LBN150B01 150 mA LOAD SWITCH FEATURING COMPLEMENTARY BIPOLAR TRANSISTORS NEW PRODUCT General Description • LMN150B01 is best suited for applications where the load needs to be turned on and off using control circuits like micro-controllers, comparators etc. particularly at a point of load. It features a discrete PNP pass transistor with stable Vce_sat which does not depend on the input voltage and can support maximum continuous current of 150 mA up to 125 °C (see fig. 3). It also contains a discrete NPN that can be used as a control. The component devices can be used as a part of a circuit or as stand alone discrete devices. 6 5 4 1 2 3 Features • • • • Epitaxial Planar Die Construction Ideally Suited for Automated Assembly Processes Lead Free By Design/ROHS Compliant (Note 1) "Green" Device (Note 2) Fig. 1: SOT-26 CQ1 EQ2 CQ2 6 5 4 Mechanical Data • • • • • • • • NPN_MMST3904 Case: SOT-26 Case Material: Molded Plastic. "Green Molding" Compound. UL Flammability Classification Rating 94V-0 Moisture Sensitivity: Level 1 per J-STD-020C Terminal Connections: See Diagram Terminals: Finish - Matte Tin annealed over Copper leadframe. Solderable per MIL- STD -202, Method 208 Marking & Type Code Information: See Page 8 Ordering Information: See Page 8 Weight: 0.016 grams (approximate) Sub-Component P/N MMST3906 MMST3904 Maximum Ratings, Total Device 1 EQ1 2 3 BQ1 BQ2 Fig. 2: Schematic and Pin Configuration Device Type PNP Transistor NPN Transistor Figure 2 2 Value 150 Unit mA Value 300 Unit mW Pder 2.33 mW/°C Tj,Tstg -55 to +150 °C RθJA 417 °C/W @TA = 25°C unless otherwise specified Characteristic Symbol Iout @TA = 25°C unless otherwise specified Characteristic Power Dissipation (Note 3) Symbol Pd Power Derating Factor above 120 °C Junction Operation and Storage Temperature Range Thermal Resistance, Junction to Ambient Air (Note 3) (Equivalent to one heated junction of PNP transistor) Notes: Q2 PNP_MMST3906 Reference Q1 Q2 Output Current Thermal Characteristics Q1 1. No purposefully added lead. 2 . Diodes Inc.'s "Green" policy can be found on our website at http:/www.diodes.com/products/lead_free/index.php. 3. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Page 9. DS30749 Rev. 3 - 2 1 of 9 www.diodes.com LBN150B01 © Diodes Incorporated NEW PRODUCT Maximum Ratings: @TA = 25°C unless otherwise specified Sub-Component Device - Discrete PNP Transistor (Q1) Characteristic Symbol VCBO Value -40 Unit V Collector-Emitter Voltage VCEO -40 V Emitter-Base Voltage VEBO -6 V IC -200 mA Collector-Base Voltage Output Current - continuous (Note 4) Maximum Ratings: @TA = 25°C unless otherwise specified Sub-Component Device - Discrete NPN Transistor (Q2) Characteristic Collector-Base Voltage Symbol VCBO Value 60 Unit V Collector-Emitter Voltage VCEO 40 V Emitter-Base Voltage VEBO 6 V IC 200 mA Output Current - continuous (Note 4) Notes: 4. Short duration pulse test used to minimize self-heating effect. DS30749 Rev. 3 - 2 2 of 9 www.diodes.com LBN150B01 © Diodes Incorporated Electrical Characteristics: Discrete PNP Transistor (Q1) NEW PRODUCT