VISHAY TLMY32U2AA-GS18

TLM.32.
Vishay Semiconductors
Power SMD LED PLCC-4
FEATURES
• Available in 8 mm tape
• Luminous intensity and color categorized
per packing unit
e3
• Luminous intensity ratio per packing unit
IVmax/IVmin ≤ 1.6
• ESD-withstand voltage: up to 2 kV according to
JESD22-A114-B
• Suitable for all soldering methods according to
CECC 00802 and J-STD-020C
• Preconditioning: acc. to JEDEC level 2a
• Lead (Pb)-free device
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
19210
DESCRIPTION
The TLM.32. is an advanced development in terms of
heat dissipation.
The leadframe profile of this PLCC-4 SMD package is
optimized to reduce the thermal resistance.
This allows higher drive current and doubles the light
output compared to Vishay’s high intensity SMD LED
in PLCC-2 package.
APPLICATIONS
• Interior and exterior lighting
• Indicator and backlighting purposes for audio,
video, LCDs, switches, symbols, illuminated
advertising etc.
• Illumination purpose, alternative to incandescent
lamps
• General use
PRODUCT GROUP AND PACKAGE DATA
• Product group: LED
• Package: SMD PLCC-4
• Product series: power
• Angle of half intensity: ± 60°
PARTS TABLE
COLOR, LUMINOUS INTENSITY
TECHNOLOGY
TLMK32T2V1-GS18
PART
Red, IV = (355 to 900) mcd
AlInGaP on GaAs
TLMK32U2AA-GS18
Red, IV = (560 to 1400) mcd
AlInGaP on GaAs
TLMK32T2AA-GS18
Red, IV = (355 to 1400) mcd
AlInGaP on GaAs
TLMS32S2U1-GS18
Super red, IV = (224 to 560) mcd
AlInGaP on GaAs
TLMS32T1U2-GS18
Super red, IV = (280 to 710) mcd
AlInGaP on GaAs
TLMS32S2V1-GS18
Super red, IV = (224 to 900) mcd
AlInGaP on GaAs
TLMO32U2AA-GS18
Soft orange, IV = (560 to 1400) mcd
AlInGaP on GaAs
TLMO32T2V1-GS18
Soft orange, IV = (355 to 900) mcd
AlInGaP on GaAs
TLMO32U1AA-GS18
Soft orange, IV = (450 to 1400) mcd
AlInGaP on GaAs
TLMY32T2V1-GS18
Yellow, IV = (355 to 900) mcd
AlInGaP on GaAs
TLMY32U2AA-GS18
Yellow, IV = (560 to 1400) mcd
AlInGaP on GaAs
TLMY32T2AA-GS18
Yellow, IV = (355 to 1400) mcd
AlInGaP on GaAs
Document Number 81284
Rev. 1.0, 22-Feb-08
www.vishay.com
1
TLM.32.
Vishay Semiconductors
ABSOLUTE MAXIMUM RATINGS 1) TLMK32., TLMS32., TLMO32., TLMY32.
SYMBOL
VALUE
Reverse voltage 2)
PARAMETER
TEST CONDITION
VR
5
V
Forward current
IF
70
mA
Ptot
180
mW
Tj
125
°C
Tamb
- 40 to + 100
°C
Power dissipation
Junction temperature
Operating temperature range
Tstg
- 40 to + 100
°C
mounted on PC board FR4
optional paddesign
RthJA
290
K/W
mounted on PC board FR4
recommended paddesign
RthJA
270
K/W
Storage temperature range
Thermal resistance junction/ambient
UNIT
Note:
1)
Tamb = 25 °C, unless otherwise specified
2)
Driving the LED in reverse direction is suitable for short term application
OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMK32., RED
PARAMETER
TEST CONDITION
Luminous intensity
2)
IF = 50 mA
PART
SYMBOL
MIN.
MAX.
UNIT
TLMK32T2V1
IV
355
900
mcd
TLMK32U2AA
IV
560
1400
mcd
TLMK32T2AA
IV
355
1400
φV/IV
Luminous flux
λd
TYP.
