ISL9N306AD3 / ISL9N306AD3ST N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFETs 30V, 50A, 6mΩ General Description Features This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance. • Fast switching Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies. • rDS(ON) = 0.0085Ω (Typ), V GS = 4.5V Applications • Qgd (Typ) = 11nC • DC/DC converters • CISS (Typ) = 3400pF • rDS(ON) = 0.0052Ω (Typ), V GS = 10V • Qg (Typ) = 30nC, VGS = 5V SOURCE DRAIN DRAIN (FLANGE) DRAIN (FLANGE) D GATE GATE G SOURCE S TO-252 TO-251 MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V A Drain Current ID Continuous (TC = 25oC, VGS = 10V) 50 Continuous (TC = 100oC, VGS = 4.5V) 50 A Continuous (TC = 25oC, VGS = V, RθJC = 52oC/W) 16 A Pulsed PD Power dissipation Derate above 25oC TJ, TSTG Operating and Storage Temperature Figure 4 A 125 0.83 W W/oC o -55 to 175 C Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-251, TO-252 1.2 o C/W RθJA Thermal Resistance Junction to Ambient TO-251, TO-252 100 o C/W RθJA Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 o C/W Package Marking and Ordering Information Device Marking N306AD Device ISL9N306AD3ST Package TO-252AA Reel Size 330mm Tape Width 16mm Quantity 2500 units N306AD ISL9N306AD3 TO-251AA Tube N/A 75 units ©2003 Fairchild Semiconductor Corporation ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST June 2003 Symbol Parameter Test Conditions Min Typ Max Units Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 25V VGS = 0V TC = 150o VGS = ±20V 30 - - V - - 1 - - 250 µA - - ±100 nA 3 V On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1 ID = 50A, VGS = 10V - 0.0052 0.0060 - ID = 50A, VGS = 4.5V - 0.0085 0.0095 Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance VDS = 15V, VGS = 0V, f = 1MHz - 3400 - - 650 - pF pF - 300 - pF nC Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V - 60 90 Qg(5) Total Gate Charge at 5V - 30 45 nC Qg(TH) Threshold Gate Charge - 3.0 4.5 nC Qgs Gate to Source Gate Charge VGS = 0V to 5V V = 15V DD VGS = 0V to 1V ID = 50A Ig = 1.0mA - 10 - nC Qgd Gate to Drain “Miller” Charge - 11 - nC ns Switching Characteristics (VGS = 4.5V) tON Turn-On Time - - 131 td(ON) Turn-On Delay Time - 16 - ns tr Rise Time - 70 - ns td(OFF) Turn-Off Delay Time - 34 - ns tf Fall Time - 30 - ns tOFF Turn-Off Time - - 97 ns ns VDD = 15V, ID = 16A VGS = 4.5V, RGS = 4.3Ω Switching Characteristics (VGS = 10V) tON Turn-On Time - - 80 td(ON) Turn-On Delay Time - 10 - ns tr Rise Time - 43 - ns td(OFF) Turn-Off Delay Time - 62 - ns tf Fall Time - 29 - ns tOFF Turn-Off Time - - 137 ns 428 - - µs V VDD = 15V, ID = 16A VGS = 10V, R GS = 4.3Ω Unclamped Inductive Switching tAV Avalanche Time ID = 30A, L = 200µH Drain-Source Diode Characteristics ISD = 50A - - 1.25 ISD = 25A - - 1.0 V Reverse Recovery Time ISD = 50A, dISD /dt = 100A/µs - - 35 ns Reverse Recovered Charge ISD = 50A, dISD /dt = 100A/µs - - 30 nC VSD Source to Drain Diode Voltage trr QRR ©2003 Fairchild Semiconductor Corporation ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST Electrical Characteristics TA = 25°C unless otherwise noted 60 1.0 50 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 VGS = 10V 40 VGS = 4.5V 30 20 10 0 0 0 25 50 75 100 150 125 25 175 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 SINGLE PULSE 0.01 10-5 10-4 10-3 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum transient Thermal Impedance IDM , PEAK CURRENT (A) 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 1000 175 – TC 150 I = I25 VGS = 10V VGS = 5V 100 40 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 -5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2003 Fairchild Semiconductor Corporation ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST Typical Characteristic 100 100 50 TJ = 175oC 25 TJ = 25oC TJ = VGS = 3.5V 75 50 VGS = 3V 25 TC = 25 oC -55oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 