Characteristic OFF CHARACTERISTICS (Note 4) Collector-Base Breakdown Voltage @TA = 25°C unless otherwise specified Symbol Min Max Unit Test Condition VCBO -40 ⎯ V IC = -10uA, IE = 0 Collector-Emitter Breakdown Voltage VCEO -40 ⎯ V IC = -1.0mA, IB = 0 Emitter-Base Breakdown Voltage VEBO -6 V IE = -10μA, IC = 0 Collector Cutoff Current ICEX ⎯ ⎯ -50 nA VCE = -30V, VEB(OFF) = -3.0V IBL ⎯ -50 nA VCE = -30V, VEB(OFF) = -3.0V Collector-Base Cut Off Current ICBO ⎯ -50 nA VCB = -30V, IE = 0 Collector-Emitter Cut Off Current ICEO ⎯ -50 nA VCE = -30V, IB = 0 Emitter-Base Cut Off Current ON CHARACTERISTICS (Note 4) IEBO ⎯ -50 nA VEB = -5V, IC = 0 105 ⎯ ⎯ VCE = -1V, IC = -100 μA 110 ⎯ ⎯ VCE = -1V, IC = -1 mA 120 ⎯ ⎯ VCE = -1V, IC = -10 mA 90 ⎯ ⎯ VCE = -1V, IC = -50 mA 32 ⎯ ⎯ VCE = -1V, IC = -100 mA 10 ⎯ ⎯ ⎯ -0.08 ⎯ -0.15 V ⎯ -0.5 Base Cutoff Current DC Current Gain Collector-Emitter Saturation Voltage hFE VCE(SAT) Equivalent on-resistance RCE(SAT) ⎯ 2.5 Base-Emitter Turn-on Voltage VBE(ON) ⎯ -0.92 Base-Emitter Saturation Voltage VBE(SAT) ⎯ -0.95 ⎯ -1.1 B B VCE = -1V, IC = -200 mA IC = - 10 mA, IB = -1 mA B IC = -50mA, IB = -5mA IC = -200mA, IB = -20mA Ω V V IC = -200mA, IB = -20mA B VCE = -5V, IC = -200mA IC = -10mA, IB = -1mA B IC = -50mA, IB = -5mA B SMALL SIGNAL CHARACTERISTICS Output Capacitance COBO ⎯ 4 pF VCB = -5.0 V, f = 1.0 MHz, IE = 0 Input Capacitance CIBO ⎯ 2 8 pF VEB = -5.0 V, f = 1.0 MHz, IC = 0 12 hRE 0.1 10 KΩ x 10E-4 Small Signal Current Gain hFE 100 400 ⎯ Output Admittance hOE 3 60 μS Current Gain-Bandwidth Product fT 250 ⎯ MHz Noise Figure NF ⎯ 4 dB VCE = - 5V, Ic = -100 uA, Rs = 1Ω, f =1 KHz SWITCHING CHARACTERISTICS Delay Time td ⎯ 35 ns VCC = -3.0 V, IC = -10 mA, Rise Time tr ⎯ 35 ns VBE(OFF) = 0.5V, IB1 = -1.0 mA Storage Time ts ⎯ 225 ns VCC = -3.0 V, IC = -10 mA, Fall Time tf ⎯ 75 ns IB1 = IB2 = -1.0 mA Input Impedance hIE Voltage Feedback ratio DS30749 Rev. 3 - 2 3 of 9 www.diodes.com VCE = 1.0V, Ic = 10mA, f = 1.0 KHz VCE = - 20V, IC = -10mA, f = 100 MHz LBN150B01 © Diodes Incorporated Electrical Characteristics: Discrete NPN Transistor (Q2) Symbol Min Max Unit Test Condition VCBO 60 ⎯ V IC = 10uA, IE = 0 Collector-Emitter Breakdown Voltage VCEO 40 ⎯ V IC = 1.0mA, IB = 0 Emitter-Base Breakdown Voltage VEBO 6 V IE = 10μA, IC = 0 Collector Cutoff Current ICEX ⎯ ⎯ 50 nA VCE = 30V, VEB(OFF) = 3.0V IBL ⎯ 50 nA VCE = 30V, VEB(OFF) = 3.0V Collector-Base Cut Off Current ICBO ⎯ 50 nA VCB = 30V, IE = 0 Collector-Emitter Cut Off Current ICEO ⎯ 50 nA VCE = 30V, IB = 0 Emitter-Base Cut Off Current ON CHARACTERISTICS (Note 4) IEBO ⎯ 50 nA VEB = 5V, IC = 0 150 ⎯ ⎯ VCE = 1V, IC = 100 μA 170 ⎯ ⎯ VCE = 1V, IC = 1 mA 160 ⎯ ⎯ VCE = 1V, IC = 10 mA 70 ⎯ ⎯ VCE = 1V, IC = 50 mA 30 ⎯ ⎯ VCE = 1V, IC = 100 mA 12 ⎯ ⎯ ⎯ 0.08 ⎯ 0.16 V Base Cutoff Current DC Current Gain hFE B B VCE = 1V, IC = 200 mA IC = 10 mA, IB = 1 mA B Collector-Emitter Saturation Voltage VCE(SAT) ⎯ 0.36 Equivalent on-resistance RCE(SAT) ⎯ 1.8 Base-Emitter Turn-on Voltage VBE(ON) ⎯ 0.98 Base-Emitter Saturation Voltage VBE(SAT) ⎯ 0.95 ⎯ 1.1 COBO ⎯ 4 pF VCB = 5.0 V, f = 1.0 