FDD8870 / FDU8870 N-Channel PowerTrench® MOSFET 30V, 160A, 3.9m Ω General Description Features This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r DS(ON) and fast switching speed. • r DS(ON) = 3.9mΩ, V GS = 10 V, ID = 35A • r DS(ON) = 4.4mΩ, V GS = 4.5V, I D = 35A • High performance trench technology for extremely low r DS(ON) • Low gate charge Applications • High power and current handling capability • DC/DC converters D D G S I-PAK (TO-251AA) D-PAK TO-252 (TO-252) G S G D S MOSFET Maximum Ratings T C = 25°C unless otherwise noted Symbol V DSS Drain to Source Voltage Parameter Ratings 30 Units V V GS Gate to Source Voltage ±20 V Continuous (T C = 25 o C, V GS = 10V) (Note 1) 160 A Continuous (T C = 25 o C, V GS = 4.5V) (Note 1) 150 A Continuous (T amb = 25 o C, VGS = 10 V, with Rθ JA = 52 o C/W) 21 A Drain Current ID Pulsed E AS Figure 4 A 690 mJ Single Pulse Avalanche Energy (Note 2) PD TJ, T STG Power dissipation 160 W Derate above 25 o C 1.07 W/ o C -55 to 175 oC Operating and Storage Temperature Thermal Characteristics Rθ JC Thermal Resistance Junction to Case TO-252, TO-251 0.94 o C/W Rθ JA Thermal Resistance Junction to Ambient TO-252, TO-251 100 o C/W Rθ JA Thermal Resistance Junction to Ambient TO-252, 1in 2 copper pad area 52 o C/W Package Marking and Ordering Information Device Marking FDD8870 Device FDD8870 Package TO-252AA Reel Size 13” Tape Width 12mm Quantity 2500 units FDU8870 FDU8870 TO-251AA Tube N/A 75 units ©2004 Fairchild Semiconductor Corporation FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 September 2004 Symbol Parameter Test Conditions Min Typ Max Units 30 - - - V - 1 - - 250 - - ±100 nA - 2.5 V Off Characteristics B VDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, V GS = 0V V DS = 24V V GS = 0V T C = 150 o C V GS = ±20V µA On Characteristics V GS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance V GS = VDS , I D = 250µA 1.2 ID = 35A, V GS = 10V - 0.0032 0.0039 ID = 35A, V GS = 4.5V - 0.0036 0.0044 ID = 35A, V GS = 10V, T J = 175 o C - 0.0051 0.0063 Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance - 5160 - pF - 990 - CRSS Reverse Transfer Capacitance pF - 590 - RG Gate Resistance pF V GS = 0.5V, f = 1MHz - 2.1 - Qg(TOT) Ω Total Gate Charge at 10V V GS = 0V to 10V - 91 118 nC Qg(5) Total Gate Charge at 5V V GS = 0V to 5V - 48 62 nC Qg(TH) Threshold Gate Charge V GS = 0V to 1V - 5 6.5 nC Qgs Gate to Source Gate Charge - 14 - nC Qgs2 Gate Charge Threshold to Plateau - 9 - nC Qgd Gate to Drain “Miller” Charge - 18 - nC Switching Characteristics V DS = 15V, V GS = 0V, f = 1MHz V DD = 15V ID = 35A Ig = 1.0mA (V GS = 10V) tO N Turn-On Time - - 139 ns td(ON) Turn-On Delay Time - 9 - ns tr Rise Time - 83 - ns td(OFF) Turn-Off Delay Time - 83 - ns tf Fall Time - 42 - ns tOFF Turn-Off Time - - 189 ns ISD = 35A - - 1.25 V ISD = 15A - - 1.0 V V DD = 15V, I D = 35A V GS = 10V, R GS = 3.3Ω Drain-Source Diode Characteristics V SD Source to Drain Diode Voltage trr Reverse Recovery Time ISD = 35A, dI SD /dt = 100A/µs - - 37 ns QRR Reverse Recovered Charge ISD = 35A, dI SD /dt = 100A/µs - - 21 nC Notes: 1: Package current limitation is 35A. 2: Starting TJ = 25°C, L = 1.77mH, I A S = 28A, VD D = 27V, VGS = 10V. ©2004 Fairchild Semiconductor Corporation FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 Electrical Characteristics TC = 25°C unless otherwise noted FDD8870 / FDU8870 Typical Characteristics TC = 25°C unless otherwise noted 175 1.0 150 ID , DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 CURRENT LIMITED BY PACKAGE 125 100 75 50 0.2 25 0 0 25 50 75 100 150 125 0 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE ( o C) Figure 1. Normalized Power Dissipation vs Case Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 Zθ JC , NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1 /t 2 PEAK TJ = P DM x Z θJC x RθJC + TC SINGLE PULSE 0.01 10 -5 10-4 10 -3 10 -2 10-1 10 0 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 2000 1000 ID M, PEAK CURRENT (A) TC = 25 o C FOR TEMPERATURES ABOVE 25oC DERATE PEAK TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION CURRENT AS FOLLOWS: VGS = 4.5V 175 - TC I = I25 150 100 30 10 -5 10 -4 10 -3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2004 Fairchild Semiconductor Corporation FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 Typical Characteristics TC = 25°C unless otherwise noted 1000 100 IA S, AVALANCHE CURRENT (A) ID , DRAIN