FAIRCHILD NDB7052L

May 1997
NDP7052L / NDB7052L
N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description
Features
These logic level N-Channel enhancement mode power field
effect transistors are produced using Fairchild's proprietary,
high cell density, DMOS technology. This very high density
process has been especially tailored to minimize on-state
resistance, provide superior switching performance, and
withstand high energy pulses in the avalanche and
commutation modes. These devices are particularly suited for
low voltage applications such as automotive, DC/DC
converters, PWM motor controls, and other battery powered
circuits where fast switching, low in-line power loss, and
resistance to transients are needed.
75 A, 50 V. RDS(ON) = 0.010 Ω @ VGS= 5 V
RDS(ON) = 0.0075 Ω @ VGS= 10 V.
Low drive requirements allowing operation directly from logic
drivers. VGS(TH) < 2.0V.
Rugged internal source-drain diode can eliminate the need
for an external Zener diode transient suppressor.
175°C maximum junction temperature rating.
High density cell design for extremely low RDS(ON).
TO-220 and TO-263 (D2PAK) package for both through hole
and surface mount applications.
________________________________________________________________________________
D
G
S
Absolute Maximum Ratings
T C = 25°C unless otherwise noted
Symbol
Parameter
NDP7052L
VDSS
Drain-Source Voltage
50
V
VDGR
Drain-Gate Voltage (RGS < 1 MΩ)
50
V
VGSS
Gate-Source Voltage - Continuous
±16
V
- Nonrepetitive (tP < 50 µs)
ID
Drain Current
PD
Units
±25
- Continuous
75
- Pulsed
225
Maximum Power Dissipation @ TC = 25°C
150
W
1
W/°C
-65 to 175
°C
1
°C/W
62.5
°C/W
Derate above 25°C
TJ,TSTG
NDB7052L
Operating and Storage Temperature Range
A
THERMAL CHARACTERISTICS
RθJC
Thermal Resistance, Junction-to-Case
RθJA
Thermal Resistance, Junction-to-Ambient
© 1997 Fairchild Semiconductor Corporation
NDP7052L Rev.B1
Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
550
mJ
75
A
DRAIN-SOURCE AVALANCHE RATINGS (Note)
W DSS
Single Pulse Drain-Source Avalanche Energy
IAR
Maximum Drain-Source Avalanche Current
VDD = 25 V, ID = 75 A
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
50
VGS = 0 V, ID = 250 µA
∆BVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
ID = 250 µA, Referenced to 25 C
IDSS
Zero Gate Voltage Drain Current
VDS = 48 V, VGS = 0 V
o
V
V/oC
0.075
TJ = 125°C
250
µA
1
mA
IGSSF
Gate - Body Leakage, Forward
VGS = 16 V, VDS = 0 V
100
nA
IGSSR
Gate - Body Leakage, Reverse
VGS = -16 V, VDS = 0 V
-100
nA
ON CHARACTERISTICS
(Note)
∆VGS(th)/∆TJ
Gate Threshold VoltageTemp.Coefficient
ID = 250 µA, Referenced to 25 o C
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
RDS(ON)
Static Drain-Source On-Resistance
VGS = 5 V, ID = 37.5 A
1
TJ = 125°C
V/oC
-0.005
0.8
TJ = 150°C
VGS = 10 V, ID = 37.5 A
1.3
2
0.85
1.6
0.0085
0.01
0.014
0.018
0.0065
0.0075
60
V
Ω
ID(on)
On-State Drain Current
VGS = 5 V, VDS = 10 V
gFS
Forward Transconductance
VDS = 5 V, ID = 37.5 A
69
A
S
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz
4030
pF
1260
pF
450
pF
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS
(Note)
tD(on)
Turn - On Delay Time
tr
Turn - On Rise Time
tD(off)
Turn - Off Delay Time
tf
Turn - Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
VDD = 25 V, ID = 37.5 A,
VGS = 5 V, RGEN = 10 Ω
RGS = 10 Ω
VDS= 24 V
ID = 75 A , VGS = 5 V
25
50
nS
215
400
nS
110
200
nS
170
300
nS
92
130
nC
15
nC
45
nC
DRAIN-SOURCE DIODE CHARACTERISTICS
IS
Maximum Continuos Drain-Source Diode Forward Current
75
A
ISM
Maximum Pulsed Drain-Source Diode Forward Current
180
A
VSD
Drain-Source Diode Forward Voltage
VGS = 0 V, IS = 37.5 A
1.3
V
trr
Reverse Recovery Time
150
ns
Reverse Recovery Current
VGS = 0 V, IF = 37.5 A
dIF/dt = 100 A/µs
40
Irr
2
10
A
0.9
(Note)
Note:
Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.
