FAIRCHILD FDC634

November 1997
FDC634P
P-Channel Enhancement Mode Field Effect Transistor
General Description
Features
These P-Channel logic level enhancement mode power
field effect transistors are produced using Fairchild's
proprietary, high cell density, DMOS technology. This very
high density process is especially tailored to minimize
on-state resistance. These devices are particularly suited
for low voltage applications such as cellular phone and
notebook computer power management and other battery
powered circuits where high-side switching, and low in-line
power loss are needed in a very small outline surface
mount package.
SuperSOTTM-6
SOT-23
SuperSOTTM-8
S
D
D
.63
-3.5 A, -20 V. RDS(ON) = 0.080 Ω @ VGS = -4.5 V
RDS(ON) = 0.110 Ω @ VGS = -2.5 V.
SuperSOTTM-6 package design using copper lead frame for
superior thermal and electrical capabilities.
High density cell design for extremely low RDS(ON).
Exceptional on-resistance and maximum DC current
capability.
SOIC-16
SOT-223
SO-8
1
6
2
5
3
4
4
G
SuperSOT
TM
pin 1
-6
D
D
Absolute Maximum Ratings T A = 25°C unless otherwise note
Symbol Parameter
FDC634P
Units
VDSS
Drain-Source Voltage
-20
V
VGSS
Gate-Source Voltage - Continuous
±8
V
ID
Drain Current - Continuous
-3.5
A
PD
Maximum Power Dissipation
(Note 1a)
- Pulsed
-11
(Note 1a)
(Note 1b)
TJ,TSTG
Operating and Storage Temperature Range
1.6
W
0.8
-55 to 150
°C
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
78
°C/W
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
30
°C/W
© 1997 Fairchild Semiconductor Corporation
FDC634P Rev.C
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
-20
Typ
Max
Units
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = -250 µA
∆BVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
ID = -250 µA, Referenced to 25 o C
IDSS
Zero Gate Voltage Drain Current
VDS = -16 V, VGS = 0 V
V
mV /oC
-29
o
-1
µA
-10
µA
IGSSF
Gate - Body Leakage, Forward
VGS = 8 V, VDS = 0 V
100
nA
IGSSR
Gate - Body Leakage, Reverse
VGS = -8 V, VDS= 0 V
-100
nA
TJ = 55 C
ON CHARACTERISTICS (Note 2)
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = -250 µA
∆VGS(th)/∆TJ
Gate Threshold VoltageTemp.Coefficient
ID = -250 µA, Referenced to 25 o C
-0.4
RDS(ON)
Static Drain-Source On-Resistance
VGS = -4.5 V, ID = -3.5 A
-0.6
-1
V
mV /oC
2.1
o
TJ = 125 C
VGS = -2.5 V, ID= -3.1 A
0.07
0.08
0.099
0.13
0.093
0.11
-10
Ω
ID(on)
On-State Drain Current
VGS = -4.5 V, VDS = -5 V
gFS
Forward Transconductance
VDS = -10 V, ID= -3.5 A
6.5
A
S
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
VDS = -10 V, VGS = 0 V,
665
pF
Coss
Output Capacitance
f = 1.0 MHz
270
pF
Crss
Reverse Transfer Capacitance
70
pF
SWITCHING CHARACTERISTICS (Note 2)
tD(on)
Turn - On Delay Time
VDD = -5 V, ID = -1 A,
8
16
ns
tr
Turn - On Rise Time
VGS = -4.5 V, RGEN = 6 Ω
24
38
ns
tD(off)
Turn - Off Delay Time
50
80
ns
tf
Turn - Off Fall Time
29
45
ns
13
nC
Qg
Total Gate Charge
VDS = -5 V, ID = -3.5 A,
9.5
Qgs
Gate-Source Charge
VGS = -4.5 V
1.3
nC
Qgd
Gate-Drain Charge
2.2
nC
DRAIN-SOURCE DIODE CHARACTERISTICS
IS
Continuous Source Diode Current
VSD
Drain-Source Diode Forward Voltage
VGS = 0 V, IS = -1.3 A
(Note 2)
TJ = 125oC
-1.3
A
-0.75
-1.2
V
-0.6
-1
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by
design while RθCA is determined by the user's board design.
a. 78oC/W when mounted on a 1 in2 pad of 2oz Cu in FR-4 board.
b. 156oC/W when mounted on a minimum pad of 2oz Cu in FR-4 board.
