ON Semiconductor BUV48 BUV48A SWITCHMODE II Series NPN Silicon Power Transistors The BUV48/BUV48A transistors are designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line–operated SWITCHMODE applications such as: • • • • • • • • 15 AMPERES NPN SILICON POWER TRANSISTORS 400 AND 450 VOLTS V(BR)CEO 850–1000 VOLTS V(BR)CEX 150 WATTS Switching Regulators Inverters Solenoid and Relay Drivers Motor Controls Deflection Circuits Fast Turn–Off Times 60 ns Inductive Fall Time — 25C (Typ) 120 ns Inductive Crossover Time — 25C (Typ) Operating Temperature Range –65 to +175C 100C Performance Specified for: Reverse–Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltage Leakage Currents (125C) CASE 340D–02 TO–218 TYPE ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ MAXIMUM RATINGS Rating Symbol BUV48 BUV48A Unit VCEO(sus) 400 450 Vdc Collector–Emitter Voltage (VBE = –1.5 V) VCEX 850 1000 Vdc Emitter Base Voltage VEB 7 Vdc Collector Current — Continuous — Peak (1) — Overload IC ICM IOI 15 30 60 Adc Base Current — Continuous — Peak (1) IB IBM 5 20 Adc Total Power Dissipation — TC = 25C — TC = 100C Derate above 25C PD 150 75 1 Watts TJ, Tstg –65 to +175 C Symbol Max Unit RθJC 1 C/W TL 275 C Collector–Emitter Voltage Operating and Storage Junction Temperature Range W/C THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds (1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%. Semiconductor Components Industries, LLC, 2001 March, 2001 – Rev. 10 1 Publication Order Number: BUV48/D BUV48 BUV48A ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit 400 450 — — — — — — — — 0.2 2 — — — — 0.5 0 5 3 IEBO — — 0.1 mAdc V(BR)EBO 7 — — Vdc OFF CHARACTERISTICS (1) Collector–Emitter Sustaining Voltage (Table 1) (IC = 200 mA mA, IB = 0) L = 25 mH VCEO(sus) BUV48 BUV48A Collector Cutoff Current (VCEX = Rated Value, VBE(off) = 1.5 Vdc) (VCEX = Rated Value, VBE(off) = 1.5 Vdc, TC = 125C) Collector Cutoff Current (VCE = Rated VCEX, RBE = 10 Ω) Vdc ICEX mAdc ICER TC = 25C TC = 125C Emitter Cutoff Current (VEB = 5 Vdc, IC = 0) Emitter–Base Breakdown Voltage (IE = 50 mA – IC = 0) mAdc SECOND BREAKDOWN Second Breakdown Collector Current with Base Forward Biased Clamped Inductive SOA with Base Reverse Biased IS/b See Figure 12 RBSOA See Figure 13 ON CHARACTERISTICS (1) DC Current Gain (IC = 10 Adc, VCE = 5 Vdc) (IC = 8 Adc, VCE = 5 Vdc) hFE 8 8 — — — — — — — — — — — — — — — — 1.5 5 2 1.5 5 2 — — — — — — — — 1.6 1.6 1.6 1.6 Cob — — 350 pF td — 0.1 0.2 µs BUV48 BUV48A Collector–Emitter Saturation Voltage (IC = 10 Adc, IB = 2 Adc) (IC = 15 Adc, IB = 3 Adc) (IC = 10 Adc, IB = 2 Adc, TC = 100C) (IC = 8 Adc, IB = 1.6 Adc) (IC = 12 Adc, IB = 2.4 Adc) (IC = 8 Adc, IB = 1.6 Adc, TC = 100C) VCE(sat) BUV48 BUV48A Base–Emitter Saturation Voltage (IC = 10 Adc, IB = 2 Adc) (IC = 10 Adc, IB = 2 Adc, TC = 100C) (IC = 8 Adc, IB = 1.6 Adc) (IC = 8 Adc, IB = 1.6 Adc, TC = 100C) Vdc VBE(sat) BUV48 BUV48A Vdc DYNAMIC CHARACTERISTICS Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 1 MHz) SWITCHING CHARACTERISTICS Resistive Load (Table 1) Delay Time Rise Time Storage Time Fall Time IC = 10 A A, IB, = 2 A IC = 8 A, IB, = 1.6 A Duty Cycle 2%, VBE(off) = 5 V Tp = 30 µs, µs VCC = 300 V BUV48 BUV48A tr — 0.4 0.7 ts — 1.3 2 tf — 0.2 0.4 tsv — 1.3 — tfi — 0.06 — tsv — 1.5 2.5 tc — 0.3 0.6 tfi — 0.17 0.35 Inductive Load, Clamped (Table 1) Storage Time Fall Time IC = 10 A IB1 = 2 A BUV48 IC = 8 A IB1 = 1.6 A BUV48A (TC = 25C) Storage Time Crossover Time (TC = 100C) Fall Time (1) Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%. Vcl = 300 V, VBE(off) = 5 V, Lc = 180 µH http://onsemi.com 2 µs BUV48 BUV48A 50 90% hFE, DC CURRENT GAIN 30 20 10% 10 7 5 3 2 VCE = 5 V 1 2 1 3 5 8 10 20 IC, COLLECTOR CURRENT (AMPS) 30 50 VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) DC CHARACTERISTICS 10 5 3 7.5 A 0.5 0.3 0.1 0.1 VBE, BASE-EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) 90% 2 10% 1 0.7 0.5 0.3 0.2 0.1 1 2 3 5 7 10 20 30 50 2 3 4 βf = 5 2 TJ = 25°C 1 0.7 TJ = 100°C 0.5 0.3 0.3 1 3 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) Figure 3. Collector–Emitter Saturation Voltage Figure 4. Base–Emitter Voltage 10 10 k VCE = 250 V Cib 103 C, CAPACITANCE (pF) IC, COLLECTOR CURRENT (A) µ 1 0.3 0.5 IB, BASE CURRENT (AMPS) 0.1 104 TJ = 150°C 102 101 TC = 25°C Figure 2. Collector Saturation Region βf = 5 3 15 A IC = 5 A 1 Figure 1. DC Current Gain 5 10 A 125°C 100°C REVERSE FORWARD 75°C 1k Cob 100 100 25°C 10-1 -0.4 TJ = 25°C -0.2 0 0.2 0.4 VBE, BASE-EMITTER VOLTAGE (VOLTS) 10 0.6 1 10 100 VR, REVERSE VOLTAGE (VOLTS) Figure 6. Capacitance Figure 5. Collector Cutoff Region http://onsemi.com 3 1000 BUV48 BUV48A Table 1. Test Conditions for Dynamic Performance INPUT CONDITIONS VCEO(sus) +10 V RBSOA AND INDUCTIVE SWITCHING 33 2W 1 20 220 100 Lcoil = 180 µH Rcoil = 0.05 Ω VCC = 20 V D4 160 D3 SEE ABOVE FOR DETAILED CONDITIONS Rcoil 1N4937 OR EQUIVALENT IC(pk) t1 VCE or VCC = 300 V RL = 83 Ω Pulse Width = 10 µs t2 ≈ Vclamp t t2 Lcoil (IC TUT ) pk VCC Lcoil (IC RL 1 2 ) pk VCC VClamp Test Equipment Scope — Tektronix 475 or Equivalent 10 IC pk IB2(pk) , BASE CURRENT (AMPS) VCE(pk) 90% VCE(pk) 90% IC(pk) trv tfi tti tc 10% VCE(pk) 90% IB1 t tf TIME VCE t1 ≈ VCE VCC RS = 0.1 Ω tsv VCC RESISTIVE TEST CIRCUIT tf Clamped Lcoil Vclamp TURN–OFF TIME Use inductive switching driver as the input to the resistive test circuit. 2N6339 t1 Adjusted to Obtain IC IC INPUT IB1 adjusted to obtain the forced hFE desired OUTPUT WAVEFORMS TUT 2 IB 0.22 µF Ib2 ADJUST dTb ADJUST dT MR854 Vclamp = 300 V RB ADJUSTED TO ATTAIN DESIRED IB1 INDUCTIVE TEST CIRCUIT IC 22 2N3763 33 2W Lcoil = 25 mH, VCC = 10 V Rcoil = 0.7 Ω 1 Ib1 ADJUST 0.1 µF 2 IB1 22 680 pF 680 pF 1 MR854 D1D2D3D4 1N4934 PULSES δ = 3% TURN–ON TIME 2N6438 D3 680 pF PW Varied to Attain IC = 200 mA TEST CIRCUITS 160 MM3735 0 2 CIRCUIT VALUES 100 +10 V 22 µF D1 RESISTIVE SWITCHING 10% IC pk 2% IC 6 4 2 0 TIME βf = 5 IC = 10 A 8 0 1 2 3 4 5 VBE(off), BASE-EMITTER VOLTAGE (VOLTS) Figure 7. Inductive Switching Measurements Figure 8. Peak–Reverse Current http://onsemi.com 4 6 BUV48 BUV48A SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv trv tfi tti tc For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222: PSWT = 1/2 VCCIC(tc) f In general, trv + tfi tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100C. = Voltage Storage Time, 90% IB1 to 10% Vclamp = Voltage Rise Time, 10–90% Vclamp = Current Fall Time, 90–10% IC = Current Tail, 10–2% IC = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. INDUCTIVE SWITCHING 1 5 3 0.5 2 t, TIME (s) µ t, TIME (s) µ TC = 25°C 1 0.7 0.5 0.3 TC = 100°C TC = 25°C 0.2 0.1 TC = 25°C 0.05 0.03 0.2 2 1 tc tfi 0.02 βf = 5 0.1 TC = 100°C 0.3 TC = 100°C 3 5 7 10 20 IC, COLLECTOR CURRENT (AMPS) 0.01 50 30 βf = 5 1 2 Figure 9. Storage Time, tsv 3 2 tsv 1 1 0.5 0.5 0.3 0.2 tc 0.1 tfi 0.05 0.01 TC = 25°C IC = 10 A VBE(off) = 5 V 0 1 2 3 6 4 5 βf, FORCED GAIN 7 50 8 9 TC = 25°C IC = 10 A βf = 5 V tsv 0.3 0.2 tc 0.1 tfi 0.05 0.03 0.02 30 Figure 10. Crossover and Fall Times t, TIME (s) µ t, TIME (s) µ 3 2 3 5 7 10 20 IC, COLLECTOR CURRENT (AMPS) 0.03 0.02 0.01 10 0 Figure 11. Turn–Off Times versus Forced Gain 1 2 3 4 5 Ib2/Ib1 6 7 8 9 Figure 12. Turn–Off Times versus Ib2/Ib1 http://onsemi.com 5 10 BUV48 BUV48A IC, COLLECTOR CURRENT (AMPS) The Safe Operating Area figures shown in Figures 12 and 13 are specified for these devices under the test conditions shown. 