3
mcd
mlm/mcd
Dominant wavelength
IF = 50 mA
Peak wavelength
IF = 50 mA
λp
624
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
Δλ
18
nm
Angle of half intensity
IF = 50 mA
ϕ
± 60
deg
IF = 50 mA
VF
VR = 5 V
IR
Forward voltage
3)
Reverse current
TLMK32..
612
1.85
617
624
nm
2.1
2.55
V
0.01
10
µA
Note:
1) T
amb = 25 °C, unless otherwise specified
2) In one packing unit I
Vmax/IVmin ≤ 1.6
3)
Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V
OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMS32., SUPER RED
PARAMETER
TEST CONDITION
Luminous intensity
2)
IF = 50 mA
PART
SYMBOL
MIN.
MAX.
UNIT
TLMS32S2U1
IV
224
560
mcd
TLMS32T1U2
IV
280
710
mcd
TLMS32S2V1
IV
224
900
φV/IV
Luminous flux
TYP.
3
mcd
mlm/mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
641
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
Δλ
17
nm
Angle of half intensity
IF = 50 mA
ϕ
± 60
deg
IF = 50 mA
VF
VR = 5 V
IR
Forward voltage
Reverse current
3)
626
1.85
630
638
nm
2.1
2.55
V
0.01
10
µA
Note:
1) T
amb = 25 °C, unless otherwise specified
2)
In one packing unit IVmax/IVmin ≤ 1.6
3)
Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V
www.vishay.com
2
Document Number 81284
Rev. 1.0, 22-Feb-08
TLM.32.
Vishay Semiconductors
OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMO32., SOFT ORANGE
PARAMETER
TEST CONDITION
2)
Luminous intensity
IF = 50 mA
PART
SYMBOL
MIN.
MAX.
UNIT
TLMO32T2V1
IV
355
TYP.
900
mcd
TLMO32U2AA
IV
560
1400
mcd
TLMO32U1AA
IV
450
1400
φV/IV
Luminous flux
3
mcd
mlm/mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
611
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
Δλ
17
nm
Angle of half intensity
Forward voltage
3)
Reverse current
IF = 50 mA
ϕ
IF = 50 mA
VF
VR = 5 V
IR
600
605
609
± 60
1.85
nm
deg
2.1
2.55
V
0.01
10
µA
TYP.
Note:
1) T
amb = 25 °C, unless otherwise specified
2)
In one packing unit IVmax/IVmin ≤ 1.6
3) Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V
OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMY3214, YELLOW
PARAMETER
TEST CONDITION
2)
Luminous intensity
IF = 50 mA
PART
SYMBOL
MIN.
MAX.
UNIT
TLMY32T2V1
IV
355
900
mcd
TLMY32U2AA
IV
560
1400
mcd
TLMY32T2AA
IV
355
φV/IV
Luminous flux
1400
3
mcd
mlm/mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
590
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
Δλ
18
nm
Angle of half intensity
Forward voltage
3)
Reverse current
IF = 50 mA
ϕ
IF = 50 mA
VF
VR = 5 V
IR
580
588
595
± 60
1.85
nm
deg
2.1
2.55
V
0.01
10
µA
Note:
1)
Tamb = 25 °C, unless otherwise specified
2)
In one packing unit IVmax/IVmin ≤ 1.6
3)
Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V
LUMINOUS INTENSITY CLASSIFICATION
GROUP
STANDARD
LIGHT INTENSITY (MCD)
OPTIONAL
MIN.
MAX.
1
180
224
2
224
280
1
280
355
2
355
450
1
450
560
2
560
710
1
710
900
2
900
1120
A
1120
1400
S
T
U
V
A
Document Number 81284
Rev. 1.0, 22-Feb-08
Note:
Luminous intensity is tested at a current pulse duration of 25 ms and
an accuracy of ± 11 %.
The above type numbers represent the order groups which include
only a few brightness groups. Only one group will be shipped on
each reel (there will be no mixing of two groups on each reel). In
order to ensure availability, single brightness groups will not be
orderable.