CURRENT (A) 10µs 100 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms 1 SINGLE PULSE TJ = MAX RATED TC = 25 o C DC STARTING TJ = 25o C 10 If R = 0 tA V = (L)(IA S)/(1.3*RATED BV DSS - V D D) If R ≠ 0 t A V = (L/R)ln[(IA S*R)/(1.3*RATED BVDSS - VD D ) +1] 0.1 1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 60 Figure 5. Forward Bias Safe Operating Area 0.1 100 Figure 6. Unclamped Inductive Switching Capability 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V V GS = 5V 80 I D, DRAIN CURRENT (A) 80 I D , DRAIN CURRENT (A) 1 10 t AV , TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 100 TJ = 175 o C 60 TJ = 25o C 40 TJ = VGS = 4V VGS = 10V 60 VGS = 3V 40 V GS = 2.5V TC = 25o C PULSE DURATION = 80 µs DUTY CYCLE = 0.5% MAX 20 20 -55o C 0 0 1.5 2.0 2.5 V GS, GATE TO SOURCE VOLTAGE (V) 0 3.0 0.2 0.4 0.6 V D S, DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics 88 1.6 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 35A rDS (ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) STARTING TJ = 150o C 6 4 I D = 1A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.4 1.2 1.0 0.8 VGS = 10V, ID = 35A 2 2 4 6 8 10 V GS , GATE TO SOURCE VOLTAGE (V) Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current ©2004 Fairchild Semiconductor Corporation 0.6 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (o C) 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 Typical Characteristics TC = 25°C unless otherwise noted 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = V D S, ID = 250µA 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 1.1 1.0 0.9 -80 200 -40 TJ, JUNCTION TEMPERATURE ( o C) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 80 120 160 200 10 CRSS = CGD VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + C GD C, CAPACITANCE (pF) 40 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 10000 COSS ≅ CDS + CGD 1000 VD D = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: I D = 35A I D = 5A 2 VGS = 0V, f = 1MHz 400 0.1 0 TJ , JUNCTION TEMPERATURE (o C) 0 1 10 V D S, DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage ©2004 Fairchild Semiconductor Corporation 30 0 20 40 60 Qg , GATE CHARGE (nC) 80 100 Figure 14. Gate Charge Waveforms for Constant Gate Current FDD8870 / FDU8870 Rev. C VDS BVDSS tP L VD S VARY t P TO OBTAIN IAS + RG REQUIRED PEAK I AS VD D VDD - VGS DUT tP IAS 0V 0.01Ω 0 tA V Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VD S VDD Q g(TOT) VDS L VGS VGS = 10V VGS Qg(5) + Qgs2 VD D VGS = 5V DUT VGS = 1V I g(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VD S t ON t OFF t d(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS V GS 50% 50% PULSE WIDTH V GS 0 Figure 19. Switching Time Test Circuit ©2004 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 Test Circuits and Waveforms FDD8870 / FDU8870 Thermal Resistance vs. Mounting Pad Area (T –T ) JM A P D M = ----------------------------R θJA (EQ. 1) In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 125 RθJA = 33.32+ 23.84/(0.268+Area) EQ.2 RθJA = 33.32+ 154/(1.73+Area) EQ.3 100 RθJ A ( oC/W) The maximum rated junction temperature, TJ M, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P DM, in an application. Therefore the application’s ambient temperature, T A (o C), and thermal resistance R θJA ( o C/W) must be reviewed to ensure that T JM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 75 50 25 0.01 (0.0645) 0.1 (0.645) 1 10 (6.45) (64.5) AREA, TOP COPPER AREA in 2 (cm 2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the Rθ JA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. R θJA = 23.84 33.32 + ------------------------------------( 0.268 + Area ) (EQ. 2) Area in Inches Squared R θJA = 154 33.32 + ---------------------------------( 1.73 + Area) (EQ. 3) Area in Centimeters Squared ©2004 Fairchild Semiconductor Corporation FDD8870 / FDU8870 Rev. C .SUBCKT FDD8870 2 1 3 ; rev July 2003 Ca 12 8 4.2e-9 Cb 15 14 4.2e-9 Cin 6 8 4.7e-9 LDRAIN DPLCAP 5 DRAIN 2 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RLDRAIN RSLC1 51 + RSLC2 5 51 Ebreak 11 7 17 18 32.7 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 ESLC EVTHRES + 19 8 + LGATE GATE 1 It 8 17 1 11 50 + 17 EBREAK 18 - RDRAIN 6 8 ESG DBREAK EVTEMP RGATE + 18 9 20 22 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE Lgate 1 9 5e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2e-9 LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE RLgate 1 9 50 RLdrain 2 5 10 RLsource 3 7 20 S1A 12 S2A 13 8 CA 15 14 13 S1B Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD 17 18 S2B RVTEMP 13 CB + + 6 8 EGS Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1.57e-3 Rgate 9 20 2.