TOREX XC641A0001V

Series
VR x 4,VD x 2 Multi Power Supply
◆CMOS Low Power Consumption
◆4 Voltage Regulators and 2 Voltage
Detectors Built-In.
◆Output Control Circuit
◆Output Voltage and Detect Voltage Range
: 2V ~ 5V
◆Output Voltage Accuracy and Detect
Voltage Range: ±2%
◆16 Pin TSSOP Package
■Applications
■General Description
■Features
The XC641A series are highly precise, low power consumption, multi
power supply IC s, manufactured using CMOS and laser trimming
technologies. The IC consists of a highly precise reference, 4 voltage
regulators, 2 voltage detectors, and an output control circuit.
Because the regulators can be disabled through the EN pins, in standby, current consumption can be greatly reduced. The minimal input /
output differential supports efficient voltage circuit design. The XC641A
is particularly suitable for use with battery powered equipment where
power supply control is all important.
The series comes in a small TSSOP-16 package.
Output Voltage / Detect Voltage Range
: 2V ~ 5V : Selectable in 0.1V
increments ( Semi-Custom )
Highly Accurate
: Setup voltage ±2%
Low power consumption: TYP 25µA
●Battery Operated Power Supply Systems
●Mobile Phones, Cordless Phones, and other
Portable Communication Systems.
TYP 6µA [ When the EN input is
OFF (standard products) ]
Output voltage temperature characteristics
: TYP±100ppm/°C
Small Package
: TSSOP-16
10
■Typical Application Circuit
XC641A Series
PERIPHERAL
BATTERY
OUT4
VDD
DIN2
OUT3
CD1
DIN1
VCC
Dout2
EN3
I/O
Dout1
EN2
I/O
OUT1
EN1
I/O
EXT1
OUT2
VSS
EXT2
/RESET
μP
INT
AUDIO
TRANSMITTER
649
XC641A
Series
■Pin Configuration
OUT4
16 VDD
1
DIN2
2
15 OUT3
CD1
3
14 DIN1
DOUT2
4
DOUT1
5
TSSOP-16
(TOP VIEW)
PIN NUMBER
PIN NAME
1
OUT4
Voltage Regulator 4 Output
2
DIN2
Voltage Detector 2 Input
3
CD1
4
DOUT2
Voltage Detector 2 Output
Voltage Detector 1 Output
13 EN3
FUNCTION
Delay Generating Circuit Output
5
DOUT1
12 EN2
6
OUT1
Voltage Regulator 1 Output Voltage Monitor
7
EXT1
Voltage Regulator 1 External Transistor Connection
OUT1
6
11 EN1
EXT1
7
10 OUT2
8
9 EXT2
VSS
■Pin Assignment
8
VSS
Ground
9
EXT2
Voltage Regulator 2 External Transistor Connection
10
OUT2
Voltage Regulator 2 Output Voltage Monitor
11
EN1
Voltage Regulator 1 Enable ( Positive Logic )
12
EN2
Voltage Regulator 2 Enable ( Positive Logic )
13
EN3
Voltage Regulator 3 Enable ( Positive Logic )
14
DIN1
Voltage Detector 1 Input
15
OUT3
Voltage Regulator 3 Output
16
VDD
Power Supply
■Functions
INPUT
VOLTAGE REGULATOR OUTPUT
EN1
H
L
EN2
EN3
-
-
H
L
-
-
H
L
VR1
ON
OFF
VR2
VR3
-
-
ON
OFF
-
-
ON
OFF
H = High Level : L = Low Level
10
■Product Classification
●Ordering Information:
XC641A □□□□□□
①
SYMBOL
①
DESCRIPTION
Voltage Characteristics :
Based on internal standards
②③
SYMBOL
②
③
650
DESCRIPTION
Package Type :
V = TSSOP-16
Device Orientation :
R = Embossed Tape ( Right )
L = Embossed Tape ( Left )
XC641A
Series
■Packaging Information
●TSSOP-16
E
E1
L
C
SIZE mm
MIN
TYP
A1
0.03
0.07
A2
A
D
A2
0.95
b
0.15
0.22
0.30
C
0.12
0.17
0.22
D
4.9
5.10
5.30
E
6.20
6.40
6.60
E1
4.30
4.40
4.50
A1
L
b
y
0.10
1.05
0.65
e
e
MAX
1.10
A
0.40
0.50
0.60
0.10
y
■Marking
●TSSOP-16
4
7
11
6
10
5
9
3
2
1
1 ∼ :Represents
4
the diffusion lot.