30 10 SAFE OPERATING AREA INFORMATION FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 13 is based on TC = 25C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC 25C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15. TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 1 ms 5 DC 2 1 0.5 0.2 TC = 25°C 0.1 LIMIT ONLY FOR TURN ON 0.05 tr ≤ 0.7 µs 0.02 0.01 1 2 500 1000 5 10 20 50 100 200 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 13. Forward Bias Safe Operating Area REVERSE BIAS For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage current conditions during reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives RBSOA characteristics. 40 30 BUV48 BUV48A 20 VBE(off) = 5 V 10 0 TC = 100°C IC/IB ≥ 5 0 200 400 600 800 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1000 Figure 14. Reverse Bias Safe Operating Area 100 POWER DERATING FACTOR (%) IC, COLLECTOR CURRENT (AMPS) 50 SECOND BREAKDOWN DERATING 80 60 THERMAL DERATING 40 20 0 0 40 80 120 TC, CASE TEMPERATURE (°C) Figure 15. Power Derating http://onsemi.com 6 160 200 BUV48 BUV48A r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1 D = 0.5 0.5 0.2 0.2 0.1 0.1 RθJC(t) = r(t) RθJC θJC = 1°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RθJC(t) 0.05 0.02 0.05 0.01 SINGLE PULSE 0.02 0.01 0.02 0.1 0.05 0.2 0.5 1 2 5 10 t, TIME (ms) 20 50 P(pk) t1 t2 DUTY CYCLE, D = t1/t2 100 200 500 1000 2000 Figure 16. Thermal Response OVERLOAD CHARACTERISTICS 100 OLSOA OLSOA applies when maximum collector current is limited and known. A good example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. If the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known. Maximum allowable collector–emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, Figure 17 defines the maximum time which can be allowed for fault detection and shutdown of base drive. OLSOA is measured in a common–base circuit (Figure 19) which allows precise definition of collector–emitter voltage and collector current. This is the same circuit that is used to measure forward–bias safe operating area. IC, COLLECTOR CURRENT (AMPS) TC = 25°C 80 BUV48A 60 tp = 10 µs 40 BUV48 20 0 200 100 300 400 450 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 500 Figure 17. Rated Overload Safe Operating Area (OLSOA) 5 IC (AMP) 4 3 500 µF 500 V RBE = 100 Ω RBE = 2.2 Ω RBE = 10 Ω 2 1 Notes: • VCE = VCC + VBE • Adjust pulsed current source for desired IC, tp RBE = 0 0 2 4 6 dV/dt (KV/µs) 8 VCC VEE 10 Figure 19. Overload SOA Test Circuit Figure 18. IC = f(dV/dt) http://onsemi.com 7 BUV48 BUV48A PACKAGE DIMENSIONS SOT–93 (TO–218) CASE 340D–02 ISSUE B C Q B U S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. E 4 DIM A B C D E G H J K L Q S U V A L 1 K 2 3 D J H MILLIMETERS MIN MAX --20.35 14.70 15.20 4.70 4.90 1.10 1.30 1.17 1.37 5.40 5.55 2.00 3.00 0.50 0.78 31.00 REF --16.20 4.00 4.10 17.80 18.20 4.00 REF 1.75 REF INCHES MIN MAX --0.801 0.579 0.598 0.185 0.193 0.043 0.051 0.046 0.054 0.213 0.219 0.079 0.118 0.020 0.031 1.220 REF --0.638 0.158 0.161 0.701 0.717 0.157 REF 0.069 V G SWITCHMODE is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–[email protected] French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit–[email protected] English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: [email protected] CENTRAL/SOUTH AMERICA: Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–[email protected] Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781 *Available from Germany, France, Italy, UK, Ireland For additional information, please contact your local Sales Representative. http://onsemi.com 8 BUV48/D