FAIRCHILD FDC6301

July 1997
FDC6301N
Dual N-Channel , Digital FET
General Description
Features
These dual N-Channel logic level enhancement mode field
effect transistors are produced using Fairchild 's proprietary,
high cell density, DMOS technology. This very high density
process is especially tailored to minimize on-state resistance.
This device has been designed especially for low voltage
applications as a replacement for digital transistors. Since bias
resistors are not required, these N-Channel FET's can replace
several digital transistors, with a variety of bias resistors.
SOT-23
SuperSOTTM-8
SuperSOTTM-6
25 V, 0.22 A continuous, 0.5 A Peak.
RDS(ON) = 5 Ω @ VGS= 2.7 V
RDS(ON) = 4 Ω @ VGS= 4.5 V.
Very low level gate drive requirements allowing direct
operation in 3V circuits. VGS(th) < 1.5V.
Gate-Source Zener for ESD ruggedness.
>6kV Human Body Model.
SO-8
SOIC-16
SOT-223
Mark: .301
INVERTER APPLICATION
4
3
5
2
6
1
Vcc
D
OUT
Absolute Maximum Ratings
Symbol
IN
G
S
GND
TA = 25oC unless other wise noted
Parameter
FDC6301N
Units
VDSS, VCC
Drain-Source Voltage, Power Supply Voltage
25
V
VGSS, VIN
Gate-Source Voltage, VIN
8
V
ID, IOUT
Drain/Output Current
- Continuous
0.22
A
- Pulsed
0.5
PD
Maximum Power Dissipation
(Note 1a)
(Note 1b)
TJ,TSTG
Operating and Storage Temperature Range
ESD
Electrostatic Discharge Rating MIL-STD-883D
Human Body Model (100pf / 1500 Ohm)
0.9
W
0.7
-55 to 150
°C
6.0
kV
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
140
°C/W
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
60
°C/W
© 1997 Fairchild Semiconductor Corporation
FDC6301N Rev.C
Electrical Characteristics (TA = 25 OC unless otherwise noted )
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 µA
∆BVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
ID = 250 µA, Referenced to 25 o C
25
IDSS
Zero Gate Voltage Drain Current
VDS = 20 V, VGS = 0 V
IGSS
Gate - Body Leakage Current
VGS = 8 V, VDS= 0 V
V
mV /oC
25
TJ = 55°C
1
µA
10
µA
100
nA
ON CHARACTERISTICS (Note 2)
∆VGS(th)/∆TJ
Gate Threshold Voltage Temp.Coefficient
ID = 250 µA, Referenced to 25 o C
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
RDS(ON)
Static Drain-Source On-Resistance
VGS = 2.7 V, ID = 0.2 A
mV /oC
-2.1
0.65
TJ =125°C
VGS = 4.5 V, ID = 0.4 A
0.85
1.5
V
3.8
5
Ω
6.3
9
3.1
4
ID(ON)
On-State Drain Current
VGS = 2.7 V, VDS = 5 V
0.2
gFS
Forward Transconductance
VDS = 5 V, ID= 0.4 A
0.25
A
S
VDS = 10 V, VGS = 0 V,
f = 1.0 MHz
9.5
pF
6
pF
1.3
pF
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS (Note 2)
tD(on)
Turn - On Delay Time
tr
Turn - On Rise Time
tD(off)
Turn - Off Delay Time
tf
Turn - Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
VDD = 6 V, ID = 0.5 A,
VGS = 4.5 V, RGEN = 50 Ω
VDS = 5 V, ID = 0.2 A,
VGS = 4.5 V
5
10
ns
4.5
10
ns
4
8
ns
3.2
7
ns
0.49
0.7
nC
0.22
nC
0.07
nC
Inverter Electrical Characteristics (TA = 25°C unless otherwise noted)
IO (off)
Zero Input Voltage Output Current
VCC = 20 V, VI = 0 V
1
µA
VI (off)
Input Voltage
VCC = 5 V, IO = 10 µA
0.5
V
VI (on)
RO (on)
VO = 0.3 V, IO = 0.005 A
Output to Ground Resistance
VI = 2.7 V, IO = 0.2 A
1
V
3.8
5
Ω
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by
design while RθCA is determined by the user's board design. RθJA shown below for single device operation on FR-4 in still air.
a. 140OC/W on a 0.125 in2 pad of
2oz copper.
b. 180OC/W on a 0.005 in2 of pad
of 2oz copper.
