Series VR x 4,VD x 2 Multi Power Supply ◆CMOS Low Power Consumption ◆4 Voltage Regulators and 2 Voltage Detectors Built-In. ◆Output Control Circuit ◆Output Voltage and Detect Voltage Range : 2V ~ 5V ◆Output Voltage Accuracy and Detect Voltage Range: ±2% ◆16 Pin TSSOP Package ■Applications ■General Description ■Features The XC641A series are highly precise, low power consumption, multi power supply IC s, manufactured using CMOS and laser trimming technologies. The IC consists of a highly precise reference, 4 voltage regulators, 2 voltage detectors, and an output control circuit. Because the regulators can be disabled through the EN pins, in standby, current consumption can be greatly reduced. The minimal input / output differential supports efficient voltage circuit design. The XC641A is particularly suitable for use with battery powered equipment where power supply control is all important. The series comes in a small TSSOP-16 package. Output Voltage / Detect Voltage Range : 2V ~ 5V : Selectable in 0.1V increments ( Semi-Custom ) Highly Accurate : Setup voltage ±2% Low power consumption: TYP 25µA ●Battery Operated Power Supply Systems ●Mobile Phones, Cordless Phones, and other Portable Communication Systems. TYP 6µA [ When the EN input is OFF (standard products) ] Output voltage temperature characteristics : TYP±100ppm/°C Small Package : TSSOP-16 10 ■Typical Application Circuit XC641A Series PERIPHERAL BATTERY OUT4 VDD DIN2 OUT3 CD1 DIN1 VCC Dout2 EN3 I/O Dout1 EN2 I/O OUT1 EN1 I/O EXT1 OUT2 VSS EXT2 /RESET μP INT AUDIO TRANSMITTER 649 XC641A Series ■Pin Configuration OUT4 16 VDD 1 DIN2 2 15 OUT3 CD1 3 14 DIN1 DOUT2 4 DOUT1 5 TSSOP-16 (TOP VIEW) PIN NUMBER PIN NAME 1 OUT4 Voltage Regulator 4 Output 2 DIN2 Voltage Detector 2 Input 3 CD1 4 DOUT2 Voltage Detector 2 Output Voltage Detector 1 Output 13 EN3 FUNCTION Delay Generating Circuit Output 5 DOUT1 12 EN2 6 OUT1 Voltage Regulator 1 Output Voltage Monitor 7 EXT1 Voltage Regulator 1 External Transistor Connection OUT1 6 11 EN1 EXT1 7 10 OUT2 8 9 EXT2 VSS ■Pin Assignment 8 VSS Ground 9 EXT2 Voltage Regulator 2 External Transistor Connection 10 OUT2 Voltage Regulator 2 Output Voltage Monitor 11 EN1 Voltage Regulator 1 Enable ( Positive Logic ) 12 EN2 Voltage Regulator 2 Enable ( Positive Logic ) 13 EN3 Voltage Regulator 3 Enable ( Positive Logic ) 14 DIN1 Voltage Detector 1 Input 15 OUT3 Voltage Regulator 3 Output 16 VDD Power Supply ■Functions INPUT VOLTAGE REGULATOR OUTPUT EN1 H L EN2 EN3 - - H L - - H L VR1 ON OFF VR2 VR3 - - ON OFF - - ON OFF H = High Level : L = Low Level 10 ■Product Classification ●Ordering Information: XC641A □□□□□□ ① SYMBOL ① DESCRIPTION Voltage Characteristics : Based on