ONSEMI MJF18004G

MJE18004G, MJF18004G
SWITCHMODEt
NPN Bipolar Power Transistor
For Switching Power Supply Applications
The MJE/MJF18004G have an applications specific state−of−the−art
die designed for use in 220 V line−operated SWITCHMODE Power
supplies and electronic light ballasts.
http://onsemi.com
Features
POWER TRANSISTOR
5.0 AMPERES
1000 VOLTS
35 and 75 WATTS
• Improved Efficiency Due to Low Base Drive Requirements:
•
•
•
•
•
High and Flat DC Current Gain hFE
Fast Switching
No Coil Required in Base Circuit for Turn−Off (No Current Tail)
Full Characterization at 125_C
ON Semiconductor Six Sigma Philosophy Provides Tight and
Reproducible Parametric Distributions
Two Package Choices: Standard TO−220 or Isolated TO−220
MJF18004, Case 221D, is UL Recognized at 3500 VRMS: File
#E69369
These Devices are Pb−Free and are RoHS Compliant*
♦
♦
♦
MARKING
DIAGRAMS
MJE18004G
AYWW
MAXIMUM RATINGS
Rating
Symbol
Value
Collector−Emitter Sustaining Voltage
VCEO
450
Vdc
Collector−Base Breakdown Voltage
VCES
1000
Vdc
Emitter−Base Voltage
VEBO
9.0
Vdc
Collector Current
− Continuous
− Peak (Note 1)
IC
ICM
5.0
10
Adc
Base Current
− Continuous
− Peak (Note 1)
IB
IBM
2.0
4.0
Adc
RMS Isolation Voltage (Note 2)
Test No. 1 Per Figure 22a
Test No. 2 Per Figure 22b
Test No. 3 Per Figure 22c
(for 1 sec, R.H. < 30%, TA = 25_C)
VISOL
MJF18004
4500
3500
1500
V
Total Device Dissipation @ TC = 25_C
MJE18004
MJF18004
Derate above 25°C
MJE18004
MJF18004
PD
Operating and Storage Temperature
−65 to 150
Max
W
W/_C
_C
THERMAL CHARACTERISTICS
Characteristics
Symbol
Thermal Resistance, Junction−to−Case
MJE18004
MJF18004
RqJC
Thermal Resistance, Junction−to−Ambient
RqJA
62.5
_C/W
Maximum Lead Temperature for Soldering
Purposes 1/8″ from Case for 5 Seconds
TL
260
_C
April, 2010 − Rev. 9
2
3
MJF18004G
AYWW
2
3
TO−220 FULLPACK
CASE 221D
STYLE 2
UL RECOGNIZED
G
A
Y
WW
= Pb−Free Package
= Assembly Location
= Year
= Work Week
Unit
_C/W
1.65
3.55
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
2. Proper strike and creepage distance must be provided.
© Semiconductor Components Industries, LLC, 2010
1
1
75
35
0.6
0.28
TJ, Tstg
TO−220AB
CASE 221A−09
STYLE 1
Unit
1
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 8 of this data sheet.
*For additional information on our Pb−Free strategy
and soldering details, please download the
ON Semiconductor Soldering and Mounting
Techniques Reference Manual, SOLDERRM/D.