In a similar manner for colors where wavelength groups are
measured and binned, single wavelength groups will be shipped on
any one reel.
In order to ensure availability, single wavelength groups will not be
orderable.
www.vishay.com
3
TLM.32.
Vishay Semiconductors
COLOR CLASSIFICATION
CROSSING TABLE
YELLOW
GROUP
SOFT ORANGE
DOM. WAVELENGTH (NM)
MIN.
MAX.
VISHAY
OSRAM
TLMK32T2V1
LAE67BT2V1
TLMK32U2AA
LAE67BU2AA
TLMK32T2AA
LAE67BT2AA
LSE67AS2U1
MIN.
MAX.
1
581
584
2
583
586
600
603
TLMS32S2U1
3
585
588
602
605
TLMS32T1U2
LSE67AT1U2
4
587
590
604
607
TLMS32S2V1
LSE67AS2V1
5
589
592
606
609
TLMO32U2AA
LOE67BU2AA
6
591
594
608
611
TLMY32T2V1
LYE67BT2V1
TLMY32U2AA
LYE67BU2AA
TLMY32T2AA
LYE67BT2AA
Note:
Wavelengths are tested at a current pulse duration of 25 ms and an
accuracy of ± 1 nm.
100
100
90
90
80
80
I F - Forward Current (mA)
IF - Forward Current (mA)
TYPICAL CHARACTERISTICS
Tamb = 25 °C, unless otherwise specified
70
270 K/W
60
RthJA = 290 K/W
50
40
30
20
10
70
60
50
40
30
20
10
0
0
18568
25
50
75
100
Tamb - Ambient Temperature (°C)
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
125
0°
10°
VF - Forward Voltage (V)
17046
Figure 1. Forward Current vs. Ambient Temperature
Figure 3. Forward Current vs. Forward Voltage
20°
30°
40°
1.0
0.9
50°
0.8
60°
70°
0.7
80°
1.2
IV rel - Relative Luminous Intensity
IV rel - Relative Luminous Intensity
yellow
soft orange
red
super red
red
1.0
0.8
0.6
0.4
0.2
0.0
95 10319
0.6
0.4
0.2
0
0.2
0.4
0.6
570
16007
Figure 2. Rel. Luminous Intensity vs. Angular Displacement
www.vishay.com
4
590
610
630
650
670
λ - Wavelength (nm)
Figure 4. Relative Intensity vs. Wavelength
Document Number 81284
Rev. 1.0, 22-Feb-08
TLM.32.
250
10
IV rel - Relative Luminous Intensity
VF - Change of Forward Voltage (mV)
Vishay Semiconductors
200
red
50 mA
150
100
50
30 mA
0
- 50
10 mA
- 100
- 150
- 200
- 50
0
25
50
75
1
10
IF - Forward Current (mA)
17037
red
2.0
1.5
1.0
1.5
red
1.0
0.5
0.0
- 0.5
- 1.0
d
0.5
100
Figure 8. Relative Luminous Intensity vs. Forward Current
- Change of Dom. Wavelength (nm)
2.5
IV rel - Relative Luminous Intensity
0.1
100
Figure 5. Change of Forward Voltage vs. Ambient Temperature
0.0
- 50
- 1.5
- 25
0
25
50
75
100
Tamb - Ambient Temperature (°C)
17035
17038
Figure 6. Relative Luminous Intensity vs. Ambient Temperature
IV rel - Relative Luminous Intensity
red
4
2
0
-2
-4
-6
- 50
17036
- 25
0
25
50
75
100
Tamb - Ambient Temperature (°C)
Figure 7. Change of Dominant Wavelength vs.