11
5 ∼ :Represents
the product series.
10
Example)XC641A1004VR
↑
↑
5 ∼ 11
8
TSSOP-16
(TOP VIEW)
651
XC641A
Series
■Block Diagram
VDD
EN1
Enable
EN2
Enable
EN3
Enable
VR1 EN
Regulator
1
Regulator
2
VR2 EN
Regulator
VR3 EN
3
Regulator
4
DIN1
DIN2
VD1 SENS
Detector
1
VD2 SENS
652
OUT1
EXT2
OUT2
OUT3
OUT4
DOUT1
Detector
2
Delay
Circuit
10
EXT1
VSS
DOUT2
CD1
XC641A
Series
■Absolute Maximum Ratings
Ta = 25 ° C
UNITS
PARAMETER
SYMBOL
RATINGS
Input Voltage
VIN
-0.3 ~ +12
Output Voltage
VOUT
-0.3 ~ VIN +0.3
V
EXT Pin Voltage
VEXT
-0.3 ~ +12
V
V
DIN Pin Voltage
VDIN
-0.3 ~ VIN +0.3
V
DOUT Pin Voltage
VDOUT
-0.3 ~ 12
V
CD1 Pin Voltage
VCD1
-0.3 ~ VIN +0.3
V
EN Pin Voltage
VEN
-0.3 ~ VIN +0.3
V
Output Current
IOUT
200
mA
EXT Pin Current
IEXT
50
mA
DOUT Pin Current
IDOUT
20
mA
Power Dissipation
Pd
350
mW
Power Dissipation ( mounted )
Pd
630
mW
Operating Ambient Temperature
Topr
-30 ~ +80
°C
Tstg
-40 ~ +125
°C
Storage Temperature
All voltage is ground standardised.
Note :
Please ensure that the sum total of power used within the IC does not exceed the
continuous total power dissipation (Pd) figure.
The figure for total continuous power dissipation ( mounted ) represents the
value when tested on a single sided glass epoxy board of dimensions :
21mm x 32mm ; t = 1.6mm
■ Electrical Characteristics
(XC641A0001V)
■Electrical
Characteristics
(XC641A0001V)
Voltage Conditions
CONDITIONS
SYMBOL
VALUE
UNITS
Input Voltage
VINDEF
4.4
V
10
Set-Up Voltage Table
Ta = 25 ° C
CIRCUIT
PARAMETER
SYMBOL
VALUE
UNITS
Voltage Regulator 1
Output Voltage
VOUT(T)
3.0
V
Voltage Regulator 2
Output Voltage
VOUT(T)
3.0
V
Voltage Regulator 3
Output Voltage
VOUT(T)
3.0
V
Voltage Regulator 4
Output Voltage
VOUT(T)
3.0
V
Voltage Detector 1
Detect Voltage
VDF1
3.4
V
Voltage Detector 2
Detect Voltage
VDF2
2.5
V
653
XC641A
Series
Voltage Regulator 1
PARAMETER
SYMBOL
CONDITIONS
MIN
Output Voltage
VOUT(E)
IOUT=50mA
VIN=VINDEF
2.94
Maximum Output Current *
IOUT max
VIN=VINDEF
Load Stability *
∆VOUT
∆IOUT
VIN=VINDEF
1mA ≤ IOUT ≤ 100mA
Input-Output Voltage Diff. *
TYP
MAX
3.0
3.06
1000
-50
50
UNITS
Ta=25°C
CIRCUIT
V
1
mA
1
mV
1
VDIF
IOUT=100mA
100
mV
1
Supply Current
ISS
VIN=VINDEF, (No Load)
8
12
µA
2
Input Stability *
∆VOUT
∆VIN • VOUT
IOUT=50mA
0.04
0.3
%/V
1
Output Voltage
Temperature Characteristics *
∆VOUT
∆Topr • VOUT
IOUT=10mA
± 100
ppm/°C
1
EXT Output Voltage
VEXT
7
V
-
EXT Leak Current
ILEAK
0.5
µA
3
Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage.