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 1.2e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD RBREAK VBAT 5 8 EDS - 19 IT 14 - + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=1.3E-11 IKF=10 N=1.01 RS=1.8e-3 TRS1=8e-4 TRS2=2e-7 + CJO=2e-9 M=0.57 TT=1e-10 XTI=0.9) .MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.6e-9 IS=1e-30 N=10 M=0.38) .MODEL MmedMOD NMOS (VTO=1.76 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.2 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.47 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL .MODEL .MODEL .MODEL .MODEL .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7) RdrainMOD RES (TC1=2e-4 TC2=8e-6) RSLCMOD RES (TC1=9e-4 TC2=1e-6) RsourceMOD RES (TC1=8e-3 TC2=1e-6) RvthresMOD RES (TC1=-2e-3 TC2=-9.5e-6) RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7) .MODEL .MODEL .MODEL .MODEL .ENDS S1AMOD S1BMOD S2AMOD S2BMOD VSWITCH VSWITCH VSWITCH VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3) (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4) (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5) (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2) Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2004 Fairchild Semiconductor Corporation FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 PSPICE Electrical Model FDD8870 / FDU8870 SABER Electrical Model rev July 2003 template FDD8870 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=1.3e-11,ikf=10,nl=1.01,rs=1.8e-3,trs1=8e-4,trs2=2e-7,cjo=2e-9,m=0.57,tt=1e-10,xti=0.9) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.6e-9,isl=10e-30,nl=10,m=0.38) m..model mmedmod = (type=_n,vto=1.76,kp=10,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.2,kp=650,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.47,kp=0.05,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2) 51 c.ca n12 n8 = 4.2e-9 RSLC2 c.cb n15 n14 = 4.2e-9 ISCL c.cin n6 n8 = 4.7e-9 spe.ebreak n11 n7 n17 n18 = 32.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN DRAIN 2 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 5e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2e-9 13 8 14 13 S1B CA res.rlgate n1 n9 = 50 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 20 S2A RBREAK 15 17 18 S2B 13 + 6 8 EGS RVTEMP CB + - 19 IT 14 VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7 res.rdrain n50 n16 = 1.57e-3, tc1=2e-4,tc2=8e-6 res.rgate n9 n20 = 2.1 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.2e-3, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-9.5e-6 res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) } } ©2004 Fairchild Semiconductor Corporation FDD8870 / FDU8870 Rev. C th JUNCTION REV 23 July 2003 FDD8870T CTHERM1 TH 6 1e-3 CTHERM2 6 5 2e-3 CTHERM3 5 4 3e-3 CTHERM4 4 3 9e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 3e-2 RTHERM2 6 5 8e-2 RTHERM3 5 4 1.1e-1 RTHERM4 4 3 1.6e-1 RTHERM5 3 2 1.72e-1 RTHERM6 2 TL 2e-1 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model FDD8870T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1e-3 ctherm.ctherm2 6 5 =2e-3 ctherm.ctherm3 5 4 =3e-3 ctherm.ctherm4 4 3 =9e-3 ctherm.ctherm5 3 2 =1e-2 ctherm.ctherm6 2 tl =2e-2 rtherm.rtherm1 th 6 =3e-2 rtherm.rtherm2 6 5 =8e-2 rtherm.rtherm3 5 4 =1.1e-1 rtherm.rtherm4 4 3 =1.6e-1 rtherm.rtherm5 3 2 =1.72e-1 rtherm.rtherm6 2 tl =2e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2004 Fairchild Semiconductor Corporation CASE FDD8870 / FDU8870 Rev. C FDD8870 / FDU8870 PSPICE Thermal Model TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FAST ActiveArray™ FASTr™ Bottomless™ FPS™ CoolFET™ FRFET™ CROSSVOLT™ GlobalOptoisolator™ DOME™ GTO™ EcoSPARK™ HiSeC™ E2CMOS™ I2C™ EnSigna™ i-Lo™ FACT™ ImpliedDisconnect™ FACT Quiet Series™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC Across the board. Around the world.™ OPTOPLANAR™ PACMAN™ The Power Franchise POP™ Programmable Active Droop™ Power247™ POWEREDGE™ PowerSaver™ PowerTrench QFET QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ SILENT SWITCHER SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TINYOPTO™ TruTranslation™ UHC™ UltraFET VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I12