internal standards ②③ SYMBOL ② ③ 650 DESCRIPTION Package Type : V = TSSOP-16 Device Orientation : R = Embossed Tape ( Right ) L = Embossed Tape ( Left ) XC641A Series ■Packaging Information ●TSSOP-16 E E1 L C SIZE mm MIN TYP A1 0.03 0.07 A2 A D A2 0.95 b 0.15 0.22 0.30 C 0.12 0.17 0.22 D 4.9 5.10 5.30 E 6.20 6.40 6.60 E1 4.30 4.40 4.50 A1 L b y 0.10 1.05 0.65 e e MAX 1.10 A 0.40 0.50 0.60 0.10 y ■Marking ●TSSOP-16 4 7 11 6 10 5 9 3 2 1 1 ∼ :Represents 4 the diffusion lot. 11 5 ∼ :Represents the product series. 10 Example)XC641A1004VR ↑ ↑ 5 ∼ 11 8 TSSOP-16 (TOP VIEW) 651 XC641A Series ■Block Diagram VDD EN1 Enable EN2 Enable EN3 Enable VR1 EN Regulator 1 Regulator 2 VR2 EN Regulator VR3 EN 3 Regulator 4 DIN1 DIN2 VD1 SENS Detector 1 VD2 SENS 652 OUT1 EXT2 OUT2 OUT3 OUT4 DOUT1 Detector 2 Delay Circuit 10 EXT1 VSS DOUT2 CD1 XC641A Series ■Absolute Maximum Ratings Ta = 25 ° C UNITS PARAMETER SYMBOL RATINGS Input Voltage VIN -0.3 ~ +12 Output Voltage VOUT -0.3 ~ VIN +0.3 V EXT Pin Voltage VEXT -0.3 ~ +12 V V DIN Pin Voltage VDIN -0.3 ~ VIN +0.3 V DOUT Pin Voltage VDOUT -0.3 ~ 12 V CD1 Pin Voltage VCD1 -0.3 ~ VIN +0.3 V EN Pin Voltage VEN -0.3 ~ VIN +0.3 V Output Current IOUT 200 mA EXT Pin Current IEXT 50 mA DOUT Pin Current IDOUT 20 mA Power Dissipation Pd 350 mW Power Dissipation ( mounted ) Pd 630 mW Operating Ambient Temperature Topr -30 ~ +80 °C Tstg -40 ~ +125 °C Storage Temperature All voltage is ground standardised. Note : Please ensure that the sum total of power used within the IC does not exceed the continuous total power dissipation (Pd) figure. The figure for total continuous power dissipation ( mounted ) represents the value when tested on a single sided glass epoxy board of dimensions : 21mm x 32mm ; t = 1.6mm ■ Electrical Characteristics (XC641A0001V) ■Electrical Characteristics (XC641A0001V) Voltage Conditions CONDITIONS SYMBOL VALUE UNITS Input Voltage VINDEF 4.4 V 10 Set-Up Voltage Table Ta = 25 ° C CIRCUIT PARAMETER SYMBOL VALUE UNITS Voltage Regulator 1 Output Voltage VOUT(T) 3.0 V Voltage Regulator 2 Output Voltage VOUT(T) 3.0 V Voltage Regulator 3 Output Voltage VOUT(T) 3.0 V Voltage Regulator 4 Output Voltage VOUT(T) 3.0 V Voltage Detector 1 Detect Voltage VDF1 3.4 V Voltage Detector 2 Detect Voltage VDF2 2.5 V 653 XC641A Series Voltage Regulator 1 PARAMETER SYMBOL CONDITIONS MIN Output Voltage VOUT(E) IOUT=50mA VIN=VINDEF 2.94 Maximum Output Current * IOUT max VIN=VINDEF Load Stability * ∆VOUT ∆IOUT VIN=VINDEF 1mA ≤ IOUT ≤ 100mA Input-Output Voltage Diff. * TYP MAX 3.0 3.06 1000 -50 50 UNITS Ta=25°C CIRCUIT V 1 mA 1 mV 1 VDIF IOUT=100mA 100 mV 1 Supply Current ISS VIN=VINDEF, (No Load) 8 12 µA 2 Input Stability * ∆VOUT ∆VIN • VOUT