2. Parameter characteristics marked with an asterisk may vary according to which type of external transistor is used.
A transistor with a value of hFE = 100 or greater and a low saturation voltage is recommended.
Unless otherwise stated, use of the following external components are recommended :
PNP Transistor, 2SA1213-Y : RBE, 200K
Ω : CL, 10 µF Tantalum Capacitor.
3. The values given for ISS refer to the actual IC values ( see application circuits )
4. The IC's supply current is calculated as follows :
Supply Current = ISS + ( Load Current / hFE ) + ( 0.6 / RBE )
5. VDIF = { VIN1 - VOUT1 }
VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input.
VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased.
6. The Maximum Output Current value represents the value at the time the Output Voltage has decreased to VOUT (E) x 0.9.
Due to the limitations of Continuous Total Power Dissipation with the 2SA1213 transistor, the Maximum Output Current
Value cannot be continually achieved.
Voltage Regulator 2
10
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Ta=25°C
CIRCUIT
Output Voltage
VOUT(E)
IOUT=50mA
VIN=VINDEF
2.94
3.0
3.06
V
1
Maximum Output Current *
IOUT max
VIN=VINDEF
mA
1
∆ VOUT
∆ IOUT
VIN=VINDEF
1mA ≤ IOUT ≤ 100mA
VDIF
IOUT=100mA
ISS
Load Stability *
-50
50
mV
1
1
VIN=VINDEF, (No Load)
8
12
mV
µA
Input Stability *
∆VOUT
∆ VIN • VOUT
IOUT=50mA
0.04
0.3
%/V
1
Output Voltage
Temperature Characteristics *
∆ VOUT
∆ Topr • VOUT
IOUT=10mA
± 100
ppm/°C
1
Input-Output Voltage Diff. *
Supply Current
100
2
EXT Output Voltage
VEXT
7
V
-
EXT Leak Current
ILEAK
0.5
µA
3
Note : Characteristics are the same as for Regulator 1.
654
1000
XC641A
Series
Voltage Regulator 3
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Ta=25°C
CIRCUIT
Output Voltage
VOUT(E)
IOUT=35mA
VIN=VINDEF
2.94
3.0
3.06
V
1
Load Stability
∆ VOUT
∆ IOUT
50
mV
1
Input-Output Voltage Diff.
VIN=VINDEF
1mA ≤ IOUT ≤ 35mA
VDIF
IOUT=35mA
Supply Current
ISS
VIN=VINDEF, (No Load)
Input Stability
∆ VOUT
∆ VIN • VOUT
∆ VOUT
∆ Topr • VOUT
Output Voltage
Temperature Characteristics
0.3
V
1
3.0
4.5
µA
2
IOUT=35mA
VINDEF ≤ VIN ≤ 10.0V
0.1
0.3
%/V
1
IOUT=35mA
-30°C ≤ Topr ≤ 80°C
± 100
ppm/°C
1
Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage.
2. VDIF = { VIN1 - VOUT1 }
VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input.
VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased.
Voltage Regulator 4
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Ta=25°C
CIRCUIT
Output Voltage
VOUT(E)
IOUT=15mA
VIN =VIN DEF
2.94
3.0
3.06
V
1
Load Stability
∆ VOUT
∆ IOUT
VIN =VIN DEF
1mA ≤ IOUT ≤ 15mA
50
mV
1
IOUT=15mA
0.3
V
1
0.3
%/V
1
ppm/°C
1
Input-Output Voltage Diff.
VDIF
Input Stability
∆VOUT
∆VIN • VOUT
IOUT=15mA
VIN DEF ≤ VIN ≤ 10.0V
0.1
∆VOUT
∆Topr • VOUT
IOUT=15mA
-30°C ≤ Topr ≤ 80°C
± 100
Output Voltage
Temperature Characteristics
Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage.
2. VDIF = { VIN1 - VOUT1 }
VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input.
VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased.