Publication Order Number:
MJE18004/D
MJE18004G, MJF18004G
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise specified)
Characteristic
Symbol
Min
Typ
Max
Unit
VCEO(sus)
450
−
−
Vdc
ICEO
−
−
100
mAdc
ICES
−
−
−
−
−
−
100
500
100
mAdc
IEBO
−
−
100
mAdc
Base−Emitter Saturation Voltage (IC = 1.0 Adc, IB = 0.1 Adc)
Base−Emitter Saturation Voltage (IC = 2.0 Adc, IB = 0.4 Adc)
VBE(sat)
−
−
0.82
0.92
1.1
1.25
Vdc
Collector−Emitter Saturation Voltage
(IC = 1.0 Adc, IB = 0.1 Adc)
VCE(sat)
−
−
−
−
−
0.25
0.29
0.3
0.36
0.5
0.5
0.6
0.45
0.8
0.75
hFE
12
−
14
−
6.0
−
10
21
20
−
32
11
7.5
22
−
−
34
−
−
−
−
−
fT
−
13
−
MHz
Cob
−
50
65
pF
Cib
−
800
1000
pF
VCE(dsat)
−
−
6.8
14
−
−
Vdc
(TC = 125°C)
−
−
2.4
5.6
−
−
(TC = 125°C)
−
−
11.3
15.5
−
−
(TC = 125°C)
−
−
1.3
6.1
−
−
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH)
Collector Cutoff Current (VCE = Rated VCEO, IB = 0)
Collector Cutoff Current (VCE = Rated VCES, VEB = 0)
(TC = 25_C)
(TC = 125_C)
(TC = 125_C)
Collector Cutoff Current (VCE = 800 V, VEB = 0)
Emitter Cutoff Current (VEB = 9.0 Vdc, IC = 0)
ON CHARACTERISTICS
(TC = 125_C)
(IC = 2.0 Adc, IB = 0.4 Adc)
(TC = 125_C)
(IC = 2.5 Adc, IB = 0.5 Adc)
DC Current Gain (IC = 1.0 Adc, VCE = 2.5 Vdc)
(TC = 125_C)
DC Current Gain (IC = 0.3 Adc, VCE = 5.0 Vdc)
(TC = 125_C)
DC Current Gain (IC = 2.0 Adc, VCE = 1.0 Vdc)
(TC = 125_C)
DC Current Gain (IC = 10 mAdc, VCE = 5.0 Vdc)
Vdc
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHz)
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Input Capacitance (VEB = 8.0 V)
Dynamic Saturation Voltage:
Determined 1.0 ms and
3.0 ms respectively after
rising IB1 reaches 90% of
final IB1
(see Figure 18)
(IC = 1.0 Adc
IB1 = 100 mAdc
VCC = 300 V)
1.0 ms
(IC = 2.0 Adc
IB1 = 400 mAdc
VCC = 300 V)
1.0 ms
3.0 ms
3.0 ms
(TC = 125°C)
http://onsemi.com
2
MJE18004G, MJF18004G
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS — continued (TC = 25_C unless otherwise specified)
Characteristic
Symbol
Min
Typ
Max
Unit
ton
−
−
210
180
300
−
ns
toff
−
−
1.0
1.3
1.7
−
ms
ton
−
−
75
90
110
−
ns
toff
−
−
1.5
1.8
2.5
−
ms
ton
−
−
450
900
800
1400
ns
ts
−
−
2.0
2.2
3.0
3.5
ms
tf
−
−
275
500
400
800
ns
tfi
−
−
100
100
150
−
ns
tsi
−
−
1.1
1.4
1.7
−
ms
tc
−
−
180
160
250
−
ns
tfi
−
−
90
150
175
−
ns
tsi
−
−
1.7
2.2
2.5
−
ms
tc
−
−
180
250
300
−
ns
tfi
−
−
70
100
130
175
ns
tsi
−
−
0.75
1.0
1.0
1.3
ms
tc
−
−
250
250
350
500
ns
SWITCHING CHARACTERISTICS: Resistive Load (D.C. v 10%, Pulse Width = 20 ms)
Turn−On Time
(IC = 1.0 Adc, IB1 = 0.1 Adc,
IB2 = 0.5 Adc, VCC = 300 V)
(TC = 125°C)
Turn−Off Time
(TC = 125°C)
Turn−On Time
(IC = 2.0 Adc, IB1 = 0.4 Adc,
IB1 = 1.0 Adc, VCC = 300 V)
(TC = 125°C)
Turn−Off Time
(TC = 125°C)
Turn−On Time
(IC = 2.5 Adc, IB1 = 0.5 Adc,
IB2 = 0.5 Adc, VCC = 250 V)
(TC = 125°C)
Storage Time
(TC = 125°C)
Fall Time
(TC = 125°C)
SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 mH)
Fall Time
(IC = 1.0 Adc, IB1 = 0.1 Adc,
IB2 = 0.5 Adc)
(TC = 125°C)
Storage Time
(TC = 125°C)
Crossover Time
(TC = 125°C)
Fall Time
(IC = 2.0 Adc, IB1 = 0.4 Adc,
IB2 = 1.0 Adc)
(TC = 125°C)
Storage Time
(TC = 125°C)
Crossover Time