Ambient Temperature
Document Number 81284
Rev. 1.0, 22-Feb-08
10 20 30 40 50 60 70 80 90 100
IF - Forward Current (mA)
Figure 9. Change of Dominant Wavelength vs. Forward Current
6
d
- Change of Dom. Wavelength (nm)
1
0.01
- 25
Tamb - Ambient Temperature (°C)
17034
red
1.2
1.1
super red
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
600
620
17045
640
660
680
700
λ - Wavelength (nm)
Figure 10. Relative Intensity vs. Wavelength
www.vishay.com
5
TLM.32.
10
250
IV rel - Relative Luminous Intensity
VF - Change of Forward Voltage (mV)
Vishay Semiconductors
super red
200
30 mA
150
100
50 mA
50
0
10 mA
- 50
- 100
- 150
- 200
- 50
0
25
50
75
2.0
1.5
1.0
0.5
- 25
0
25
50
75
Tamb - Ambient Temperature (°C)
super red
1.0
0.5
0.0
- 0.5
- 1.0
- 1.5
17043
Figure 15. Change of Dominant Wavelength vs. Forward Current
-2
-3
-4
- 25
soft orange
IV rel - Relative Luminous Itensity
super red
-1
0
25
50
75
1.0
0.8
0.6
0.4
0.2
0.0
560
100
Tamb - Ambient Temperature (°C)
Figure 13. Change of Dominant Wavelength vs.
Ambient Temperature
www.vishay.com
6
IF - Forward Current (mA)
1.2
0
17041
10 20 30 40 50 60 70 80 90 100
100
1
-5
- 50
100
1.5
3
2
10
IF - Forward Current (mA)
Figure 14. Relative Luminous Intensity vs. Forward Current
Δ λ d - Change of Dom. Wavelength (nm)
I Vrel - Relative Luminous Intensity
super red
Figure 12. Relative Luminous Intensity vs. Ambient Temperature
Δ λ d - Change of Dom. Wavelength (nm)
1
17042
2.5
17040
0
100
Figure 11. Change of Forward Voltage vs. Ambient Temperature
0.0
- 50
1
0.01
- 25
Tamb - Ambient Temperature (°C)
17039
super red
16314
580
600
620
640
660
λ - Wavelength (nm)
Figure 16. Relative Intensity vs. Wavelength
Document Number 81284
Rev. 1.0, 22-Feb-08
TLM.32.
10
250
50 mA
200
30 mA
150
100
soft orange
50
0
10 mA
- 50
- 100
- 150
- 200
- 50
17020
1
0.1
0.01
- 25
0
25
50
75
Tamb - Ambient Temperature (°C)
1
100
10
IF - Forward Current (mA)
17023
2.5
soft orange
2.0
1.5
1.0
1.5
soft orange
1.0
0.5
0.0
- 0.5
- 1.0
d
0.5
100
Figure 20. Relative Luminous Intensity vs. Forward Current
- Change of Dom. Wavelength (nm)
Figure 17. Change of Forward Voltage vs. Ambient Temperature
IV rel - Relative Luminous Intensity
soft orange
IV rel - Relative Luminous Intensity
VF - Change of Forward Voltage (mV)
Vishay Semiconductors
0.0
- 50
17021
- 1.5
- 25
0
25
50
75
100
Tamb - Ambient Temperature (°C)
1.2
IV rel - Relative Luminous Intensity
soft orange
4
2
0
-2
-4
-6
- 50
17022
IF - Forward Current (mA)
Figure 21. Change of Dominant Wavelength vs. Forward Current
6
d
- Change of Dom. Wavelength (nm)
Figure 18. Relative Luminous Intensity vs. Ambient Temperature
10 20 30 40 50 60 70 80 90 100
17024
- 25
0
25
50
75
100
Tamb - Ambient Temperature (°C)
Figure 19. Change of Dominant Wavelength vs.
Ambient Temperature
Document Number 81284
Rev. 1.0, 22-Feb-08
yellow
1.0
0.8
0.6
0.4
0.2
0.0
540
16008
560
580
600
620
640
λ - Wavelength (nm)
Figure 22. Relative Intensity vs. Wavelength
www.vishay.com
7
TLM.32.
