May 1997 NDP7052L / NDB7052L N-Channel Logic Level Enhancement Mode Field Effect Transistor General Description Features These logic level N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as automotive, DC/DC converters, PWM motor controls, and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed. 75 A, 50 V. RDS(ON) = 0.010 Ω @ VGS= 5 V RDS(ON) = 0.0075 Ω @ VGS= 10 V. Low drive requirements allowing operation directly from logic drivers. VGS(TH) < 2.0V. Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor. 175°C maximum junction temperature rating. High density cell design for extremely low RDS(ON). TO-220 and TO-263 (D2PAK) package for both through hole and surface mount applications. ________________________________________________________________________________ D G S Absolute Maximum Ratings T C = 25°C unless otherwise noted Symbol Parameter NDP7052L VDSS Drain-Source Voltage 50 V VDGR Drain-Gate Voltage (RGS < 1 MΩ) 50 V VGSS Gate-Source Voltage - Continuous ±16 V - Nonrepetitive (tP < 50 µs) ID Drain Current PD Units ±25 - Continuous 75 - Pulsed 225 Maximum Power Dissipation @ TC = 25°C 150 W 1 W/°C -65 to 175 °C 1 °C/W 62.5 °C/W Derate above 25°C TJ,TSTG NDB7052L Operating and Storage Temperature Range A THERMAL CHARACTERISTICS RθJC Thermal Resistance, Junction-to-Case RθJA Thermal Resistance, Junction-to-Ambient © 1997 Fairchild Semiconductor Corporation NDP7052L Rev.B1 Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Parameter Conditions Min Typ Max Unit 550 mJ 75 A DRAIN-SOURCE AVALANCHE RATINGS (Note) W DSS Single Pulse Drain-Source Avalanche Energy IAR Maximum Drain-Source Avalanche Current VDD = 25 V, ID = 75 A OFF CHARACTERISTICS BVDSS Drain-Source Breakdown Voltage 50 VGS = 0 V, ID = 250 µA ∆BVDSS/∆TJ Breakdown Voltage Temp. Coefficient ID = 250 µA, Referenced to 25 C IDSS Zero Gate Voltage Drain Current VDS = 48 V, VGS = 0 V o V V/oC 0.075 TJ = 125°C 250 µA 1 mA IGSSF Gate - Body Leakage, Forward VGS = 16 V, VDS = 0 V 100 nA IGSSR Gate - Body Leakage, Reverse VGS = -16 V, VDS = 0 V -100 nA ON CHARACTERISTICS (Note) ∆VGS(th)/∆TJ Gate Threshold VoltageTemp.Coefficient ID = 250 µA, Referenced to 25 o C VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250 µA RDS(ON) Static Drain-Source On-Resistance VGS = 5 V, ID = 37.5 A 1 TJ = 125°C V/oC -0.005 0.8 TJ = 150°C VGS = 10 V, ID = 37.5 A 1.3 2 0.85 1.6 0.0085 0.01 0.014 0.018 0.0065 0.0075 60 V Ω ID(on) On-State Drain Current VGS = 5 V, VDS = 10 V gFS Forward Transconductance VDS = 5 V, ID = 37.5 A 69 A S VDS = 25 V, VGS = 0 V, f = 1.0 MHz 4030 pF 1260 pF 450 pF DYNAMIC CHARACTERISTICS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance SWITCHING CHARACTERISTICS (Note) tD(on) Turn - On Delay Time tr Turn - On Rise Time tD(off) Turn - Off Delay Time tf Turn - Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = 25 V, ID = 37.5 A, VGS = 5 V, RGEN = 10 Ω RGS = 10 