(TC = 125°C)
Fall Time
Storage Time
(IC = 2.5 Adc, IB1 = 0.5 Adc,
IB2 = 0.5 Adc,
VBE(off) = −5.0 Vdc)
(TC = 125°C)
(TC = 125°C)
Crossover Time
(TC = 125°C)
http://onsemi.com
3
MJE18004G, MJF18004G
TYPICAL STATIC CHARACTERISTICS
100
100
VCE = 1 V
VCE = 5 V
TJ = 125°C
h FE , DC CURRENT GAIN
h FE , DC CURRENT GAIN
TJ = 125°C
TJ = -20°C
TJ = 25°C
10
1
0.01
1.00
0.10
TJ = -20°C
TJ = 25°C
10
1
0.01
10.00
0.10
1.00
10.00
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 1. DC Current Gain @ 1 Volt
Figure 2. DC Current Gain @ 5 Volts
2.0
10.00
1.5
1.5 A
2A
3A
V CE , VOLTAGE (VOLTS)
V CE , VOLTAGE (VOLTS)
TJ = 25°C
4A
1.0
1A
0.5
1.00
IC/IB = 10
0.10
IC/IB = 5
TJ = 25°C
TJ = 125°C
IC = 0.5 A
0
0.01
0.10
1.00
0.01
0.01
10.00
Figure 4. Collector−Emitter Saturation Voltage
10000
TJ = 25°C
f = 1 MHz
Cib
1000
0.9
C, CAPACITANCE (pF)
V BE , VOLTAGE (VOLTS)
10.00
Figure 3. Collector Saturation Region
1.0
0.8
TJ = 25°C
0.6
TJ = 125°C
Cob
100
10
IC/IB = 10
IC/IB = 5
0.5
0.4
0.01
1.00
IC, COLLECTOR CURRENT (AMPS)
1.1
0.7
0.10
IB, BASE CURRENT (AMPS)
0.10
1.00
1
10.00
1
10
IC, COLLECTOR CURRENT (AMPS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 5. Base−Emitter Saturation Region
Figure 6. Capacitance
http://onsemi.com
4
100
MJE18004G, MJF18004G
TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)
1800
3000
IB(off) = IC/2
VCC = 300 V
PW = 20 ms
1600
1400
TJ = 25°C
TJ = 125°C
IB(off) = IC/2
VCC = 300 V
PW = 20 ms
2000
IC/IB = 5
1000
IC/IB = 10
800
TJ = 25°C
TJ = 125°C
2500
t, TIME (ns)
t, TIME (ns)
1200
IC/IB = 5
600
IC/IB = 10
1500
1000
400
500
200
0
0
0
2
1
4
3
5
0
2
3
4
5
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 7. Resistive Switching, ton
Figure 8. Resistive Switching, toff
3500
3500
VZ = 300 V
VCC = 15 V
IB(off) = IC/2
LC = 200 mH
IC/IB = 5
2500
TJ = 25°C
TJ = 125°C
3000
t si, STORAGE TIME (ns)
3000
t, TIME (ns)
1
VZ = 300 V
VCC = 15 V
IB(off) = IC/2
LC = 200 mH
2500
2000
2000
1500
IC = 2 A
1500
1000
0
1000
TJ = 25°C
TJ = 125°C
500
0
1
IC/IB = 10
2
3
IC COLLECTOR CURRENT (AMPS)
500
5
4
IC = 1 A
3
Figure 9. Inductive Storage Time, tsi
5
6
7
9 10 11
8
hFE, FORCED GAIN
12
13
14
15
Figure 10. Inductive Storage Time, tsi(hFE)
300
250
TJ = 25°C
TJ = 125°C
250
200
tfi
tc
t, TIME (ns)
200
t, TIME (ns)
4
150
150
tc
100
100
VZ = 300 V
VCC = 15 V
IB(off) = IC/2
LC = 200 mH
50
0
0
1
TJ = 25°C
TJ = 125°C
2
3
VZ = 300 V
VCC = 15 V
IB(off) = IC/2
LC = 200 mH
50
4
0
5
0
IC, COLLECTOR CURRENT (AMPS)
1
tfi
2
3
4
5
IC, COLLECTOR CURRENT (AMPS)
Figure 11. Inductive Switching, tc and tfi, IC/IB = 5
Figure 12. Inductive Switching, tc and tfi, IC/IB = 10
http://onsemi.com
5
MJE18004G, MJF18004G
TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)
300
160
VZ = 300 V
VCC = 15 V
IB(off) = IC/2
LC = 200 mH
150
t fi , FALL TIME (ns)
140
IC = 2 A
130
IC = 1 A
250
t c , CROSSOVER TIME (ns)
TJ = 25°C
TJ = 125°C
120
110
100
90
200
150
IC = 2 A
100
TJ = 25°C
TJ = 125°C
80
70
IC = 1 A
3
4
5
6
7
8
VZ = 300 V
VCC = 15 V
IB(off) = IC/2
LC = 200 mH
9
10
11
12
13
14
50
15
3
4
5
hFE, FORCED GAIN
Figure 13. Inductive Fall Time
6
7
8
9 10 11
hFE, FORCED GAIN
12
13
14
15