3. As operational shutdown cannot be achieved with Voltage Regulator 4, please standardize to the IC circuit's stand-by
current parameters.
10
655
XC641A
Series
Voltage Detector 1
PARAMETER
TYP
MAX
UNITS
Ta=25°C
CIRCUIT
3.332
3.4
3.468
V
4
x 0.02
VDF
x 0.05
x 0.08
V
4
0.8
1.4
µA
4
11.5
mA
3
± 100
ppm/°C
4
SYMBOL
CONDITIONS
MIN
Detect Voltage
VDF
VIN = VINDEF
Hysteresis Range
VHYS
VIN = VINDEF
Input Current
IIN
Output Current
IOUT
Detect Voltage
Temperature Characteristics
∆VDF
∆Topr • VOUT
VIN = VINDEF
Nch VDS = 0.5V
VIN = VINDEF
6.0
Voltage Detector 2
TYP
MAX
UNITS
Ta=25°C
CIRCUIT
2.450
2.5
2.550
V
4
x 0.02
VDF
x 0.05
x 0.08
PARAMETER
SYMBOL
CONDITIONS
MIN
Detect Voltage
VDF
VIN = VINDEF
Hysteresis Range
VHYS
Input Current
IIN
Output Current
IOUT
Delay Circuit Current
ICDO
Detect Voltage
Temperature Characteristics
VIN = VINDEF
VIN = VINDEF
Nch VDS = 0.5V
VIN = VINDEF
VIN = VINDEF
0.8
6.0
0.25
∆VDF
∆Topr • VOUT
1.4
11.5
0.50
0.80
± 100
V
4
µA
4
mA
3
µA
5
ppm/°C
4
Note :
The delay circuit current is controlled by the set current circuit within the IC.
Delay time depends upon the capacity of the external condensor. Approximate delay time can be calculated using the following formula :
TD ( msec ) = 1.8 x C ( nF )
Input Pin
10
PARAMETER
SYMBOL
EN 'High Level' Voltage
VENH
EN 'Low Level' Voltage
VENL
EN 'High Level' Current
IENH
EN 'Low Level' Voltage
IENL
CONDITIONS
MIN
TYP
UNITS
V
1
0.4
V
1
1.3
0.1
µA
1
0
µA
1
TYP
MAX
UNITS
Ta=25°C
CIRCUIT
VIN = 8V, No Load
25
37.5
VIN = 8V, VR1 = VR2 = VR3 = OFF
6.0
9.0
µA
µA
-0.5
Entire Circuit
PARAMETER
SYMBOL
Supply Current
( Stand-By )
ISTB
ISS
CONDITIONS
Note :
The supply current (ISS) value of the entire IC is the IC's internal supply current value.
( This does not include current flowing through externally connected components nor
the input current through the detect pins of voltage detectors 1, 2 )
656
Ta=25°C
CIRCUIT
MAX
MIN
2
2
XC641A
Series
■Directions for use
●Notes on Use :
IC
1. Please sufficiently strengthen the GND wiring and the power supply (VDD) line, as when the power
supply line impedance is high, the voltage regulators and detectors are prone to oscillation leading
to possible instability.
2. In order to lower the power supply line impedance, we recommend that a capacitor of 10µF (Tantalum)
or more be connected at the shortest point possible between the VDD pin and the GND pin.
3. To protect the IC from surge at the input pin, an input protect diode is built-in. Therefore, do not
apply voltages that exceed the VDD pin voltage.
4. Please ensure that the sum total of the IC's power consumption does not exceed the stipulated figure
for total continuous power dissipation ( Pd ).
Pd < P1 + P2 + P3 + P4 + P5 + P6
The following equations can be used to calculate the IC's power consumption :
Regulator 1 : P1 = ( VDD - 0.6V ) x IEXT1, IEXT1 to IOUT1 / hFE
Regulator 2 : P2 = ( VDD - 0.6V ) x IEXT2, IEXT2 to IOUT2 / hFE
Regulator 3 : P3 = ( VDD - VOUT3 ) x IOUT3
Regulator 4 : P4 = ( VDD - VOUT4 ) x IOUT4
Detector 1 : P5 = VDOUT1 x IDOUT1
Detector 2 : P6 = VDOUT2 x IDOUT2
Voltage Regulator 1, 2 ( External transistor type )
1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend
that a capacitor of 10µF (Tantalum) or more be connected between the external transistor's emitter
and the GND pin.
