DIODES MMST3906

LBN150B01
150 mA LOAD SWITCH FEATURING COMPLEMENTARY BIPOLAR TRANSISTORS
NEW PRODUCT
General Description
•
LMN150B01 is best suited for applications where the load
needs to be turned on and off using control circuits like
micro-controllers, comparators etc. particularly at a point of
load. It features a discrete PNP pass transistor with stable
Vce_sat which does not depend on the input voltage and
can support maximum continuous current of 150 mA up to
125 °C (see fig. 3). It also contains a discrete NPN that can
be used as a control. The component devices can be used
as a part of a circuit or as stand alone discrete devices.
6
5
4
1
2
3
Features
•
•
•
•
Epitaxial Planar Die Construction
Ideally Suited for Automated Assembly Processes
Lead Free By Design/ROHS Compliant (Note 1)
"Green" Device (Note 2)
Fig. 1: SOT-26
CQ1
EQ2
CQ2
6
5
4
Mechanical Data
•
•
•
•
•
•
•
•
NPN_MMST3904
Case: SOT-26
Case Material: Molded Plastic. "Green Molding"
Compound. UL Flammability Classification Rating 94V-0
Moisture Sensitivity: Level 1 per J-STD-020C
Terminal Connections: See Diagram
Terminals: Finish - Matte Tin annealed over Copper
leadframe. Solderable per MIL- STD -202, Method 208
Marking & Type Code Information: See Page 8
Ordering Information: See Page 8
Weight: 0.016 grams (approximate)
Sub-Component P/N
MMST3906
MMST3904
Maximum Ratings, Total Device
1
EQ1
2
3
BQ1
BQ2
Fig. 2: Schematic and Pin Configuration
Device Type
PNP Transistor
NPN Transistor
Figure
2
2
Value
150
Unit
mA
Value
300
Unit
mW
Pder
2.33
mW/°C
Tj,Tstg
-55 to +150
°C
RθJA
417
°C/W
@TA = 25°C unless otherwise specified
Characteristic
Symbol
Iout
@TA = 25°C unless otherwise specified
Characteristic
Power Dissipation (Note 3)
Symbol
Pd
Power Derating Factor above 120 °C
Junction Operation and Storage Temperature Range
Thermal Resistance, Junction to Ambient Air (Note 3)
(Equivalent to one heated junction of PNP transistor)
Notes:
Q2
PNP_MMST3906
Reference
Q1
Q2
Output Current
Thermal Characteristics
Q1
1. No purposefully added lead.
2 . Diodes Inc.'s "Green" policy can be found on our website at http:/www.diodes.com/products/lead_free/index.php.
3. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Page 9.
DS30749 Rev. 3 - 2
1 of 9
www.diodes.com
LBN150B01
© Diodes Incorporated
NEW PRODUCT
Maximum Ratings:
@TA = 25°C unless otherwise specified
Sub-Component Device - Discrete PNP Transistor (Q1)
Characteristic
Symbol
VCBO
Value
-40
Unit
V
Collector-Emitter Voltage
VCEO
-40
V
Emitter-Base Voltage
VEBO
-6
V
IC
-200
mA
Collector-Base Voltage
Output Current - continuous (Note 4)
Maximum Ratings:
@TA = 25°C unless otherwise specified
Sub-Component Device - Discrete NPN Transistor (Q2)
Characteristic
Collector-Base Voltage
Symbol
VCBO
Value
60
Unit
V
Collector-Emitter Voltage
VCEO
40
V
Emitter-Base Voltage
VEBO
6
V
IC
200
mA
Output Current - continuous (Note 4)
Notes: 4. Short duration pulse test used to minimize self-heating effect.