Figure 14. Inductive Crossover Time
GUARANTEED SAFE OPERATING AREA INFORMATION
6.0
DC (MJE18004)
5ms
10
1ms
50ms
I C, COLLECTOR CURRENT (AMPS)
I C, COLLECTOR CURRENT (AMPS)
100
10ms 1ms
Extended
SOA
1.0
DC (MJF18004)
0.1
0.01
10
100
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 15. Forward Bias Safe Operating Area
POWER DERATING FACTOR
SECOND
BREAKDOWN
DERATING
0.6
0.4
THERMAL
DERATING
0.2
0
20
40
60
80
100
120
TC, CASE TEMPERATURE (°C)
140
160
Figure 17. Forward Bias Power Derating
3.0
2.0
1.0
VBE(off) =
0V
-1.5 V
-5 V
500
600
700
800
900
1000
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
1100
Figure 16. Reverse Bias Safe Operating Area
1.0
0.8
4.0
0
400
1000
TC ≤ 125°C
IC/IB ≥ 4
LC = 500 mH
5.0
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe
operating area curves indicate IC−VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate. The data
of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on
power level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated when TC ≥ 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at
any case temperature by using the appropriate curve on Figure 17.
TJ(pk) may be calculated from the data in Figures 20 and 21. At any
case temperatures, thermal limitations will reduce the power that
can be handled to values less the limitations imposed by second
breakdown. For inductive loads, high voltage and current must be
sustained simultaneously during turn−off with the base−to−emitter
junction reverse biased. The safe level is specified as a reverse−
biased safe operating area (Figure 16). This rating is verified under
clamped conditions so that the device is never subjected to an avalanche mode.
http://onsemi.com
6
MJE18004G, MJF18004G
10
5
4
VCE
dyn 1 ms
3
8
2
VOLTS
90% IC
tfi
IC
9
tsi
7
dyn 3 ms
1
6
0
5
-1
tc
VCLAMP
10% IC
10% VCLAMP
4
90% IB
-2
1 ms
-3
-4
90% IB1
2
3 ms
IB
-5
0
IB
3
1
0
1
2
3
4
TIME
5
6
7
0
8
Figure 18. Dynamic Saturation Voltage Measurements
1
2
3
4
TIME
5
6
7
8
Figure 19. Inductive Switching Measurements
+15 V
1 mF
150 W
3W
100 W
3W
IC PEAK
100 mF
MTP8P10
VCE PEAK
VCE
MTP8P10
MPF930
RB1
IB1
MUR105
Iout
MPF930
+10 V
IB
A
IB2
50 W
RB2
MJE210
COMMON
500 mF
150 W
3W
MTP12N10
1 mF
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 VOLTS
IC(pk) = 100 mA
-Voff
INDUCTIVE SWITCHING
L = 200 mH
RB2 = 0
VCC = 15 VOLTS
RB1 SELECTED FOR
DESIRED IB1
Table 1. Inductive Load Switching Drive Circuit
http://onsemi.com
7
RBSOA
L = 500 mH
RB2 = 0
VCC = 15 VOLTS
RB1 SELECTED
FOR DESIRED IB1
MJE18004G, MJF18004G
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
TYPICAL THERMAL RESPONSE
1.00
D = 0.5
0.2
P(pk)
0.10
0.1
t1
0.05
0.02
0.01
0.01
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.10
1.00
10.00
100.00
RqJC(t) = r(t) RqJC
RqJC = 1.25°C/W MAX
D CURVES APPLY FOR
POWER PULSE TRAIN
SHOWN READ TIME AT t1
TJ(pk) - TC = P(pk) RqJC(t)
1000
10000
100000
t, TIME (ms)
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
Figure 20. Typical Thermal Response (ZqJC(t)) for MJE18004
1.00
D = 0.5
0.2
0.10
P(pk)
0.1
0.05
t1
0.02
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.01
0.01
0.10
1.00
