.0V
1000
100
10
1
TDR=Cd×2.0×10 6 ×0.69
0.1
0.0001
100
0.001
0.01
0.1
1
Delay
Capacitor: :Cd
Delay Capacitance
Cd (μF)
(μF)
Ambient Temperature
: Ta (℃)
Ambient
Temperature:
Ta (℃ )
(12) Detect Delay Time vs. Delay Capacitance
(13) Leakage Current vs. Ambient Temperature
XC6108C25AGR
XC6108N25AGR
Ta=25℃
V IN=6.0V
4.0V
100
3.0V
2.0V
10
1.0V
1
0.0001
1
XC6108N25AGR
Leak Current: ILEAK (μA)
VIN=VSEN=6.0V
0.25
0.20
0.15
0.10
1
2
3
4
5
Output Voltage: VOUT (V)
18/22
0.25
0.20
0.15
0.10
-50
0.001
0.01
0.1
DelayCapacitance
Capacitance:
Cd(μF)
( μF)
Delay
: Cd
(14) Leakage Current vs. Supply Voltage
0
V IN=V SEN=6.0V V OUT=6.0V
Leak Carrent: ILEAK ( μ A)
Detect
: TDF
DetectDelay
DelayTime
Time:
TDF(μs)
( μs)
1000
6
-25
0
25
50
75
Ambient Temperature: Ta (℃ )
100
XC6108
Series
■PACKAGING INFORMATION
●USP-4
* Soldering fillet surface is not
formed because the sides of the
pins are plated.
●SOT-25
2.9±0.2
+0.1
0.4 -0.05
5
4
0~0.1
1
2
(0.95)
3
+0.1
0.15 -0.05
1.9±0.2
19/22
XC6108 Series
■PACKAGING INFORMATION (Continued)
●USP-4 Reference Pattern Layout
20/22
●USP-4 Reference Metal Mask Design
XC6108
Series
■MARKING RULE
●SOT-25
① represents output configuration and integer number of detect voltage
5
CMOS Output (XC6108C Series)
MARK
VOLTAGE (V)
A
0.x
B
1.x
C
2.x
D
3.x
E
4.x
F
5.x
4
① ② ③ ④
1
2
3
SOT-25
(TOP VIEW)
N-ch Open Drain Output (XC6108N Series)
MARK
VOLTAGE (V)
K
0.x
L
1.x
M
2.x
N
3.x
P
4.x
R
5.x
② represents decimal number of detect voltage
(ex.)
MARK
3
0
VOLTAGE (V)
x.3
x.0
PRODUCT SERIES
XC6108xx3xxx
XC6108xx0xxx
③ represents options
MARK
A
B
C
D
OPTIONS
Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom)
PRODUCT SERIES
XC6108xxxAxx
XC6108xxxBxx
XC6108xxxCxx
XC6108xxxDxx
④ represents production lot number
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.
(G, I, J, O, Q, W excluded)
●USP-4
①②
2
③④
1
① represents output configuration and integer number of detect voltage
USP-4
(TOP VIEW)
4
3
CMOS Output (XC6108C Series)
MARK
VOLTAGE (V)
A
0.x
B
1.x
C
2.x
D
3.x
E
4.x
F
5.x
② represents decimal number of detect voltage
(ex.)
MARK
VOLTAGE (V)
3
x.3
0
x.0
N-ch Open Drain Output (XC6108N Series)
MARK
VOLTAGE (V)
K
0.x
L
1.x
M
2.x
N
3.x
P
4.x
R
5.x
PRODUCT SERIES
XC6108xx3xxx
XC6108xx0xxx
③ represents options
MARK
OPTIONS
A
Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom)
B
C
D
PRODUCT
SERIES
XC6108xxxAxx
XC6108xxxBxx
XC6108xxxCxx
XC6108xxxDxx
④ represents production lot number
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)
*No character inversion used.
21/22
XC6108 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
22/22