IOUT=50mA 0.04 0.3 %/V 1 Output Voltage Temperature Characteristics * ∆VOUT ∆Topr • VOUT IOUT=10mA ± 100 ppm/°C 1 EXT Output Voltage VEXT 7 V - EXT Leak Current ILEAK 0.5 µA 3 Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. Parameter characteristics marked with an asterisk may vary according to which type of external transistor is used. A transistor with a value of hFE = 100 or greater and a low saturation voltage is recommended. Unless otherwise stated, use of the following external components are recommended : PNP Transistor, 2SA1213-Y : RBE, 200K Ω : CL, 10 µF Tantalum Capacitor. 3. The values given for ISS refer to the actual IC values ( see application circuits ) 4. The IC's supply current is calculated as follows : Supply Current = ISS + ( Load Current / hFE ) + ( 0.6 / RBE ) 5. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. 6. The Maximum Output Current value represents the value at the time the Output Voltage has decreased to VOUT (E) x 0.9. Due to the limitations of Continuous Total Power Dissipation with the 2SA1213 transistor, the Maximum Output Current Value cannot be continually achieved. Voltage Regulator 2 10 PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Ta=25°C CIRCUIT Output Voltage VOUT(E) IOUT=50mA VIN=VINDEF 2.94 3.0 3.06 V 1 Maximum Output Current * IOUT max VIN=VINDEF mA 1 ∆ VOUT ∆ IOUT VIN=VINDEF 1mA ≤ IOUT ≤ 100mA VDIF IOUT=100mA ISS Load Stability * -50 50 mV 1 1 VIN=VINDEF, (No Load) 8 12 mV µA Input Stability * ∆VOUT ∆ VIN • VOUT IOUT=50mA 0.04 0.3 %/V 1 Output Voltage Temperature Characteristics * ∆ VOUT ∆ Topr • VOUT IOUT=10mA ± 100 ppm/°C 1 Input-Output Voltage Diff. * Supply Current 100 2 EXT Output Voltage VEXT 7 V - EXT Leak Current ILEAK 0.5 µA 3 Note : Characteristics are the same as for Regulator 1. 654 1000 XC641A Series Voltage Regulator 3 PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Ta=25°C CIRCUIT Output Voltage VOUT(E) IOUT=35mA VIN=VINDEF 2.94 3.0 3.06 V 1 Load Stability ∆ VOUT ∆ IOUT 50 mV 1 Input-Output Voltage Diff. VIN=VINDEF 1mA ≤ IOUT ≤ 35mA VDIF IOUT=35mA Supply Current ISS VIN=VINDEF, (No Load) Input Stability ∆ VOUT ∆ VIN • VOUT ∆ VOUT ∆ Topr • VOUT Output Voltage Temperature Characteristics 0.3 V 1 3.0 4.5 µA 2 IOUT=35mA VINDEF ≤ VIN ≤ 10.0V 0.1 0.3 %/V 1 IOUT=35mA -30°C ≤ Topr ≤ 80°C ± 100 ppm/°C 1 Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. Voltage Regulator 4 PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Ta=25°C CIRCUIT Output Voltage VOUT(E) IOUT=15mA VIN =VIN DEF 2.94 3.0 3.06 V 1 Load Stability ∆ VOUT ∆ IOUT VIN =VIN DEF 1mA ≤ IOUT ≤ 15mA 50 mV 1 IOUT=15mA 0.3 V 1 0.3 %/V 1 ppm/°C 1 Input-Output Voltage Diff. VDIF Input Stability ∆VOUT ∆VIN • VOUT IOUT=15mA VIN DEF ≤ VIN ≤ 10.0V 0.1 ∆VOUT ∆Topr • VOUT IOUT=15mA -30°C ≤ Topr ≤ 80°C ± 100 Output Voltage Temperature Characteristics Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. 