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
FDC6301N Rev.C
Typical Electrical Characteristics
3.5
R DS(on ) , NORMALIZED
3.0
0.4
2.7
2.5
0.3
0.2
2.0
0.1
1.5
I
DRAIN-SOURCE ON-RESISTANCE
1.4
V GS = 4.5V
D
, DRAIN-SOURCE CURRENT (A)
0.5
VGS = 2.0V
1.2
2.5
0
1
V
DS
2
3
4
, DRAIN-SOURCE VOLTAGE (V)
3.0
3.5
4.0
0.8
0.6
0
2.7
1
5
4.5
0
0.4
0.5
15
R DS(on) , ON-RESISTANCE (OHM)
I D = 0.2A
1.6
V GS = 2.7 V
1.4
1.2
1
0.8
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
12
125°C
9
6
3
150
2
2.5
5
I S, REVERSE DRAIN CURRENT (A)
V GS = 0V
0.15
0.1
0.05
Figure 5. Transfer Characteristics.
4.5
0.5
T = -55°C
J
25°C
1
1.5
2
V GS , GATE TO SOURCE VOLTAGE (V)
4
Gate-To- Source Voltage.
125°C
0
0.5
3.5
Figure 4. On Resistance Variation with
with Temperature.
V DS = 5.0V
3
V GS , GATE TO SOURCE VOLTAGE (V)
Figure 3. On-Resistance Variation
0.2
I D = 0.2A
25°C
0
0.6
-50
I D , DRAIN CURRENT (A)
0.3
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
1.8
R DS(ON), NORMALIZED
0.2
ID , DRAIN CURRENT (A)
Figure 1. On-Region Characteristics.
DRAIN-SOURCE ON-RESISTANCE
0.1
2.5
0.2
0.1
TJ = 125°C
25°C
0.01
-55°C
0.001
0.0001
0.2
0.4
0.6
0.8
1
V SD , BODY DIODE FORWARD VOLTAGE (V)
1.2
Figure 6. Body Diode Forward Voltage
Variation with Source Current and Temperature.
FDC6301N Rev.C
5
30
VDS = 5V
I D = 0.2A
20
10V
4
15V
CAPACITANCE (pF)
V GS , GATE-SOURCE VOLTAGE (V)
Typical Electrical Characteristics (continued)
3
2
C iss
10
C oss
5
3
f = 1 MHz
2
1
0
V GS = 0V
1
0.1
0
0.1
0.2
0.3
0.4
0.5
C rss
0.5
0.6
1
2
5
10
25
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
Qg , GATE CHARGE (nC)
Figure 8. Capacitance Characteristics.
Figure 7. Gate Charge Characteristics.
1
5
1m
10 s
ms
IT
LIM
N)
(O
S
RD
10
0m
s
1s
0.1
DC
0.05
0.02
V GS = 2.7V
SINGLE PULSE
RθJA =See note 1b
TA = 25°C
0.01
0.5
1
DS
3
2
1
2
V
SINGLE PULSE
RθJA =See note 1b
TA = 25°C
4
POWER (W)
0.2
5
10
15
25
0
0.01
35
0.1
1
10
100
300
SINGLE PULSE TIME (SEC)
, DRAI N-SOURCE VOLTAGE (V)
Figure 10. Single Pulse Maximum Power
Dissipation.
Figure 9. Maximum Safe Operating Area.
1
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
ID , DRAIN CURRENT (A)
0.5
0.5
D = 0.5
0.2
0.2
0.1
0.05
0.02
0.01
0.0001
RθJA (t) = r(t) * R θJA
R θJA = See Note 1b
0.1
P(pk)
0.05
t1
0.02
0.01
Single Pulse
0.001
t2
TJ - TA = P * R JA(t)
θ
Duty Cycle, D = t 1/ t 2
0.01
0.1
1
10
100
300
t 1, TIME (sec)
Figure 11. Transient Thermal Response Curve.
Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal
response will change depending on the circuit board design.
FDC6301N Rev.C