DS30749 Rev. 3 - 2
2 of 9
www.diodes.com
LBN150B01
© Diodes Incorporated
Electrical Characteristics: Discrete PNP Transistor (Q1)
NEW PRODUCT
Characteristic
OFF CHARACTERISTICS (Note 4)
Collector-Base Breakdown Voltage
@TA = 25°C unless otherwise specified
Symbol
Min
Max
Unit
Test Condition
VCBO
-40
⎯
V
IC = -10uA, IE = 0
Collector-Emitter Breakdown Voltage
VCEO
-40
⎯
V
IC = -1.0mA, IB = 0
Emitter-Base Breakdown Voltage
VEBO
-6
V
IE = -10μA, IC = 0
Collector Cutoff Current
ICEX
⎯
⎯
-50
nA
VCE = -30V, VEB(OFF) = -3.0V
IBL
⎯
-50
nA
VCE = -30V, VEB(OFF) = -3.0V
Collector-Base Cut Off Current
ICBO
⎯
-50
nA
VCB = -30V, IE = 0
Collector-Emitter Cut Off Current
ICEO
⎯
-50
nA
VCE = -30V, IB = 0
Emitter-Base Cut Off Current
ON CHARACTERISTICS (Note 4)
IEBO
⎯
-50
nA
VEB = -5V, IC = 0
105
⎯
⎯
VCE = -1V, IC = -100 μA
110
⎯
⎯
VCE = -1V, IC = -1 mA
120
⎯
⎯
VCE = -1V, IC = -10 mA
90
⎯
⎯
VCE = -1V, IC = -50 mA
32
⎯
⎯
VCE = -1V, IC = -100 mA
10
⎯
⎯
⎯
-0.08
⎯
-0.15
V
⎯
-0.5
Base Cutoff Current
DC Current Gain
Collector-Emitter Saturation Voltage
hFE
VCE(SAT)
Equivalent on-resistance
RCE(SAT)
⎯
2.5
Base-Emitter Turn-on Voltage
VBE(ON)
⎯
-0.92
Base-Emitter Saturation Voltage
VBE(SAT)
⎯
-0.95
⎯
-1.1
B
B
VCE = -1V, IC = -200 mA
IC = - 10 mA, IB = -1 mA
B
IC = -50mA, IB = -5mA
IC = -200mA, IB = -20mA
Ω
V
V
IC = -200mA, IB = -20mA
B
VCE = -5V, IC = -200mA
IC = -10mA, IB = -1mA
B
IC = -50mA, IB = -5mA
B
SMALL SIGNAL CHARACTERISTICS
Output Capacitance
COBO
⎯
4
pF
VCB = -5.0 V, f = 1.0 MHz, IE = 0
Input Capacitance
CIBO
⎯
2
8
pF
VEB = -5.0 V, f = 1.0 MHz, IC = 0
12
hRE
0.1
10
KΩ
x 10E-4
Small Signal Current Gain
hFE
100
400
⎯
Output Admittance
hOE
3
60
μS
Current Gain-Bandwidth Product
fT
250
⎯
MHz
Noise Figure
NF
⎯
4
dB
VCE = - 5V, Ic = -100 uA, Rs = 1Ω,
f =1 KHz
SWITCHING CHARACTERISTICS
Delay Time
td
⎯
35
ns
VCC = -3.0 V, IC = -10 mA,
Rise Time
tr
⎯
35
ns
VBE(OFF) = 0.5V, IB1 = -1.0 mA
Storage Time
ts
⎯
225
ns
VCC = -3.0 V, IC = -10 mA,
Fall Time
tf
⎯
75
ns
IB1 = IB2 = -1.0 mA
Input Impedance
hIE
Voltage Feedback ratio
DS30749 Rev. 3 - 2
3 of 9
www.diodes.com
VCE = 1.0V, Ic = 10mA, f = 1.0 KHz
VCE = - 20V, IC = -10mA, f = 100 MHz
LBN150B01
© Diodes Incorporated
Electrical Characteristics: Discrete NPN Transistor (Q2)
Symbol
Min
Max
Unit
Test Condition
VCBO
60
⎯
V
IC = 10uA, IE = 0
Collector-Emitter Breakdown Voltage
VCEO
40
⎯
V
IC = 1.0mA, IB = 0
Emitter-Base Breakdown Voltage
VEBO
6
V
IE = 10μA, IC = 0
Collector Cutoff Current
ICEX
⎯
⎯
50
nA
VCE = 30V, VEB(OFF) = 3.0V