3. As operational shutdown cannot be achieved with Voltage Regulator 4, please standardize to the IC circuit's stand-by current parameters. 10 655 XC641A Series Voltage Detector 1 PARAMETER TYP MAX UNITS Ta=25°C CIRCUIT 3.332 3.4 3.468 V 4 x 0.02 VDF x 0.05 x 0.08 V 4 0.8 1.4 µA 4 11.5 mA 3 ± 100 ppm/°C 4 SYMBOL CONDITIONS MIN Detect Voltage VDF VIN = VINDEF Hysteresis Range VHYS VIN = VINDEF Input Current IIN Output Current IOUT Detect Voltage Temperature Characteristics ∆VDF ∆Topr • VOUT VIN = VINDEF Nch VDS = 0.5V VIN = VINDEF 6.0 Voltage Detector 2 TYP MAX UNITS Ta=25°C CIRCUIT 2.450 2.5 2.550 V 4 x 0.02 VDF x 0.05 x 0.08 PARAMETER SYMBOL CONDITIONS MIN Detect Voltage VDF VIN = VINDEF Hysteresis Range VHYS Input Current IIN Output Current IOUT Delay Circuit Current ICDO Detect Voltage Temperature Characteristics VIN = VINDEF VIN = VINDEF Nch VDS = 0.5V VIN = VINDEF VIN = VINDEF 0.8 6.0 0.25 ∆VDF ∆Topr • VOUT 1.4 11.5 0.50 0.80 ± 100 V 4 µA 4 mA 3 µA 5 ppm/°C 4 Note : The delay circuit current is controlled by the set current circuit within the IC. Delay time depends upon the capacity of the external condensor. Approximate delay time can be calculated using the following formula : TD ( msec ) = 1.8 x C ( nF ) Input Pin 10 PARAMETER SYMBOL EN 'High Level' Voltage VENH EN 'Low Level' Voltage VENL EN 'High Level' Current IENH EN 'Low Level' Voltage IENL CONDITIONS MIN TYP UNITS V 1 0.4 V 1 1.3 0.1 µA 1 0 µA 1 TYP MAX UNITS Ta=25°C CIRCUIT VIN = 8V, No Load 25 37.5 VIN = 8V, VR1 = VR2 = VR3 = OFF 6.0 9.0 µA µA -0.5 Entire Circuit PARAMETER SYMBOL Supply Current ( Stand-By ) ISTB ISS CONDITIONS Note : The supply current (ISS) value of the entire IC is the IC's internal supply current value. ( This does not include current flowing through externally connected components nor the input current through the detect pins of voltage detectors 1, 2 ) 656 Ta=25°C CIRCUIT MAX MIN 2 2 XC641A Series ■Directions for use ●Notes on Use : IC 1. Please sufficiently strengthen the GND wiring and the power supply (VDD) line, as when the power supply line impedance is high, the voltage regulators and detectors are prone to oscillation leading to possible instability. 2. In order to lower the power supply line impedance, we recommend that a capacitor of 10µF (Tantalum) or more be connected at the shortest point possible between the VDD pin and the GND pin. 3. To protect the IC from surge at the input pin, an input protect diode is built-in. Therefore, do not apply voltages that exceed the VDD pin voltage. 