NDP7052L Rev.B1
Typical Electrical Characteristics
VGS = 10V
1.8
6.0
5.0
80
R DS(on) , NORMALIZED
3.5
3.0
60
40
2.5
20
DRAIN-SOURCE ON-RESISTANCE
I D , DRAIN-SOURCE CURRENT (A)
100
1.4
3.5
0.5
1
1.5
2
VDS , DRAIN-SOURCE VOLTAGE (V)
2.5
4.0
1.2
4.5
5.0
1
6.0
0.8
0
0
V GS = 3.0V
1.6
0.6
3
10
0
20
I D = 37.5A
1.75
25°C
R DS(on) , ON-RESISTANCE (OHM)
V GS = 5V
1.5
1.25
1
0.75
0.5
-50
-25
0
25
50
75
100
125
TJ , JUNCTION TEMPERATURE (°C)
150
175
ID=37.5A
0.06
125°C
0.04
0.02
0
2
2.5
3
3.5
4
V GS , GATE TO SOURCE VOLTAGE (V)
4.5
5
Figure 4. On Resistance Variation with
Gate-To- Source Voltage.
Figure 3. On-Resistance Variation
with Temperature.
60
60
I S, REVERSE DRAIN CURRENT (A)
T = -55°C
J
VDS = 5V
25°C
50
125°C
40
30
D
20
I
R DS(ON), NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
100
0.08
2
, DRAIN CURRENT (A)
80
Figure 2. On-Resistance Variation
with Drain Current and Gate Voltage.
Figure 1. On-Region Characteristics.
10
0
40
60
I D , DRAIN CURRENT (A)
V GS = 0V
20
TJ = 125°C
1
25°C
0.1
-55°C
0.01
0.001
0.0001
1
1.5
2
2.5
V GS , GATE TO SOURCE VOLTAGE (V)
3
Figure 5. Transfer Characteristics.
3.5
0
0.2
0.4
0.6
0.8
V SD , BODY DIODE FORWARD VOLTAGE (V)
1
1.2
Figure 6. Body Diode Forward Voltage
Variation with Source Current and Temperature.
NDP7052L Rev.B1
Typical Electrical Characteristics (continued)
10
8000
I D = 75A
24V
48V
Ciss
4000
CAPACITANCE (pF)
VGS , GATE-SOURCE VOLTAGE (V)
V DS = 12V
8
6
4
2000
1500
Coss
1000
f = 1 MHz
V GS = 0V
500
2
Crss
300
0
1
0
20
40
60
80
100
120
140
2
160
3
5
10
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
30
50
Q g , GATE CHARGE (nC)
Figure 8.Capacitance Characteristics.
Figure 7. Gate Charge Characteristics.
400
2000
200
R
Lim
it
100
1m
SINGLE PULSE
RθJC =1° C/W
TC = 25°C
s
1500
10
50
10
20
0m
ms
s
DC
10
VGS = 10V
5
µs
POWER (W)
100
I D , DRAIN CURRENT (A)
)
(ON
DS
1000
SINGLE PULSE
R JC = 1o C/W
500
θ
2
TC = 25 °C
1
0
0.1
0.5
0.5
1
3
5
10
20
V DS , DRAIN-SOURCE VOLTAGE (V))
30
0.3
80
Figure 9. Maximum Safe Operating Area.
1
3
10
30
100
300
1,000
SINGLE PULSE TIME (SEC)
Figure 10. Single Pulse Maximum Power
Dissipation.
TRANSIENT THERMAL RESISTANCE
r(t), NORMALIZED EFFECTIVE
1
D = 0.5
0.5
0.3
R θJC (t) = r(t) * R θJC
R
= 1.0 °C/W
θJC
0.2
0.2
0.1
0.1
P(pk)
0.05
0.05
0.03
t1
0.02
0.01
= P * R JC (t)
J
C
θ
Duty Cycle, D = t 1/t 2
0.02
Single Pulse
0.01
0.01
t2
T -T
0.05
0.1
0.5
1
5
t 1 ,TIME (ms)
10
50
100
500
1000
Figure 11. Transient Thermal Response Curve.
NDP7052L Rev.B1