MHz, IE = 0 CIBO ⎯ 2 8 pF VEB = 5.0 V, f = 1.0 MHz, IC = 0 12 SMALL SIGNAL CHARACTERISTICS Output Capacitance Input Capacitance IC = 50mA, IB = 5mA IC = 200mA, IB = 20mA Ω V V IC = 200mA, IB = 20mA B VCE = 5V, IC = 200mA IC = 10mA, IB = 1mA B IC = 50mA, IB = 5mA B Input Impedance hIE Voltage Feedback ratio hRE 0.1 10 KΩ x 10E-4 Small Signal Current Gain hFE 100 400 ⎯ Output Admittance VCE = 1.0V, Ic = 10mA, f = 1.0 KHz hOE 3 60 μS Current Gain-Bandwidth Product fT 250 ⎯ MHz Noise Figure NF ⎯ 4 dB VCE = 5V, Ic = 100 uA, Rs = 1Ω, f =1 KHz SWITCHING CHARACTERISTICS Delay Time td ⎯ 35 ns VCC = -3.0 V, IC = 10 mA, Rise Time tr ⎯ 35 ns VBE(OFF) = 0.5V, IB1 = 1.0 mA VCE = 20V, IC = 0mA, f = 100 MHz Typical Characteristics 350 300 PD, POWER DISSIPATION (mW) NEW PRODUCT Characteristic OFF CHARACTERISTICS (Note 4) Collector-Base Breakdown Voltage @TA = 25°C unless otherwise specified 250 200 150 100 50 0 0 25 50 75 100 125 150 175 TA, AMBIENT TEMPERATURE (°C) Fig. 3, Max Power Dissipation vs Ambient Temperature DS30749 Rev. 3 - 2 4 of 9 www.diodes.com LBN150B01 © Diodes Incorporated Characteristics of PNP Transistor (Q1): 200 IC, COLLECTOR CURRENT (mA) hFE,, DC CURRENT GAIN TA = 150°C 1,000 150 TA = 125°C 100 100 TA = 85°C TA = 25°C TA = -55°C 10 1 0.1 50 0 1 10 100 IC, COLLECTOR CURRENT (mA) Fig. 4, hFE vs IC 0 1000 6 8 2 4 10 VCE, COLLECTOR - EMITTER VOLTAGE (V) Fig. 5, IC vs VCE 1.4 IC/IB = 10 10 VBE, BASE-EMITTER VOLTAGE (V) VCE(SAT), COLLECTOR-EMITTER SATURATION VOLTAGE (V) 100 TA = 150°C TA = 125°C 1 TA = 85°C 0.1 TA = -55°C TA = 25°C 1.2 TA = -55°C 1 TA = 25°C 0.8 0.6 TA = 85°C 0.4 TA = 125°C 0.2 0.01 TA = 150°C 0 0.1 1 100 10 1000 0.1 IC, COLLECTOR CURRENT (mA) Fig. 6, VCE(SAT) vs IC 1.4 1 10 100 IC, COLLECTOR CURRENT (mA) Fig. 7, VBE vs IC 1000 15 1.2 CIBO/COBO, CAPACITANCE (pF) VBE(SAT), BASE-EMITTER SATURATION VOLTAGE (V) NEW PRODUCT 10,000 TA = -55°C 1 0.8 0.6 TA = 150°C TA = 125°C 0.4 12 9 6 CIBO 3 0.2 COBO 0 1 0.1 1 10 100 1000 10 12 14 16 18 VR, REVERSE VOLTAGE (V) Fig. 9, Input/Output Capacitance vs VR IC, COLLECTOR CURRENT (mA) Fig. 8, VBE (SAT) vs IC DS30749 Rev. 3 - 2 5 of 9 www.diodes.com 20 LBN150B01 © Diodes Incorporated Characteristics of NPN Transistor (Q2): 10,000 200 Vce = 1V IB = 4.5mA IB = 4mA IB = 3.5mA TA = 125° C 100 IB = 3mA IB = 5mA IC, COLLECTOR CURRENT (mA) hFE, DC CURRENT GAIN 1,000 TA = 85°C TA = 25°C T A = -55°C 10 150 100 50 IB = 1mA IB = 2mA IB = 1.5mA IB = 2.5mA IB = 0.5mA 1 0 0.1 1 10 100 0 1000 2 4 6 10 8 VCE, COLLECTOR-EMITTER VOLTAGE (V) Fig. 11, IC vs VCE 100 1.4 Vce = 1V Ic/Ib = 10 10 1 TA = 125°C TA = 150° C TA = 85° C 0.1 TA = 25°C TA = -55°C 1.2 VBE, BASE-EMITTER VOLTAGE (V) VCE(SAT), COLLECTOR-EMITTER SATURATION VOLTAGE (V) IC, COLLECTOR CURRENT (mA) Fig. 10, hFE vs IC 1 TA = -55°C 0.8 T A = 25°C 0.6 T A = 85 °C 0.4 TA = 125°C TA = 150° C 0.2 0.01 0 0.1 1 10 100 1000 0.1 IC, COLLECTOR CURRENT (mA) Fig. 12, VCE(SAT) vs IC 1 10 100 1000 IC, COLLECTOR CURRENT (mA) Fig. 13, VBE vs IC 1.4 6 Vce = 1V 1.2 1 CIBO/COBO, CAPACITANCE (pF) VBE(SAT), BASE-EMITTER SATURATION VOLTAGE (V) NEW