2. In order to prevent regulator phase compensation, we recommend that a capacitor of 10µF (Tantalum)
or more be connected between the IOUT1, IOUT2 pins and the GND pin.
3. In order to prevent oscillation we recommend that a resistor of around 200kΩ be connected between
the external transistor's base pin and emitter pin.
Voltage Regulator 3, 4 ( Built-in transistor type )
1. Please connect a capacitor of 1µF (Tantalum) or more between the voltage regulator's output pins
( OUT3, OUT4 ) and the GND pin.
2. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that
a capacitor be connected between the VDD pin and the GND pin.
3. Since a short circuit protector is not built-in, when the OUT3 or OUT4 pin is short circuited to the
GND pin, resulting surge current may damage the IC.
Voltage Detectors
1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend
that a capacitor be connected between the VDD pin and the GND pin.
2. Should the VDD pin voltage become excessively low, we recommend that a Schottky Diode be
connected between the CD1 pin and the VDD pin, in order to prevent voltages over the established
VDD + 0.3V being applied to the capacitor connection pin ( CD1 ).
Please use a Schottky Diode of VF = 0.3V ( IF = 10mA ). If a large reverse current, IR (max.), is used,
the delay circuit current will increase and delay time will be shortened.
3. When not using the delay circuit, please use the IC with the CD1 pin open.
10
657
XC641A
Series
VDD
Input Pin
VSS
The XC641A has a built-in circuit to protect the IC against surge at the input pin.
Should a voltage higher than VDD be applied at the input pin, please note that current
will flow from the input pin to VDD. (Use within the stipulated absolute maximum ratings).
■Test Circuits
Application Circuit 1
P
XC641A0
OUT4
DIN2
CD1
P
1μF +
10μF +
OUT1,OUT2,OUT3,
OUT4 pin connection
P
VDD
OUT3
DIN1
DOUT2
EN3
DOUT1
EN2
OUT1
EN1
EXT1
OUT2
VSS
EXT2
10μF +
1μF +
V
P
A
200kΩ
200kΩ
+
10μF
10
Application Circuit 2
XC641A0
200kΩ
VIN
OUT4
DIN2
CD1
VDD
OUT3
200kΩ
EN3
DOUT1
EN2
OUT1
EN1
EXT1
OUT2
VSS
EXT2
VDD
0.1μF
0.1μF
658
A
DIN1
DOUT2
VDD
XC641A
Series
Application Circuit 3
XC641A0
P
P
P
VIN
0.1μF
EXT1,EXT2,DOUT1,
DOUT2 pin connection
VDD
OUT4
DIN2
OUT3
CD1
DIN1
DOUT2
EN3
DOUT1
EN2
OUT1
EN1
EXT1
OUT2
VSS
EXT2
10μF +
VDD
A
P
Application Circuit 4
100kΩ
P
100kΩ
P
XC641A0
OUT4
DIN2
CD1
A
0.1μF
DOUT1,DOUT2
pin connection
VDD
OUT3
DIN1
DOUT2
EN3
DOUT1
EN2
OUT1
EN1
EXT1
OUT2
VSS
EXT2
10μF
+
VDD
A
V
10
Application Circuit 5
XC641A0