10.00
RqJC(t) = r(t) RqJC
RqJC = 3.12°C/W MAX
D CURVES APPLY FOR
POWER PULSE TRAIN
SHOWN READ TIME AT t1
TJ(pk) - TC = P(pk) RqJC(t)
100.00
t, TIME (ms)
Figure 21. Typical Thermal Response for MJF18004
ORDERING INFORMATION
Device
Package
Shipping
MJE18004
TO−220AB
50 Units / Rail
MJE18004G
TO−220AB
(Pb−Free)
50 Units / Rail
MJF18004
TO−220 (Fullpack)
50 Units / Rail
MJF18004G
TO−220 (Fullpack)
(Pb−Free)
50 Units / Rail
http://onsemi.com
8
1000
MJE18004G, MJF18004G
TEST CONDITIONS FOR ISOLATION TESTS*
CLIP
MOUNTED
FULLY ISOLATED
PACKAGE
MOUNTED
FULLY ISOLATED
PACKAGE
CLIP
LEADS
HEATSINK
0.099″ MIN
MOUNTED
FULLY ISOLATED
PACKAGE
LEADS
LEADS
HEATSINK
HEATSINK
0.099″ MIN
0.110″ MIN
Figure 22a. Screw or Clip Mounting
Position for Isolation Test Number 1
Figure 22b. Clip Mounting Position
for Isolation Test Number 2
Figure 22c. Screw Mounting Position
for Isolation Test Number 3
*Measurement made between leads and heatsink with all leads shorted together
MOUNTING INFORMATION**
4-40 SCREW
CLIP
PLAIN WASHER
HEATSINK
COMPRESSION WASHER
HEATSINK
NUT
Figure 23a. Screw−Mounted
Figure 23b. Clip−Mounted
Figure 23. Typical Mounting Techniques
for Isolated Package
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a
screw torque of 6 to 8 in . lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain
a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4−40 screw, without washers, and applying a torque in excess of 20 in . lbs will
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4−40 screws indicate that the screw slot fails between 15 to 20 in . lbs without adversely affecting the
package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in . lbs of mounting torque under any mounting conditions.
** For more information about mounting power semiconductors see Application Note AN1040.
http://onsemi.com
9
MJE18004G, MJF18004G
PACKAGE DIMENSIONS
TO−220AB
CASE 221A−09
ISSUE AF
−T−
B
F
T
SEATING
PLANE
C
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
U
1 2 3
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.161
0.095
0.105
0.110
0.155
0.014
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
STYLE 1:
PIN 1.
2.
3.
4.
http://onsemi.com
10
BASE
COLLECTOR
EMITTER
COLLECTOR
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
4.09
2.42
2.66
2.80
3.93
0.36
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
MJE18004G, MJF18004G
PACKAGE DIMENSIONS
TO−220 FULLPAK
CASE 221D−03
ISSUE G
−T−
−B−
F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. 221D-01 THRU 221D-02 OBSOLETE, NEW
STANDARD 221D-03.
SEATING
PLANE
C
S
Q
U
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
U
A
1 2 3
H
−Y−
K
G
N
L
D
J
R
3 PL
0.25 (0.010)
M
B
M
Y
INCHES
MIN
MAX
0.625
0.635
0.408
0.418
0.180
0.190
0.026
0.031
0.116
0.119
0.100 BSC
0.125
0.135
0.018
0.025
0.530
0.540
0.048
0.053
0.200 BSC
0.124
0.128
0.099
0.103
0.101
0.113
0.238
0.258
MILLIMETERS
MIN
MAX
15.88
16.12
10.37
10.63
4.57
4.83
0.65
0.78
2.95
3.02
2.54 BSC
3.18
3.43
0.45
0.63
13.47
13.73
1.23
1.36
5.08 BSC
3.15
3.25
2.51
2.62
2.57
2.87
6.06
6.56
STYLE 2:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MJE18004/D