4. Please ensure that the sum total of the IC's power consumption does not exceed the stipulated figure for total continuous power dissipation ( Pd ). Pd < P1 + P2 + P3 + P4 + P5 + P6 The following equations can be used to calculate the IC's power consumption : Regulator 1 : P1 = ( VDD - 0.6V ) x IEXT1, IEXT1 to IOUT1 / hFE Regulator 2 : P2 = ( VDD - 0.6V ) x IEXT2, IEXT2 to IOUT2 / hFE Regulator 3 : P3 = ( VDD - VOUT3 ) x IOUT3 Regulator 4 : P4 = ( VDD - VOUT4 ) x IOUT4 Detector 1 : P5 = VDOUT1 x IDOUT1 Detector 2 : P6 = VDOUT2 x IDOUT2 Voltage Regulator 1, 2 ( External transistor type ) 1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor of 10µF (Tantalum) or more be connected between the external transistor's emitter and the GND pin. 2. In order to prevent regulator phase compensation, we recommend that a capacitor of 10µF (Tantalum) or more be connected between the IOUT1, IOUT2 pins and the GND pin. 3. In order to prevent oscillation we recommend that a resistor of around 200kΩ be connected between the external transistor's base pin and emitter pin. Voltage Regulator 3, 4 ( Built-in transistor type ) 1. Please connect a capacitor of 1µF (Tantalum) or more between the voltage regulator's output pins ( OUT3, OUT4 ) and the GND pin. 2. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor be connected between the VDD pin and the GND pin. 3. Since a short circuit protector is not built-in, when the OUT3 or OUT4 pin is short circuited to the GND pin, resulting surge current may damage the IC. Voltage Detectors 1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor be connected between the VDD pin and the GND pin. 2. Should the VDD pin voltage become excessively low, we recommend that a Schottky Diode be connected between the CD1 pin and the VDD pin, in order to prevent voltages over the established VDD + 0.3V being applied to the capacitor connection pin ( CD1 ). Please use a Schottky Diode of VF = 0.3V ( IF = 10mA ). If a large reverse current, IR (max.), is used, the delay circuit current will increase and delay time will be shortened. 3. When not using the delay circuit, please use the IC with the CD1 pin open. 10 657 XC641A Series VDD Input Pin VSS The XC641A has a built-in circuit to protect the IC against surge at the input pin. Should a voltage higher than VDD be applied at the input pin, please note that current will flow from the input pin to VDD. (Use within the stipulated absolute maximum ratings). ■Test Circuits Application Circuit 1 P XC641A0 OUT4 DIN2 CD1 P 1μF + 10μF + OUT1,OUT2,OUT3, OUT4 pin connection P VDD OUT3 DIN1 DOUT2 EN3 DOUT1 EN2 OUT1 EN1 EXT1 OUT2 VSS EXT2 10μF + 1μF + V P A 200kΩ 200kΩ + 