0 1 2 3 4 0 5 0.5 VGS, GATE TO SOURCE VOLTAGE (V) 1.0 1.5 2.0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics Figure 6. Saturation Characteristics 2.0 25 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ID = 25A NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 4.5V VGS = 10V 75 ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 20 15 ID = 50A ID =5A 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 VGS = 10V, ID = 50A 0.5 5 2 4 6 8 -80 10 -40 0 40 80 120 Figure 7. Drain to Source On Resistance vs Gate Voltage and Drain Current 200 Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature 1.4 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 160 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) 1.0 0.6 0.2 1.1 1.0 0.9 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature ©2003 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST Typical Characteristic (Continued) 5000 10 VDD = 15V VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) CISS = CGS + C GD COSS ≅ CDS + C GD 1000 CRSS = CGD VGS = 0V, f = 1MHz 100 0.1 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 50A ID = 25A ID = 5A 2 0 0 30 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 8 10 Figure 11. Capacitance vs Drain to Source Voltage 30 40 50 60 Figure 12. Gate Charge Waveforms for Constant Gate Currents 300 500 VGS = 4.5V, VDD = 15V, ID = 16A VGS = 10V, VDD = 15V, I D = 16A 250 400 SWITCHING TIME (ns) SWITCHING TIME (ns) 20 Qg, GATE CHARGE (nC) 200 tf tr 150 100 td(OFF) 300 td(OFF) 200 tf 100 50 tr td(ON) 0 td(ON) 0 0 10 20 30 40 50 0 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance Test Circuits and Waveforms BVDSS VDS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit ©2003 Fairchild Semiconductor Corporation Figure 16. Unclamped Energy Waveforms ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST Typical Characteristic (Continued) VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS - VGS = 1V DUT 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 Figure 19. Switching Time Test Circuit ©2003 Fairchild Semiconductor Corporation 50% 10% 50% PULSE WIDTH Figure 20. Switching Time Waveforms ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST Test Circuits and Waveforms (Continued) (T –T ) JM A P D M = ----------------------------Z θJ A 125 RθJA = 33.32 + 23.84/(0.268+Area) 100 RθJA (oC/W) The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 75 (EQ. 1) 50 In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of P DM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 25 0.01 0.1 1 10 AREA, TOP COPPER AREA (in2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM . Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. R θJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. 23.84 ( 0.268 + Area ) Rθ JA = 33.32 + ------------------------------------- ©2003 Fairchild Semiconductor Corporation (EQ. 2) ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST Thermal Resistance vs. Mounting Pad Area .SUBCKT ISL9N306A 2 1 3 ; rev May 2001 CA 12 8 2.0e-9 CB 15 14 2.3e-9 CIN 6 8 3e-9 LDRAIN DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DPLCAP 10 5 51 EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 11 + 17 EBREAK 18 - 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 RGATE 9 20 2.69 RLDRAIN 2 5 10 RLGATE 1 9 45.8 RLSOURCE 3 7 14.7 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 ESLC 50 RDRAIN 6 8 ESG DBREAK + RSLC2 IT 8 17 1 S1A S1B S2A S2B RLDRAIN RSLC1 51 EBREAK 11 7 17 18 35.