OUT4
DIN2
CD1
A
0.1μF
RCD
VDD
OUT3
DIN1
DOUT2
EN3
DOUT1
EN2
OUT1
EN1
EXT1
OUT2
VSS
EXT2
10μF
+
VDD
470kΩ
659
XC641A
Series
■Typical Performance Characteristics
(1) OUTPUT VOLTAGE vs. INPUT VOLTAGE
VR1 (2.8V)
VR2 (3.0V)
IOUT=50mA
2.8
2.6
2.4
2.2
IOUT=50mA
3.2
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
3.0
2.0
3.0
2.8
2.6
2.4
2.2
0
2
4
6
8
10
0
2
Input Voltage:VIN (V)
VR3 (2.8V)
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
8
10
2.8
2.6
2.4
2.2
IOUT=15mA
3.2
2.0
3.0
2.8
2.6
2.4
2.2
0
2
4
6
8
10
0
2
4
6
8
10
Input Voltage:VIN (V)
Input Voltage:VIN (V)
(2) OUTPUT VOLTAGE vs. OUTPUT CURRENT
VR1 (2.8V)
VR2 (3.0V)
VIN=3.8V
2.8
2.7
2.6
2.5
VIN=4.0V
3.1
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
2.9
3.0
2.9
2.8
2.7
0
100
200
300
400
Output Current:IOUT (mA)
660
6
VR4 (3.0V)
IOUT=35mA
3.0
10
4
Input Voltage:VIN (V)
500
0
100
200
300
400
Output Current:IOUT (mA)
500
XC641A
Series
(2) OUTPUT VOLTAGE vs. OUTPUT CURRENT
VR3 (2.8V)
2.8
2.7
2.6
VIN=4.0V
3.1
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
VR4 (3.0V)
VIN=3.8V
2.9
2.5
3.0
2.9
2.8
2.7
0
10
20
30
40
50
60
70
0
Output Current:IOUT (mA)
10
20
30
40
50
Output Current:IOUT (mA)
(3) SUPPLY CURRENT vs. INPUT VOLTAGE
VR1 (2.8V)
VR2 (3.0V)
10
Supply Current:ISS (µA)
Supply Current:ISS (µA)
10
8
6
4
2
0
8
6
4
2
0
0
2
4
6
8
10
0
2
Input Voltage:VDD (V)
VR3 (2.8V)
6
8
10
10
Stand-By
(EN1=EN2=EN3=0V)
10
Supply Current:ISS (µA)
10
Supply Current:ISS (µA)
4
Input Voltage:VDD (V)
8
6
4
2
0
8
6
4
2
0
0
2
4
6
8
Input Voltage:VDD (V)
10
0
2
4
6
8
10
Input Voltage:VDD (V)
661
XC641A
Series
(4) DROPOUT VOLTAGE vs. OUTPUT CURRENT
VR1 (2.8V)
VR2 (3.0V)
0.5
Dropout Voltage:Vdif (V)
Dropout Voltage:Vdif (V)
0.5
0.4
0.3
0.2
0.1
0.0
0
100
200
300
400
0.4
0.3
0.2
0.1
0.0
500
0
Output Current:IOUT (mA)
VR3 (2.8V)
Dropout Voltage:Vdif (V)
Dropout Voltage:Vdif (V)
400
500
VR4 (3.0V)
1.0
0.5
0
10
20
30
40
50
60
1.0
0.5
0.0
70
0
10
20
30
40
50
Output Current:IOUT (mA)
VR1 (2.8V)
2.0
1.5
1.0
0.5
0.0
0
2
4
6
8
10
EN Pin Input Level Voltage:VEH (V)
EN Pin Input Level Voltage:VEH (V)
(5) EN PIN INPUT LEVEL VOLTAGE vs. INPUT VOLTAGE
Input Voltage:VDD (V)
662
300
1.5
Output Current:IOUT (mA)
10
200
Output Current:IOUT (mA)
1.5
0.0
100
VR2 (3.0V)
2.0
1.5
1.0
0.5
0.0
0
2
4
6
8
Input Voltage:VDD (V)
10
XC641A
Series
EN Pin Input Level Voltage:VEH (V)
(5) EN PIN INPUT LEVEL VOLTAGE vs. INPUT VOLTAGE
VR3 (2.8V)
2.0
1.5
1.0
0.5
0.0
0
2
4
6
8
10
Input Voltage:VDD (V)
(6) VD OUTPUT VOLTAGE vs. INPUT VOLTAGE
VD1 (2.5V)