PRODUCT TA = 150°C TA = -55°C 0.8 TA = 25°C TA = 150° C 0.6 TA = 125°C TA = 85° C 0.4 5 4 3 CIBO 2 COBO 1 0.2 0 0.1 DS30749 Rev. 3 - 2 10 1 100 IC, COLLECTOR CURRENT (mA) Fig. 14, VBE vs IC 1000 10 12 14 16 18 VR, REVERSE VOLTAGE (V) Fig. 15, Input/Output Capacitance vs VR 6 of 9 www.diodes.com 20 LBN150B01 © Diodes Incorporated MMST3906 Application Details NEW PRODUCT • Vin EQ1 Q1 PNP Transistor (MMST3906) and NPN Transistor (MMST3904) integrated as one in LBN150B01 can be used as a discrete entity for general purpose applications or as a part of a circuit to function as a Load Switch. When it is used as the latter as shown in Fig 16, various input voltage sources can be used as long as they do not exceed the maximum rating of the device. These devices are designed to deliver continuous output load current up to maximum of 150 mA. The use of the NPN as a switch eliminates the need for higher current required to overcome the gate charge in the event an N-MOSFET is used. Care must be taken for higher levels of dissipation while designing for higher load conditions. These devices provides power on demand and also consume less space. It mainly helps in optimizing power usage, thereby conserving battery life in a controlled load system like portable battery powered applications. (Please see Fig. 17 for one example of typical application circuit used in conjunction with a voltage regulator as a part of power management system). Vo ut CQ1 PNP BQ1 R1 LOAD 10K R2 220 MMST3904 CQ2 EQ2 Q2 NPN BQ2 Control Fig. 16: Example Circuit Schematic Typical Application Circuit 5VSupply U1 U3 Load Switch Vin Vin U2 1 E_Q1 2 Control Logic Circuit (PIC, Comparator, etc) C_Q1 B_Q1 E_Q2 B_Q2 C_Q2 6 IN OUT Point of Load 5 GND Control OUT1 3 4 LBN150B01 GND Vo u t Voltage Regulator Diodes, Inc. Fig. 17 DS30749 Rev. 3 - 2 7 of 9 www.diodes.com LBN150B01 © Diodes Incorporated Marking Code PM4 Device LBN150B01-7 Notes: 5. Packaging SOT-26 Shipping 3000/Tape & Reel For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf. Marking Information PM4 = Product Type Marking Code YM = Date Code Marking Y = Year ex: T = 2006 M = Month ex: 9 = September YM NEW PRODUCT Ordering Information (Note 5) PM4 Fig. 18 Date Code Key Year 2006 T Code 2007 U 2008 V 2009 W 2010 X Month Jan Feb Mar Apr May Jun Jul Code 1 2 3 4 5 6 7 2011 Y Aug 8 Sep 9 Oct O 2012 Z Nov N Dec D Marking Information SOT-26 A B C Dim Min Max Typ A 0.35 0.50 0.38 B 1.50 1.70 1.60 C 2.70 3.00 2.80 D – – 0.95 F – – 0.55 H 2.90 3.10 3.00 J 0.013 0.10 0.05 K 1.00 1.30 1.10 H K J M D F L Fig. 19 L 0.35 0.55 0.40 M 0.10 0.20 0.15 α 0° 8° – All Dimensions in mm DS30749 Rev. 3 - 2 8 of 9 www.diodes.com LBN150B01 © Diodes Incorporated Suggested Pad Layout: (Based on IPC-SM-782) NEW PRODUCT E Z E Figure 20 Dimensions Z C G SOT-26 3.2 G 1.6 X 0.55 Y 0.8 C 2.4 E 0.95 All Dimensions in mm Y X Fig. 20 IMPORTANT NOTICE Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages. LIFE SUPPORT Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated. DS30749 Rev. 3 - 2 9 of 9 www.diodes.com LBN150B01 © Diodes Incorporated