10μF 10 Application Circuit 2 XC641A0 200kΩ VIN OUT4 DIN2 CD1 VDD OUT3 200kΩ EN3 DOUT1 EN2 OUT1 EN1 EXT1 OUT2 VSS EXT2 VDD 0.1μF 0.1μF 658 A DIN1 DOUT2 VDD XC641A Series Application Circuit 3 XC641A0 P P P VIN 0.1μF EXT1,EXT2,DOUT1, DOUT2 pin connection VDD OUT4 DIN2 OUT3 CD1 DIN1 DOUT2 EN3 DOUT1 EN2 OUT1 EN1 EXT1 OUT2 VSS EXT2 10μF + VDD A P Application Circuit 4 100kΩ P 100kΩ P XC641A0 OUT4 DIN2 CD1 A 0.1μF DOUT1,DOUT2 pin connection VDD OUT3 DIN1 DOUT2 EN3 DOUT1 EN2 OUT1 EN1 EXT1 OUT2 VSS EXT2 10μF + VDD A V 10 Application Circuit 5 XC641A0 OUT4 DIN2 CD1 A 0.1μF RCD VDD OUT3 DIN1 DOUT2 EN3 DOUT1 EN2 OUT1 EN1 EXT1 OUT2 VSS EXT2 10μF + VDD 470kΩ 659 XC641A Series ■Typical Performance Characteristics (1) OUTPUT VOLTAGE vs. INPUT VOLTAGE VR1 (2.8V) VR2 (3.0V) IOUT=50mA 2.8 2.6 2.4 2.2 IOUT=50mA 3.2 Output Voltage:VOUT (V) Output Voltage:VOUT (V) 3.0 2.0 3.0 2.8 2.6 2.4 2.2 0 2 4 6 8 10 0 2 Input Voltage:VIN (V) VR3 (2.8V) Output Voltage:VOUT (V) Output Voltage:VOUT (V) 8 10 2.8 2.6 2.4 2.2 IOUT=15mA 3.2 2.0 3.0 2.8 2.6 2.4 2.2 0 2 4 6 8 10 0 2 4 6 8 10 Input Voltage:VIN (V) Input Voltage:VIN (V) (2) OUTPUT VOLTAGE vs. OUTPUT CURRENT VR1 (2.8V) VR2 (3.0V) VIN=3.8V 2.8 2.7 2.6 2.5 VIN=4.0V 3.1 Output Voltage:VOUT (V) Output Voltage:VOUT (V) 2.9 3.0 2.9 2.8 2.7 0 100 200 300 400 Output Current:IOUT (mA) 660 6 VR4 (3.0V) IOUT=35mA 3.0 10 4 Input Voltage:VIN (V) 500 0 100 200 300 400 Output Current:IOUT (mA) 500 XC641A Series (2) OUTPUT VOLTAGE vs. OUTPUT CURRENT VR3 (2.8V) 2.8 2.7 2.6 VIN=4.0V 3.1 Output Voltage:VOUT (V) Output Voltage:VOUT (V) VR4 (3.0V) VIN=3.8V 2.9 2.5 3.0 2.9 2.8 2.7 0 10 20 30 40 50 60 70 0 Output Current:IOUT (mA) 10 20 30 40 50 Output Current:IOUT (mA) (3) SUPPLY CURRENT vs. INPUT VOLTAGE VR1 (2.8V) VR2 (3.0V) 10 Supply Current:ISS (µA) Supply Current:ISS (µA) 10 8 6 4 2 0 8 6 4 2 0 0 2 4 6 8 10 0 2 Input Voltage:VDD (V) VR3 (2.8V) 6 8 10 10 Stand-By (EN1=EN2=EN3=0V) 10 Supply Current:ISS (µA) 10 Supply Current:ISS (µA) 4 Input Voltage:VDD (V) 8 6 4 2 0 8 6 4 2 0 0 2 4 6 8 Input Voltage:VDD (V) 10 0 2 4 6 8 10 Input Voltage:VDD (V) 661 XC641A Series (4) DROPOUT VOLTAGE vs. OUTPUT CURRENT VR1 (2.8V) VR2 (3.0V) 0.5 Dropout Voltage:Vdif (V) Dropout Voltage:Vdif (V) 0.5 0.4 0.3 0.2 0.1 0.0 0 100 200 300 400 0.4 0.3 0.2 0.1 0.0 500 0 Output Current:IOUT (mA) VR3 (2.8V) Dropout Voltage:Vdif (V) Dropout Voltage:Vdif (V) 400 500 VR4 (3.0V) 1.0 0.5 0 10 20 30 40 50 60 1.0 0.5 0.0 70 0 10 20 30 40 50 Output Current:IOUT (mA) VR1 (2.8V) 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 10 EN Pin Input Level Voltage:VEH (V) EN Pin Input Level Voltage:VEH (V) (5) EN PIN INPUT LEVEL VOLTAGE vs. INPUT VOLTAGE Input Voltage:VDD (V) 662 300 