VD2 (2.3V)
VIN-VOUT=100kΩ
3
2
1
0
0
1
2
3
VIN-VOUT=100kΩ
4
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
4
3
2
1
0
4
0
1
Input Voltage:VIN (V)
2
3
4
Input Voltage:VIN (V)
10
(7) OUTPUT CURRENT vs. INPUT VOLTAGE
VD1 (2.5V)
VD2 (2.3V)
VDS=0.5V
15
10
5
0
0.0
20
Output Current:IOUT (mA)
Output Current:IOUT (mA)
20
0.5
1.0
1.5
2.0
Input Voltage:VDD (V)
2.5
3.0
VDS=0.5V
15
10
5
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Input Voltage:VDD (V)
663
XC641A
Series
(8) VD INPUT CURRENT vs. INPUT VOLTAGE
VD1 (2.5V)
VD2 (2.3V)
1.00
Input Current:IIN (µA)
Input Current:IIN (µA)
1.00
0.75
0.50
0.25
0.00
0
1
2
3
0.75
0.50
0.25
0.00
4
0
1
Input Voltage:VIN (V)
2
3
4
Input Voltage:VIN (V)
(9) DELAY TIME (FALL) vs. OUTPUT PIN CAPACITANCE
VD1 (2.5V)
100
10
1.0E-11
1.0E-09
100
10
1.0E-11
1.0E-07
Output Pin Capacitance (F)
10
1.0E-09
1.0E-07
Output Pin Capacitance (F)
(10) DELAY TIME (RISE) vs. INPUT VOLTAGE
VD1 (2.5V)
1
0
2
4
6
Input Voltage:VDD (V)
8
10
VIN=0.6→8.0V
100
Delay Time:TDL (µsec)
Delay Time:TDL (µsec)
10
0.1
VD2 (2.3V)
VIN=0.6→8.0V
100
664
VIN=8.0→0.6V
1000
Delay Time:TDL (µsec)
Delay Time:TDL (µsec)
VD2 (2.3V)
VIN=8.0→0.6V
1000
10
1
0.1
0
2
4
6
8
Input Voltage:VDD (V)
10
XC641A
Series
(11) DELAY TIME (FALL) vs. CD PIN EXTERNAL CAPACITANCE
VD2
VD2
VIN=8.0→0.6V
VIN=0.6→8.0V
1.0E-01
Delay Time:TDL (sec)
1.0E-03
Delay Time:TDL (sec)
(12) DELAY TIME (RISE) vs. CD PIN EXTERNAL CAPACITANCE
1.0E-04
1.0E-05
1.0E-02
1.0E-03
1.0E-04
1.0E-05
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-11
CD External Capacitance (F)
1E-10
1E-09
1E-08
1E-07
CD External Capacitance (F)
(13) LOAD TRANSIENT RESPONSE
400
0
-1
Output Current
300mA
200
10mA
-3
IOUT=10mA→300mA,CL=10μF(Tantalum)
Output Voltage
600
400
-1
300mA
200
0
-2
10mA
0
-1
Output Current
-2
10mA
0
-3
Time (150 µsec/div)
IOUT=10mA→30mA,CL=1μF(Tantalum)
80
Output Current:IOUT (mA)
Output Current:IOUT (mA)
Output Voltage
1
Output Voltage Change:ΔVOUT(V)
IOUT=10mA→50mA,CL=1μF(Tantalum)
50mA
10
VR4 (3.0V)
80
40
-3
Time (40µsec/div)
VR3 (2.8V)
120
0
Output Current
Time (40µsec/div)
160
1
1
Output Voltage
60
0
40
-1
30mA
Output Current
20
-2
10mA
0
-3
Output Voltage Change:ΔVOUT(V)
0
-2
800
Output Voltage Change:ΔVOUT(V)
Output Voltage
600
1
Output Current:IOUT (mA)
Output Current:IOUT (mA)
800
VR2 (3.0V)
IOUT=10mA→300mA,CL=10μF(Tantalum)
Output Voltage Change:ΔVOUT(V)
VR1 (2.8V)
Time (200 µsec/div)
665
XC641A
Series
(14) INPUT TRANSIENT RESPONSE 1
5
Input Voltage
0.5
3
Output Voltage
2
0.0
1
0
-0.5
Time (200 µsec/div)