Ω VDS= 24 V ID = 75 A , VGS = 5 V 25 50 nS 215 400 nS 110 200 nS 170 300 nS 92 130 nC 15 nC 45 nC DRAIN-SOURCE DIODE CHARACTERISTICS IS Maximum Continuos Drain-Source Diode Forward Current 75 A ISM Maximum Pulsed Drain-Source Diode Forward Current 180 A VSD Drain-Source Diode Forward Voltage VGS = 0 V, IS = 37.5 A 1.3 V trr Reverse Recovery Time 150 ns Reverse Recovery Current VGS = 0 V, IF = 37.5 A dIF/dt = 100 A/µs 40 Irr 2 10 A 0.9 (Note) Note: Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%. NDP7052L Rev.B1 Typical Electrical Characteristics VGS = 10V 1.8 6.0 5.0 80 R DS(on) , NORMALIZED 3.5 3.0 60 40 2.5 20 DRAIN-SOURCE ON-RESISTANCE I D , DRAIN-SOURCE CURRENT (A) 100 1.4 3.5 0.5 1 1.5 2 VDS , DRAIN-SOURCE VOLTAGE (V) 2.5 4.0 1.2 4.5 5.0 1 6.0 0.8 0 0 V GS = 3.0V 1.6 0.6 3 10 0 20 I D = 37.5A 1.75 25°C R DS(on) , ON-RESISTANCE (OHM) V GS = 5V 1.5 1.25 1 0.75 0.5 -50 -25 0 25 50 75 100 125 TJ , JUNCTION TEMPERATURE (°C) 150 175 ID=37.5A 0.06 125°C 0.04 0.02 0 2 2.5 3 3.5 4 V GS , GATE TO SOURCE VOLTAGE (V) 4.5 5 Figure 4. On Resistance Variation with Gate-To- Source Voltage. Figure 3. On-Resistance Variation with Temperature. 60 60 I S, REVERSE DRAIN CURRENT (A) T = -55°C J VDS = 5V 25°C 50 125°C 40 30 D 20 I R DS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE 100 0.08 2 , DRAIN CURRENT (A) 80 Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 1. On-Region Characteristics. 10 0 40 60 I D , DRAIN CURRENT (A) V GS = 0V 20 TJ = 125°C 1 25°C 0.1 -55°C 0.01 0.001 0.0001 1 1.5 2 2.5 V GS , GATE TO SOURCE VOLTAGE (V) 3 Figure 5. Transfer Characteristics. 3.5 0 0.2 0.4 0.6 0.8 V SD , BODY DIODE FORWARD VOLTAGE (V) 1 1.2 Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. NDP7052L Rev.B1 Typical Electrical Characteristics (continued) 10 8000 I D = 75A 24V 48V Ciss 4000 CAPACITANCE (pF) VGS , GATE-SOURCE VOLTAGE (V) V DS = 12V 8 6 4 2000 1500 Coss 1000 f = 1 MHz V GS = 0V 500 2 Crss 300 0 1 0 20 40 60 80 100 120 140 2 160 3 5 10 20 VDS , DRAIN TO SOURCE VOLTAGE (V) 30 50 Q g , GATE CHARGE (nC) Figure 8.Capacitance Characteristics. Figure 7. Gate Charge Characteristics. 400 2000 200 R Lim it 100 1m SINGLE PULSE RθJC =1° C/W TC = 25°C s 1500 10 50 10 20 0m ms s DC 10 VGS = 10V 5 µs POWER (W) 100 I D , DRAIN CURRENT (A) ) (ON DS 1000 SINGLE PULSE R JC = 1o C/W 500 θ 2 TC = 25 °C 1 0 0.1 0.5 0.5 1 3 5 10 20 V DS , DRAIN-SOURCE VOLTAGE (V)) 30 0.3 80 Figure 9. Maximum Safe Operating Area. 1 3 10 30 100 300 1,000 SINGLE PULSE TIME (SEC) Figure 10. Single Pulse Maximum Power Dissipation. TRANSIENT THERMAL RESISTANCE r(t), NORMALIZED EFFECTIVE 1 D = 0.5 0.5 0.3 R θJC (t) = r(t) * R θJC R = 1.0 °C/W θJC 0.2 0.2 0.1 0.1 P(pk) 0.05 0.05 0.03 t1 0.02 0.01 = P * R JC (t) J C θ Duty Cycle, D = t 1/t 2 0.02 Single Pulse 0.01 0.01 t2 T -T 0.05 0.1 0.5 1 5 t 1 ,TIME (ms) 10 50 100 500 1000 Figure 11. Transient Thermal Response Curve. NDP7052L Rev.B1