1.5 Output Current:IOUT (mA) 10 200 Output Current:IOUT (mA) 1.5 0.0 100 VR2 (3.0V) 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 Input Voltage:VDD (V) 10 XC641A Series EN Pin Input Level Voltage:VEH (V) (5) EN PIN INPUT LEVEL VOLTAGE vs. INPUT VOLTAGE VR3 (2.8V) 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 10 Input Voltage:VDD (V) (6) VD OUTPUT VOLTAGE vs. INPUT VOLTAGE VD1 (2.5V) VD2 (2.3V) VIN-VOUT=100kΩ 3 2 1 0 0 1 2 3 VIN-VOUT=100kΩ 4 Output Voltage:VOUT (V) Output Voltage:VOUT (V) 4 3 2 1 0 4 0 1 Input Voltage:VIN (V) 2 3 4 Input Voltage:VIN (V) 10 (7) OUTPUT CURRENT vs. INPUT VOLTAGE VD1 (2.5V) VD2 (2.3V) VDS=0.5V 15 10 5 0 0.0 20 Output Current:IOUT (mA) Output Current:IOUT (mA) 20 0.5 1.0 1.5 2.0 Input Voltage:VDD (V) 2.5 3.0 VDS=0.5V 15 10 5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Input Voltage:VDD (V) 663 XC641A Series (8) VD INPUT CURRENT vs. INPUT VOLTAGE VD1 (2.5V) VD2 (2.3V) 1.00 Input Current:IIN (µA) Input Current:IIN (µA) 1.00 0.75 0.50 0.25 0.00 0 1 2 3 0.75 0.50 0.25 0.00 4 0 1 Input Voltage:VIN (V) 2 3 4 Input Voltage:VIN (V) (9) DELAY TIME (FALL) vs. OUTPUT PIN CAPACITANCE VD1 (2.5V) 100 10 1.0E-11 1.0E-09 100 10 1.0E-11 1.0E-07 Output Pin Capacitance (F) 10 1.0E-09 1.0E-07 Output Pin Capacitance (F) (10) DELAY TIME (RISE) vs. INPUT VOLTAGE VD1 (2.5V) 1 0 2 4 6 Input Voltage:VDD (V) 8 10 VIN=0.6→8.0V 100 Delay Time:TDL (µsec) Delay Time:TDL (µsec) 10 0.1 VD2 (2.3V) VIN=0.6→8.0V 100 664 VIN=8.0→0.6V 1000 Delay Time:TDL (µsec) Delay Time:TDL (µsec) VD2 (2.3V) VIN=8.0→0.6V 1000 10 1 0.1 0 2 4 6 8 Input Voltage:VDD (V) 10 XC641A Series (11) DELAY TIME (FALL) vs. CD PIN EXTERNAL CAPACITANCE VD2 VD2 VIN=8.0→0.6V VIN=0.6→8.0V 1.0E-01 Delay Time:TDL (sec) 1.0E-03 Delay Time:TDL (sec) (12) DELAY TIME (RISE) vs. CD PIN EXTERNAL CAPACITANCE 1.0E-04 1.0E-05 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1E-11 1E-10 1E-09 1E-08 1E-07 1E-06 1E-11 CD External Capacitance (F) 1E-10 1E-09 1E-08 1E-07 CD External Capacitance (F) (13) LOAD TRANSIENT RESPONSE 400 0 -1 Output Current 300mA 200 10mA -3 IOUT=10mA→300mA,CL=10μF(Tantalum) Output Voltage 600 400 -1 300mA 200 0 -2 10mA 0 -1 Output Current -2 10mA 0 -3 Time (150 µsec/div) IOUT=10mA→30mA,CL=1μF(Tantalum) 80 Output Current:IOUT (mA) Output Current:IOUT (mA) Output Voltage 1 Output Voltage Change:ΔVOUT(V) IOUT=10mA→50mA,CL=1μF(Tantalum) 50mA 10 VR4 (3.0V) 80 40 -3 Time (40µsec/div) VR3 (2.8V) 120 0 Output Current Time (40µsec/div) 160 1 1 Output Voltage 60 0 40 -1 30mA Output Current 20 -2 10mA 0 -3 Output Voltage Change:ΔVOUT(V) 0 -2 800 Output Voltage Change:ΔVOUT(V) Output Voltage 600 1 Output Current:IOUT (mA) Output Current:IOUT (mA) 800 VR2 (3.0V) IOUT=10mA→300mA,CL=10μF(Tantalum) Output Voltage Change:ΔVOUT(V) VR1 (2.8V) Time (200 µsec/div) 665 XC641A Series (14) INPUT TRANSIENT RESPONSE 1 5 Input Voltage 0.5 3 Output Voltage 2 0.0 1 0 -0.5 Time (200 µsec/div) 5 Output Voltage 2 1 Output Voltage 2 0.0 1 0 -0.5 CL=10µF(Tantalum), IOUT=100mA 6 Input Voltage 4 0.5 3 Output Voltage 2 0.0 1 0 -0.5 Time (200 µsec/div) VR3 (2.8V) 1.0 5 Input Voltage 0.5 3 Output Voltage 2 0.0 1 0 -0.5 Time (200 µsec/div) 6 Input Voltage:VIN (V) CL=1µF(Tantalum), IOUT=1mA Output Voltage Change:ΔVOUT(V) VR3 (2.8V) Input Voltage:VIN (V) 1.0 5 Time (200 µsec/div) 666 -0.5 Time (200 µsec/div) Output Voltage Change:ΔVOUT(V) 3 4 0.0 0 Input Voltage:VIN (V) 0.5 Output Voltage Change:ΔVOUT(V) Input Voltage:VIN (V) 1.0 Input Voltage 4 6 0.5 3 VR2 (3.0V) CL=10µF(Tantalum), IOUT=10mA 5 10 Input Voltage 4 VR2 (3.0V) 6 1.0 CL=1µF(Tantalum),IOUT=10mA 1.0 5 4 Input Voltage 0.5 3 2 Output Voltage 0.0 1 0 -0.5 Time (200 µsec/div) Output Voltage Change:ΔVOUT(V) 4 CL=10µF(Tantalum),IOUT=100mA 6 Output Voltage Change:ΔVOUT(V) 1.0 Input Voltage:VIN (V) 6 Input Voltage:VIN (V) VR1 (2.8V) CL=10µF(Tantalum), IOUT=10mA Output Voltage Change:ΔVOUT(V) VR1 (2.8V) XC641A Series (14) INPUT TRANSIENT RESPONSE 1 5 Input Voltage 0.5 4 3 Output Voltage 0.0 2 1 -0.5 0 CL=1µF(Tantalum),IOUT=10mA 6 1.0 5 Input Voltage 0.5 4 3 Output Voltage 0.0 2 1 -0.5 0 Time (200 µsec/div) Output Voltage Change:ΔVOUT(V) 1.0 Input Voltage:VIN (V) CL=1µF(Tantalum), IOUT=1mA 6 Input Voltage:VIN (V) VR4 (3.0V) Output Voltage Change:ΔVOUT(V) VR4 (3.0V) Time (400 µsec/div) (15) INPUT TRANSIENT RESPONSE 2 0 6 4 Output Voltage -5 2 -10 Input Voltage:VIN (V) Input Voltage 0 -5 0 10 VR4 (3.0V) Input Voltage 0 8 6 4 Output Voltage -5 2 -10 0 Time (250 µsec/div) 10 Input Voltage:VIN (V) CL=1µF(Tantalum),IOUT=10mA Output Voltage:VOUT (V) Input Voltage:VIN (V) 2 Time (250 µsec/div) VR3 (2.8V) 5 4 -10 0 6 Output Voltage Time (250 µsec/div) 10 Input Voltage 5 8 5 0 CL=1µF(Tantalum),IOUT=10mA Input Voltage Output Voltage -5 8 6 4 2 -10 Output Voltage:VOUT (V) 5 CL=10µF(Tantalum), IOUT=10mA 10 8 Output Voltage:VOUT (V) 10 Input Voltage:VIN (V) VR2 (3.0V) CL=10µF(Tantalum), IOUT=10mA Output Voltage:VOUT (V) VR1 (2.8V) 0 Time (200 µsec/div) 667 XC641A Series (16) EN TRANSIENT RESPONSE VR1 (2.8V) EN=1.3V 6 4 EN=0.4V Output Voltage 2 0 VR3 (2.8V) VIN=3.8V,IOUT=35mA Output Voltage:VOUT (V) 8 EN Input Voltage EN=1.3V 6 EN=0.4V Output Voltage 2 0 Time (200 µsec/div) 10 668 EN Input Voltage 8 EN=1.3V 6 4 EN=0.4V Output Voltage 2 0 Time (200 µsec/div) 4 VIN=4.0V,IOUT=50mA 10 EN Input Voltage Output Voltage:VOUT (V) Output Voltage:VOUT (V) 10 8 VR2 (3.0V) VIN=3.8V, IOUT=50mA Time (200 µsec/div)