250
10
30 mA
200
50 mA
IV rel - Relative Luminous Intensity
Δ VF - Change of Forward Voltage (mV)
Vishay Semiconductors
yellow
150
100
50
0
10 mA
- 50
- 100
- 150
- 200
- 50
17015
1
0.1
0.01
- 25
0
25
50
75
Tamb - Ambient Temperature (°C)
100
1
10
Figure 26. Relative Luminous Intensity vs. Forward Current
- Change of Dom. Wavelength (nm)
2.5
yellow
2.0
1.5
1.0
1.5
yellow
1.0
0.5
0.0
- 0.5
- 1.0
d
0.5
100
IF - Forward Current (mA)
17018
Figure 23. Change of Forward Voltage vs. Ambient Temperature
IV rel - Relative Luminous Intensity
yellow
0.0
- 50
17016
- 1.5
- 25
0
25
50
75
Tamb - Ambient Temperature (°C)
100
Figure 24. Relative Luminous Intensity vs. Ambient Temperature
IF - Forward Current (mA)
Figure 27. Change of Dominant Wavelength vs. Forward Current
6
0.12
yellow
4
0.10
IF - Forward Current (A)
Δλd - Change of Dom. Wavelength (nm)
10 20 30 40 50 60 70 80 90 100
17019
2
0
-2
-4
-6
- 50
17017
- 25
0
25
50
75
Tamb - Ambient Temperature (°C)
100
Figure 25. Change of Dominant Wavelength vs.
Ambient Temperature
www.vishay.com
8
0.08
tP/T = 0.005
0.05
0.5
0.06
0.04
0.02
0.00
10 -5
17044
10 -4
10 -3
10 -2
10 -1
10 0
101
10 2
tP - Pulse Length (s)
Figure 28. Forward Current vs. Pulse Length
Document Number 81284
Rev. 1.0, 22-Feb-08
TLM.32.
Vishay Semiconductors
TAPING DIMENSIONS in millimeters
Anode
3.5
3.1
Cathode
2.2
2.0
4.0
3.6
5.75
5.25
8.3
7.7
3.6
3.4
Cathode
1.85
1.65
1.6
1.4
4.1
3.9
4.1
3.9
0.25
2.05
1.95
18596
REEL DIMENSIONS in millimeters
10.4
8.4
120°
4.5
3.5
2.5
1.5
13.00
12.75
62.5
60.0
Identification
Label:
Vishay
Type
Group
Tape Code
Production
Code
Quantity
Document Number 81284
Rev. 1.0, 22-Feb-08
321
329
14.4 max.
18857
www.vishay.com
9
TLM.32.
Vishay Semiconductors
RECOMMENDED PAD DESIGN Dimensions in millimeters
(Wave-Soldering), RthJA = 270 K/W
16260
RECOMMENDED PAD DESIGN Dimensions in millimeters
(Reflow-Soldering), RthJA = 270 K/W
16261
www.vishay.com
10
Document Number 81284
Rev. 1.0, 22-Feb-08
TLM.32.
Vishay Semiconductors
OPTIONAL PAD DESIGN Dimensions in millimeters
(Wave-Soldering), RthJA = 290 K/W
16262
OPTIONAL PAD DESIGN Dimensions in millimeters
(Reflow-Soldering), RthJA = 290 K/W
16263
Document Number 81284
Rev. 1.0, 22-Feb-08
www.vishay.com
11
TLM.32.
Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters
Drawing-No. : 6.541-5054.01-4
Issue: 2; 02.12.05
16276_2
SOLDERING PROFILE
IR Reflow Soldering Profile for Lead (Pb)-free Soldering
TTW Soldering
Preconditioning acc. to JEDEC Level 2a
300
300
200
max. 30 s
150
max. 100 s
max. 120 s
100
max. ramp up 3 °C/s
50
5s
200
second
wave
235 °C to 260 °C
first wave
full line: typical
dotted line: process limits
ca. 2 K/s
ca. 200 K/s
150
100 °C to 130 °C
100
ca. 5 K/s
2 K/s
50
max. ramp down 6 °C/s
lead temperature
250
Temperature (°C)
250
Temperature (°C)
max. 260 °C
245 °C
255 °C
240 °C
217 °C
948626-1
(acc. to CECC00802)
forced cooling
0
0
0
50
19885
100
150
Time (s)
200
250
300
50
100
150
200
250
Time (s)
max. 2 cycles allowed
Figure 29. Vishay Lead (Pb)-free Reflow Soldering Profile
(acc. to J-STD-020B)
www.vishay.com
12
0
Figure 30. Double Wave Soldering of Opto Devices (all Packages)
Document Number 81284
Rev. 1.0, 22-Feb-08
TLM.32.