5
Output Voltage
2
1
Output Voltage
2
0.0
1
0
-0.5
CL=10µF(Tantalum), IOUT=100mA
6
Input Voltage
4
0.5
3
Output Voltage
2
0.0
1
0
-0.5
Time (200 µsec/div)
VR3 (2.8V)
1.0
5
Input Voltage
0.5
3
Output Voltage
2
0.0
1
0
-0.5
Time (200 µsec/div)
6
Input Voltage:VIN (V)
CL=1µF(Tantalum), IOUT=1mA
Output Voltage Change:ΔVOUT(V)
VR3 (2.8V)
Input Voltage:VIN (V)
1.0
5
Time (200 µsec/div)
666
-0.5
Time (200 µsec/div)
Output Voltage Change:ΔVOUT(V)
3
4
0.0
0
Input Voltage:VIN (V)
0.5
Output Voltage Change:ΔVOUT(V)
Input Voltage:VIN (V)
1.0
Input Voltage
4
6
0.5
3
VR2 (3.0V)
CL=10µF(Tantalum), IOUT=10mA
5
10
Input Voltage
4
VR2 (3.0V)
6
1.0
CL=1µF(Tantalum),IOUT=10mA
1.0
5
4
Input Voltage
0.5
3
2
Output Voltage
0.0
1
0
-0.5
Time (200 µsec/div)
Output Voltage Change:ΔVOUT(V)
4
CL=10µF(Tantalum),IOUT=100mA
6
Output Voltage Change:ΔVOUT(V)
1.0
Input Voltage:VIN (V)
6
Input Voltage:VIN (V)
VR1 (2.8V)
CL=10µF(Tantalum), IOUT=10mA
Output Voltage Change:ΔVOUT(V)
VR1 (2.8V)
XC641A
Series
(14) INPUT TRANSIENT RESPONSE 1
5
Input Voltage
0.5
4
3
Output Voltage
0.0
2
1
-0.5
0
CL=1µF(Tantalum),IOUT=10mA
6
1.0
5
Input Voltage
0.5
4
3
Output Voltage
0.0
2
1
-0.5
0
Time (200 µsec/div)
Output Voltage Change:ΔVOUT(V)
1.0
Input Voltage:VIN (V)
CL=1µF(Tantalum), IOUT=1mA
6
Input Voltage:VIN (V)
VR4 (3.0V)
Output Voltage Change:ΔVOUT(V)
VR4 (3.0V)
Time (400 µsec/div)
(15) INPUT TRANSIENT RESPONSE 2
0
6
4
Output Voltage
-5
2
-10
Input Voltage:VIN (V)
Input Voltage
0
-5
0
10
VR4 (3.0V)
Input Voltage
0
8
6
4
Output Voltage
-5
2
-10
0
Time (250 µsec/div)
10
Input Voltage:VIN (V)
CL=1µF(Tantalum),IOUT=10mA
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
2
Time (250 µsec/div)
VR3 (2.8V)
5
4
-10
0
6
Output Voltage
Time (250 µsec/div)
10
Input Voltage
5
8
5
0
CL=1µF(Tantalum),IOUT=10mA
Input Voltage
Output Voltage
-5
8
6
4
2
-10
Output Voltage:VOUT (V)
5
CL=10µF(Tantalum), IOUT=10mA
10
8
Output Voltage:VOUT (V)
10
Input Voltage:VIN (V)
VR2 (3.0V)
CL=10µF(Tantalum), IOUT=10mA
Output Voltage:VOUT (V)
VR1 (2.8V)
0
Time (200 µsec/div)
667
XC641A
Series
(16) EN TRANSIENT RESPONSE
VR1 (2.8V)
EN=1.3V
6
4
EN=0.4V
Output Voltage
2
0
VR3 (2.8V)
VIN=3.8V,IOUT=35mA
Output Voltage:VOUT (V)
8
EN Input Voltage
EN=1.3V
6
EN=0.4V
Output Voltage
2
0
Time (200 µsec/div)
10
668
EN Input Voltage
8
EN=1.3V
6
4
EN=0.4V
Output Voltage
2
0
Time (200 µsec/div)
4
VIN=4.0V,IOUT=50mA
10
EN Input Voltage
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
10
8
VR2 (3.0V)
VIN=3.8V, IOUT=50mA
Time (200 µsec/div)