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 4.58e-9 LSOURCE 3 7 1.47e-9 DRAIN 2 5 8 SOURCE 3 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 5 8 EDS - 19 VBAT + IT 14 + + - 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*275),5))} .MODEL DBODYMOD D (IS = 3.6e-11 N=1.075 RS = 3.5e-3 TRS1 = 1e-3 TRS2 = 1e-6 XTI=1.0 CJO = 1.45e-9 TT = 8e-11 M = 0.51) .MODEL DBREAKMOD D (RS = 1.7e-1 TRS1 = 1e-3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 11.5e-10 IS = 1e-30 N = 10 M = 0.46) .MODEL MMEDMOD NMOS (VTO = 1.7 KP = 9 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.69) .MODEL MSTROMOD NMOS (VTO = 2.1 KP = 100 IS = 1e-30 N= 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.36 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.9 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = -7e-7) .MODEL RDRAINMOD RES (TC1 = 1.2e-2 TC2 = 3.0e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.6e-3 TC2 = -7.5e-6) .MODEL RVTEMPMOD RES (TC1 = -1.8e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.0 VOFF= -0.8) VON = -0.8 VOFF= -4.0) VON = -0.3 VOFF= 0.2) VON = 0.2 VOFF= -0.3) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2003 Fairchild Semiconductor Corporation ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST PSPICE Electrical Model REV May 2001 template ISL9N306A n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 3.6e-11, nl=1.075 , rs = 3.5e-3, trs1 = 1e-3, trs2 = 1e-6, xti=1.0, cjo = 1.45e-9, tt = 8e-11, m = 0.51,) dp..model dbreakmod = (rs =0.17, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 11.5e-10, isl=10e-30, nl=10, m=0.46) m..model mmedmod = (type=_n, vto = 1.7, kp=9, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.1, kp = 100, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.36, kp = 0.05, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -0.8) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -0.8, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) LDRAIN sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) DPLCAP 5 DRAIN RLDRAIN RSLC1 51 RSLC2 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG LGATE 11 DBODY EVTHRES 16 21 + 19 8 + GATE 1 DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 4.58e-9 l.lsource n3 n7 = 1.47e-9 2 10 c.ca n12 n8 = 2.0e-9 c.cb n15 n14 = 2.3e-9 c.cin n6 n8 = 3e-9 EVTEMP RGATE + 18 22 9 20 6 MWEAK EBREAK + MMED MSTRO RLGATE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u CIN 17 18 - 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = -7e-7 res.rdrain n50 n16 = 1e-3, tc1 = 1.2e-2, tc2 = 3.0e-5 res.rgate n9 n20 = 2.69 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 45.8 res.rlsource n3 n7 = 14.7 res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.5e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -2.6e-3, tc2 = -7.5e-6 S1A 12 13 8 S2A S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 35.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/275))** 5)) } } ©2003 Fairchild Semiconductor Corporation ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST SABER Electrical Model th JUNCTION REV May 2001 ISL9N306AT CTHERM1 th 6 2.7e-4 CTHERM2 6 5 3.9e-3 CTHERM3 5 4 4.2e-3 CTHERM4 4 3 4.8e-3 CTHERM5 3 2 1.9e-2 CTHERM6 2 tl 5.9e-2 RTHERM1 th 6 1.0e-3 RTHERM2 6 5 4.8e-3 RTHERM3 5 4 4.5e-2 RTHERM4 4 3 2.6e-1 RTHERM5 3 2 3.1e-1 RTHERM6 2 tl 3.4e-1 SABER Thermal Model RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 CTHERM3 RTHERM3 SABER thermal model ISL9N306AT template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.7e-4 ctherm.ctherm2 6 5 = 3.9e-3 ctherm.ctherm3 5 4 = 4.2e-3 ctherm.ctherm4 4 3 = 4.8e-3 ctherm.ctherm5 3 2 = 1.9e-2 ctherm.ctherm6 2 tl = 5.9e-2 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 = 1.0e-3 rtherm.rtherm2 6 5 = 4.8e-3 rtherm.rtherm3 5 4 = 4.5e-2 rtherm.rtherm4 4 3 = 2.6e-1 rtherm.rtherm5 3 2 = 3.1e-1 rtherm.rtherm6 2 tl = 3.4e-1 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2003 Fairchild Semiconductor Corporation CASE ISL9N306AD3 / ISL9N306AD3ST Rev. B2 ISL9N306AD3 / ISL9N306AD3ST SPICE Thermal Model TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet Series™ Bottomless™ FAST® CoolFET™ FASTr™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ I2C™ EnSigna™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I2