Vishay Semiconductors
LABEL OF FAN FOLD BOX
EXAMPLE:
106
E
F
37
TLMK3200-GS18
8000
U2
B
A
C
G
D
21063
A) Type of component
B) PTC = manufacturing plant
C) SEL - selection code (bin):
e.g.: U2 = code for luminous intensity group
D) Batch/date code
E) Total quantity
F) Company code
G) Code for lead (Pb)-free classification (e3)
DRY PACKING
The reel is packed in an anti-humidity bag to protect
the devices from absorbing moisture during
transportation and storage.
RECOMMENDED METHOD OF STORAGE
Dry box storage is recommended as soon as the
aluminum bag has been opened to prevent moisture
absorption. The following conditions should be
observed, if dry boxes are not available:
• Storage temperature 10 °C to 30 °C
• Storage humidity ≤ 60 % RH max.
After more than 672 h under these conditions moisture
content will be too high for reflow soldering.
In case of moisture absorption, the devices will recover
to the former condition by drying under the following
condition:
192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH
(dry air/nitrogen) or
96 h at 60 °C + 5 °C and < 5 % RH for all device
containers or
24 h at 100 °C + 5 °C not suitable for reel or tubes.
An EIA JEDEC standard JESD22-A112 level 2a label
is included on all dry bags.
L E V E L
CAUTION
This bag contains
MOISTURE –SENSITIVE DEVICES
2a
1. Shelf life in sealed bag 12 months at <40°C and < 90% relative humidity (RH)
2. After this bag is opened devices that will be subjected to infrared reflow,
vapor-phase reflow, or equivalent processing (peak package body temp.
260°C) must be:
a) Mounted within 672 hours at factory condition of < 30°C/60%RH or
b) Stored at <10% RH.
3. Devices require baking before mounting if:
a)
Humidity Indicator Card is >10% when read at 23°C + 5°C or
b)
2a or 2b is not met.
4. If baking is required, devices may be baked for:
192 hours at 40°C + 5°C/-0°C and <5%RH (dry air/nitrogen)
or
o
or
96 hours at 60±5 Cand <5%RH
For all device containers
24 hours at 100±5°C
Not suitable for reels or tubes
Bag Seal Date: ______________________________
(If blank, see bar code label)
Aluminum bag
Note: LEVEL defined by EIA JEDEC Standard JESD22-A113
Label
Reel
15973
FINAL PACKING
The sealed reel is packed into a cardboard box. A
secondary cardboard box is used for shipping
purposes.
Document Number 81284
Rev. 1.0, 22-Feb-08
19786
Example of JESD22-A112 level 2a label
ESD PRECAUTION
Proper storage and handling procedures should be
followed to prevent ESD damage to the devices
especially when they are removed from the antistatic
shielding bag. Electro-static sensitive devices warning
labels are on the packaging.
VISHAY SEMICONDUCTORS STANDARD
BAR CODE LABELS
The Vishay Semiconductors standard bar code labels
are printed at final packing areas. The labels are on
each packing unit and contain Vishay Semiconductors
specific data.
www.vishay.com
13
TLM.32.
Vishay Semiconductors
OZONE DEPLETING SUBSTANCES POLICY STATEMENT
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA.
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or
unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and
expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such
unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
www.vishay.com
14
Document Number 81284
Rev. 1.0, 22-Feb-08
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1