IBL
⎯
50
nA
VCE = 30V, VEB(OFF) = 3.0V
Collector-Base Cut Off Current
ICBO
⎯
50
nA
VCB = 30V, IE = 0
Collector-Emitter Cut Off Current
ICEO
⎯
50
nA
VCE = 30V, IB = 0
Emitter-Base Cut Off Current
ON CHARACTERISTICS (Note 4)
IEBO
⎯
50
nA
VEB = 5V, IC = 0
150
⎯
⎯
VCE = 1V, IC = 100 μA
170
⎯
⎯
VCE = 1V, IC = 1 mA
160
⎯
⎯
VCE = 1V, IC = 10 mA
70
⎯
⎯
VCE = 1V, IC = 50 mA
30
⎯
⎯
VCE = 1V, IC = 100 mA
12
⎯
⎯
⎯
0.08
⎯
0.16
V
Base Cutoff Current
DC Current Gain
hFE
B
B
VCE = 1V, IC = 200 mA
IC = 10 mA, IB = 1 mA
B
Collector-Emitter Saturation Voltage
VCE(SAT)
⎯
0.36
Equivalent on-resistance
RCE(SAT)
⎯
1.8
Base-Emitter Turn-on Voltage
VBE(ON)
⎯
0.98
Base-Emitter Saturation Voltage
VBE(SAT)
⎯
0.95
⎯
1.1
COBO
⎯
4
pF
VCB = 5.0 V, f = 1.0 MHz, IE = 0
CIBO
⎯
2
8
pF
VEB = 5.0 V, f = 1.0 MHz, IC = 0
12
SMALL SIGNAL CHARACTERISTICS
Output Capacitance
Input Capacitance
IC = 50mA, IB = 5mA
IC = 200mA, IB = 20mA
Ω
V
V
IC = 200mA, IB = 20mA
B
VCE = 5V, IC = 200mA
IC = 10mA, IB = 1mA
B
IC = 50mA, IB = 5mA
B
Input Impedance
hIE
Voltage Feedback ratio
hRE
0.1
10
KΩ
x 10E-4
Small Signal Current Gain
hFE
100
400
⎯
Output Admittance
VCE = 1.0V, Ic = 10mA, f = 1.0 KHz
hOE
3
60
μS
Current Gain-Bandwidth Product
fT
250
⎯
MHz
Noise Figure
NF
⎯
4
dB
VCE = 5V, Ic = 100 uA, Rs = 1Ω,
f =1 KHz
SWITCHING CHARACTERISTICS
Delay Time
td
⎯
35
ns
VCC = -3.0 V, IC = 10 mA,
Rise Time
tr
⎯
35
ns
VBE(OFF) = 0.5V, IB1 = 1.0 mA
VCE = 20V, IC = 0mA, f = 100 MHz
Typical Characteristics
350
300
PD, POWER DISSIPATION (mW)
NEW PRODUCT
Characteristic
OFF CHARACTERISTICS (Note 4)
Collector-Base Breakdown Voltage
@TA = 25°C unless otherwise specified
250
200
150
100
50
0
0
25
50
75
100
125
150
175
TA, AMBIENT TEMPERATURE (°C)
Fig. 3, Max Power Dissipation vs
Ambient Temperature
DS30749 Rev. 3 - 2
4 of 9
www.diodes.com
LBN150B01
© Diodes Incorporated
Characteristics of PNP Transistor (Q1):
200
IC, COLLECTOR CURRENT (mA)
hFE,, DC CURRENT GAIN
TA = 150°C
1,000
150
TA = 125°C
100
100
TA = 85°C
TA = 25°C
TA = -55°C
10
1
0.1
50
0
1
10
100
IC, COLLECTOR CURRENT (mA)
Fig. 4, hFE vs IC
0
1000
6
8
2
4
10
VCE, COLLECTOR - EMITTER VOLTAGE (V)
Fig. 5, IC vs VCE
1.4
IC/IB = 10
10
VBE, BASE-EMITTER VOLTAGE (V)
VCE(SAT), COLLECTOR-EMITTER SATURATION
VOLTAGE (V)
100
TA = 150°C
TA = 125°C
1
TA = 85°C
0.1
TA = -55°C
TA = 25°C
1.2
TA = -55°C
1
TA = 25°C
0.8
0.6
TA = 85°C
0.4
TA = 125°C
0.2
0.01
TA = 150°C
0
0.1
1
100
10
1000
0.1
IC, COLLECTOR CURRENT (mA)
Fig. 6, VCE(SAT) vs IC
1.4
1
10
100
IC, COLLECTOR CURRENT (mA)