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
FDC634P Rev.C
Typical Electrical Characteristics
12
-3.5
-3.0
-2.5
R DS(ON), NORMALIZED
-I D , DRAIN-SOURCE CURRENT (A)
VGS = -4.5V
9
-2.0
6
3
0
-1.5
DRAIN-SOURCE ON-RESISTANCE
2
15
1.8
V GS = -2.0 V
1.6
-3.5
1.2
1
2
3
4
-VDS , DRAIN-SOURCE VOLTAGE (V)
-3.0
-4.5
1
0.8
0
-2.5
1.4
5
0
3
Figure 1. On-Region Characteristics.
R DS(ON) , ON-RESISTANCE (OHM)
V GS = -4.5V
1.4
1.2
1
0.8
0.6
-50
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
15
ID = -1.8A
0.2
0.15
TJ = 125°C
0.1
25°C
0.05
150
1
2
3
4
5
-VGS , GATE TO SOURCE VOLTAGE (V)
Figure 3. On-Resistance Variation
with Temperature.
Figure 4. On Resistance Variation with
Gate-To- Source Voltage.
15
15
T = -55°C
J
VDS = -5.0V
-IS , REVERSE DRAIN CURRENT (A)
R DS(ON) , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
12
0.25
I D = -3.5A
-ID , DRAIN CURRENT (A)
9
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
1.6
25°C
12
125°C
9
6
3
0
6
-I D , DRAIN CURRENT (A)
0
0.5
1
1.5
2
-VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics.
2.5
3
VGS = 0V
1
TJ = 125°C
25°C
0.1
-55°C
0.01
0.001
0.0001
0
0.2
0.4
0.6
0.8
1
1.2
1.4
-VSD , BODY DIODE FORWARD VOLTAGE (V)
Figure 6. Body Diode Forward Voltage
Variation with Source Current and
Temperature.
FDC634P Rev.C
Typical Electrical And Thermal Characteristics
2000
I D = -3.5A
1200
VDS = -5V
4
-10V
-15V
3
2
Ciss
800
600
CAPACITANCE (pF)
-VGS , GATE-SOURCE VOLTAGE (V)
5
Coss
200
80
1
f = 1 MHz
VGS = 0 V
0
0
2
4
6
8
30
0.1
10
0.2
Qg , GATE CHARGE (nC)
RD
S(O
N)
I
LIM
100
T
5
10
30
0.3
VGS = -4.5V
SINGLE PULSE
RθJA = See Note 1b
A T A = 25°C
0.5
-V
DS
SINGLE PULSE
RθJA =See note 1b
TA = 25°C
4
1m
s
10
ms
10
0m
s
1s
DC
1
0.2
us
POWER (W)
5
3
2
1
1
2
5
10
20
0
0.01
40
0.1
1
10
100
300
SINGLE PULSE TIME (SEC)
, DRAIN-SOURCE VOLTAGE (V)
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power
Dissipation.
1
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
-I D , DRAIN CURRENT (A)
2
5
10
0.01
0.1
1
Figure 8. Capacitance Characteristics.
20
0.03
0.5
-VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Gate Charge Characteristics.
0.1
Crss
0.5
D = 0.5
0.2
0.2
0.1
0.05
0.02
0.01
0.0001
RθJA (t) = r(t) * R θJA
R θJA = See Note 1b
0.1
P(pk)
0.05
t1
0.02
0.01
Single Pulse
t2
TJ - T
= P * R JA(t)
θ
Duty Cycle, D = t 1/ t 2
A
0.001
0.01
0.1
1
10
100
300
t 1, TIME (sec)
Figure 11. Transient Thermal Response Curve.
Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal
response will change depending on the circuit board design.
FDC634P Rev.C