Fig. 7, VBE vs IC
1000
15
1.2
CIBO/COBO, CAPACITANCE (pF)
VBE(SAT), BASE-EMITTER SATURATION
VOLTAGE (V)
NEW PRODUCT
10,000
TA = -55°C
1
0.8
0.6
TA = 150°C
TA = 125°C
0.4
12
9
6
CIBO
3
0.2
COBO
0
1
0.1
1
10
100
1000
10 12 14 16 18
VR, REVERSE VOLTAGE (V)
Fig. 9, Input/Output Capacitance vs VR
IC, COLLECTOR CURRENT (mA)
Fig. 8, VBE (SAT) vs IC
DS30749 Rev. 3 - 2
5 of 9
www.diodes.com
20
LBN150B01
© Diodes Incorporated
Characteristics of NPN Transistor (Q2):
10,000
200
Vce = 1V
IB = 4.5mA IB = 4mA IB = 3.5mA
TA = 125° C
100
IB = 3mA
IB = 5mA
IC, COLLECTOR CURRENT (mA)
hFE, DC CURRENT GAIN
1,000
TA = 85°C
TA = 25°C
T A = -55°C
10
150
100
50
IB = 1mA
IB = 2mA
IB = 1.5mA
IB = 2.5mA
IB = 0.5mA
1
0
0.1
1
10
100
0
1000
2
4
6
10
8
VCE, COLLECTOR-EMITTER VOLTAGE (V)
Fig. 11, IC vs VCE
100
1.4
Vce = 1V
Ic/Ib = 10
10
1
TA = 125°C
TA = 150° C
TA = 85° C
0.1
TA = 25°C
TA = -55°C
1.2
VBE, BASE-EMITTER VOLTAGE (V)
VCE(SAT), COLLECTOR-EMITTER SATURATION
VOLTAGE (V)
IC, COLLECTOR CURRENT (mA)
Fig. 10, hFE vs IC
1
TA = -55°C
0.8
T A = 25°C
0.6
T A = 85 °C
0.4
TA = 125°C
TA = 150° C
0.2
0.01
0
0.1
1
10
100
1000
0.1
IC, COLLECTOR CURRENT (mA)
Fig. 12, VCE(SAT) vs IC
1
10
100
1000
IC, COLLECTOR CURRENT (mA)
Fig. 13, VBE vs IC
1.4
6
Vce = 1V
1.2
1
CIBO/COBO, CAPACITANCE (pF)
VBE(SAT), BASE-EMITTER SATURATION
VOLTAGE (V)
NEW PRODUCT
TA = 150°C
TA = -55°C
0.8
TA = 25°C
TA = 150° C
0.6
TA = 125°C
TA = 85° C
0.4
5
4
3
CIBO
2
COBO
1
0.2
0
0.1
DS30749 Rev. 3 - 2
10
1
100
IC, COLLECTOR CURRENT (mA)
Fig. 14, VBE vs IC
1000
10 12 14 16 18
VR, REVERSE VOLTAGE (V)
Fig. 15, Input/Output Capacitance vs VR
6 of 9
www.diodes.com
20
LBN150B01
© Diodes Incorporated
MMST3906
Application Details
NEW PRODUCT
•
Vin
EQ1
Q1
PNP Transistor (MMST3906) and NPN Transistor (MMST3904)
integrated as one in LBN150B01 can be used as a discrete entity
for general purpose applications or as a part of a circuit to function
as a Load Switch. When it is used as the latter as shown in Fig 16,
various input voltage sources can be used as long as they do not
exceed the maximum rating of the device. These devices are
designed to deliver continuous output load current up to maximum
of 150 mA. The use of the NPN as a switch eliminates the need
for higher current required to overcome the gate charge in the
event an N-MOSFET is used. Care must be taken for higher levels
of dissipation while designing for higher load conditions. These
devices provides power on demand and also consume less space.
It mainly helps in optimizing power usage, thereby conserving
battery life in a controlled load system like portable battery
powered applications. (Please see Fig. 17 for one example of
typical application circuit used in conjunction with a voltage
regulator as a part of power management system).
Vo ut
CQ1
PNP
BQ1
R1
LOAD
10K
R2
220
MMST3904
CQ2
EQ2
Q2
NPN
BQ2
Control
Fig. 16: Example Circuit Schematic
Typical Application Circuit
5VSupply
U1
U3
Load Switch
Vin
Vin
U2
1 E_Q1
2
Control Logic
Circuit (PIC,
Comparator, etc)
C_Q1
B_Q1
E_Q2
B_Q2
C_Q2
6
IN
OUT
Point of
Load
5 GND
Control
OUT1
3
4
LBN150B01
GND
Vo u t
Voltage Regulator
Diodes, Inc.
Fig. 17
DS30749 Rev. 3 - 2
7 of 9
www.diodes.com
LBN150B01
© Diodes Incorporated
Marking Code
PM4
Device
LBN150B01-7
Notes:
5.
Packaging
SOT-26
Shipping
3000/Tape & Reel
For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.
Marking Information
PM4 = Product Type Marking Code
YM = Date Code Marking
Y = Year ex: T = 2006
M = Month ex: 9 = September
YM
NEW PRODUCT
Ordering Information (Note 5)
PM4
Fig. 18
Date Code Key
Year
2006
T
Code
2007
U
2008
V
2009
W
2010
X
Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Code
1
2
3
4
5
6
7
2011
Y
Aug
8
Sep
9
Oct
O
2012
Z
Nov
N
Dec
D
Marking Information
SOT-26
A
B C
Dim
Min
Max
Typ
A
0.35
0.50
0.38
B
1.50
1.70
1.60
C
2.70
3.00
2.80
D
–
–
0.95
F
–
–
0.55
H
2.90
3.10
3.00
J
0.013
0.10
0.05
K
1.00
1.30
1.10
H
K
J
M
D
F
L
Fig. 19
L
0.35
0.55
0.40
M
0.10
0.20
0.15
α
0°
8°
–
All Dimensions in mm
DS30749 Rev. 3 - 2
8 of 9
www.diodes.com
LBN150B01
© Diodes Incorporated
Suggested Pad Layout: (Based on IPC-SM-782)
NEW PRODUCT
E
Z
E
Figure 20
Dimensions
Z
C
G
SOT-26
3.2
G
1.6
X
0.55
Y
0.8
C
2.4
E
0.95
All Dimensions in mm
Y
X
Fig. 20
IMPORTANT NOTICE
Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes
without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product
described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall
assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website,
harmless against all damages.
LIFE SUPPORT
Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written
approval of the President of Diodes Incorporated.
DS30749 Rev. 3 - 2
9 of 9
www.diodes.com
LBN150B01
© Diodes Incorporated