HUFA75429D3S N-Channel UltraFET® MOSFETs 60V, 20A, 25mΩ General Description Applications These N-Channel power MOSFETs are manufactured using the innovative UltraFET® process. This advanced process technology achieves very low on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching convertors, motor drivers, relay drivers, low-voltage bus switches. • Motor & Load Control • Powertrain Management Features • 175°C Maximum Junction Temperature • UIS Capability (Single Pulse and Repetitive Pulse) • Ultra-Low On-Resistance rDS(ON) = 0.025Ω, VGS = 10V DRAIN (FLANGE) GATE D G SOURCE S TO-252 MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 60 Units V VGS Gate to Source Voltage ±20 V Continuous (TC = 25oC, VGS = 10V) 20 A Continuous (TC = 125oC, VGS = 10V, RθJA = 52oC/W) 4 A Drain Current ID Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Figure 4 A 312 mJ Power dissipation 125 W Derate above 25oC 0.83 W/oC -55 to 175 oC Operating and Storage Temperature Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-252 1.2 o C/W o C/W RθJA Thermal Resistance Junction to Ambient TO-252 100 RθJA Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 oC/W This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2002 Fairchild Semiconductor Corporation Rev. A HUFA75429D3S March 2002 HUFA75429D3S Package Marking and Ordering Information Device Marking 75429D3 Device HUFA75429D3ST Package TO-252 Reel Size 330mm Tape Width 16mm Quantity 2500 units 75429D3 HUFA75429D3S TO-252 Tube N/A 75 units Electrical Characteristics TA = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units V Off Characteristics BVDSS Drain to Source Breakdown Voltage ID = 250µA, VGS = 0V 60 - - VDS = 55V, VGS = 0V - - 1 - - 250 - ±100 nA V IDSS Zero Gate Voltage Drain Current VDS = 45V VGS = 0V IGSS Gate to Source Leakage Current VGS = ±20V - TC= 150oC µA On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 2 - 4 ID = 20A, VGS = 10V - 0.021 0.025 ID = 20A, VGS = 10V, TJ = 175oC - 0.043 0.054 - 1090 - pF - 376 - pF - 102 - pF 65 85 nC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(TOT) Total Gate Charge at 20V VGS = 0V to 20V VGS = 0V to 10V V = 30V DD VGS = 0V to 2V ID = 20A Ig = 1.0mA Qg(10) Total Gate Charge at 10V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge Qgd Gate to Drain “Miller” Charge Switching Characteristics VDS = 25V, VGS = 0V, f = 1MHz - 36 47 nC - 2 2.6 nC - 4 - nC - 14 - nC (VGS = 10V) tON Turn-On Time - - 74 ns td(ON) Turn-On Delay Time - 10 - ns tr Rise Time - 39 - ns td(OFF) Turn-Off Delay Time - 52 - ns tf Fall Time - 33 - ns tOFF Turn-Off Time - - 128 ns ISD = 20A - - 1.25 V ISD = 10A - - 1.0 V VDD = 30V, ID = 20A VGS = 10V, RGS = 11Ω Drain-Source Diode Characteristics VSD Source to Drain Diode Voltage trr Reverse Recovery Time ISD = 20A, dISD/dt = 100A/µs - - 55 ns QRR Reverse Recovered Charge ISD = 20A, dISD/dt = 100A/µs - - 83 nC Notes: 1: Starting TJ = 25°C, L = 1.56mH, IAS = 20A ©2002 Fairchild Semiconductor Corporation Rev. A HUFA75429D3S Typical Characteristics TA = 25°C unless otherwise noted 1.2 25 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 20 0.8 0.6 0.4 15 10 0.2 0 0 25 50 75 100 150 125 5 0 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 TC, CASE TEMPERATURE Figure 1. Normalized Power Dissipation vs Ambient Temperature 150 175 (oC) Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 600 TC = 25oC FOR TEMPERATURES IDM, PEAK CURRENT (A) ABOVE 25oC DERATE PEAK VGS = 10V CURRENT AS FOLLOWS: 175 - TC I = I25 100 150 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2002 Fairchild Semiconductor Corporation Rev. A HUFA75429D3S Typical Characteristics TA = 25°C unless otherwise noted 500 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 500 100µs 100 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 0.01 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515. 100 Figure 5. Forward Bias Safe Operating Area 50 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 10V VGS = 6V 40 ID, DRAIN CURRENT (A) 40 ID , DRAIN CURRENT (A) Figure 6. Unclamped Inductive Switching Capability 30 TJ = 175oC 20 TJ = 25oC 10 VGS = 7V VGS = 5V 30 20 VGS = 4.5V TC = 25oC 10 TJ = -55oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 0 3 4 5 VGS , GATE TO SOURCE VOLTAGE (V) 6 0 Figure 7. Transfer Characteristics 0.5 1.0 1.5 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 8. Saturation Characteristics 1.2 2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA 2.0 NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.0 1.5 1.0 1.0 0.8 0.6 VGS = 10V, ID = 20A 0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature ©2002 Fairchild Semiconductor Corporation 200 0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature Rev. A HUFA75429D3S Typical Characteristics TA = 25°C unless otherwise noted 3000 1.2 CISS = CGS + CGD 1000 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA 1.1 1.0 CRSS = CGD COSS ≅ CDS + CGD 100 VGS = 0V, f = 1MHz 50 0.9 -80 -40 0 40 80 120 160 200 0.1 Figure 11. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 60 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) TJ , JUNCTION TEMPERATURE (oC) Figure 12. Capacitance vs Drain to Source Voltage 10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 30V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 20A ID = 4A 2 0 0 10 20 Qg, GATE CHARGE (nC) 30 40 Figure 13. Gate Charge Waveforms for Constant Gate Currents Test Circuits and Waveforms VDS BVDSS tP L VDS VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDD VDD - VGS DUT tP 0V IAS 0.01Ω 0 tAV Figure 14. Unclamped Energy Test Circuit ©2002 Fairchild Semiconductor Corporation Figure 15. Unclamped Energy Waveforms Rev. A HUFA75429D3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS =10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 16. Gate Charge Test Circuit Figure 17. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tf tr VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 18. Switching Time Test Circuit ©2002 Fairchild Semiconductor Corporation 10% Figure 19. Switching Time Waveforms Rev. A HUFA75429D3S Thermal Resistance vs. Mounting Pad Area ( T JM – T A ) P DM = ----------------------------RθJA 125 RθJA = 33.32 + 23.84/(0.268+Area) 100 RθJA (oC/W) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 75 (EQ. 1) 50 In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 25 0.01 0.1 1 10 AREA, TOP COPPER AREA (in2) Figure 20. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 20 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. 23.84 ( 0.268 + Area ) R θ JA = 33.32 + ------------------------------------- ©2002 Fairchild Semiconductor Corporation (EQ. 2) Rev. A HUFA75429D3S PSPICE Electrical Model .SUBCKT HUFA75429D3S 2 1 3 rev February 2002 CA 12 8 1.9e-9 CB 15 14 1.9e-9 CIN 6 8 9.7e-10 LDRAIN DPLCAP 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 + EBREAK 16 17 18 - DBODY MWEAK 6 MMED MSTRO LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLGATE 1 9 35.4 RLDRAIN 2 5 10 RLSOURCE 3 7 22.1 RLSOURCE S1A 12 S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 6.5e-3 RGATE 9 20 2 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.1e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 11 50 21 RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD ESLC RDRAIN 6 8 ESG DBREAK + RSLC2 5 51 LGATE 1 9 3.54e-9 LDRAIN 2 5 1e-9 LSOURCE 3 7 2.21e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 65 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 DRAIN 2 5 - + 8 22 RVTHRES S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*100),5))} .MODEL DBODYMOD D (IS = 1.6e-12 N=1.02 RS = 8.1e-3 TRS1 = 3e-3 TRS2 = 2e-6 CJO = 1.43e-9 TT = 3e-8 M = 0.53 XTI=5.5) .MODEL DBREAKMOD D (RS = 2e-1 TRS1 = 1e-3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 1.4e-9 IS = 1e-30 N = 10 M = 0.79) .MODEL MmedMOD NMOS (VTO=3 KP=4.5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2) .MODEL MstroMOD NMOS (VTO=3.6 KP=40 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=2.66 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2e1 RS=0.1) .MODEL RBREAKMOD RES (TC1 =1.2e-3 TC2 = 1e-7) .MODEL RDRAINMOD RES (TC1 = 1.2e-2 TC2 = 2.3e-5) .MODEL RSLCMOD RES (TC1 = 8e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 8e-6) .MODEL RVTEMPMOD RES (TC1 = -3e-3 TC2 = -2e-6) .MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -1e-5) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8 VOFF= -3.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.5 VOFF= -8) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.1 VOFF= 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.1) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation Rev. A HUFA75429D3S SABER Electrical Model REV February 2002 template HUFA75429D3S n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=1.6e-12,nl=1.02,rs=8.1e-3,trs1=3e-3,trs2=2e-6,cjo=1.43e-9,tt=3e-8,m=0.53,xti=5.5) dp..model dbreakmod = (rs=2e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.4e-9,isl=10e-30,nl=10,m=0.79) m..model mmedmod = (type=_n,vto=3,kp=4.5,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=3.6,kp=40,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.66,kp=0.05,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-3.5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-8) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.1,voff=0.5) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1.1) c.ca n12 n8 = 1.9e-9 c.cb n15 n14 = 1.9e-9 DPLCAP 5 c.cin n6 n8 = 9.7e-10 LDRAIN DRAIN 2 10 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RLDRAIN RSLC1 51 RSLC2 ISCL spe.ebreak n11 n7 n17 n18 = 65 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 RDRAIN 6 8 ESG GATE 1 EVTEMP RGATE + 18 22 9 20 6 EBREAK + 17 18 - MMED RLGATE CA m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u DBODY MWEAK MSTRO l.lgate n1 n9 = 3.54e-9 l.ldrain n2 n5 = 1e-9 l.lsource n3 n7 = 2.21e-9 res.rlgate n1 n9 = 35.4 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 22.1 11 EVTHRES 16 21 + 19 8 + LGATE DBREAK 50 - CIN 8 LSOURCE 7 RSOURCE S1A 12 13 8 S2A 14 13 S1B RLSOURCE RBREAK 15 17 18 RVTEMP S2B 13 CB + + 6 8 EGS - SOURCE 3 19 IT 14 VBAT 5 8 EDS - res.rbreak n17 n18 = 1, tc1=1.2e-3,tc2=1e-7 res.rdrain n50 n16 = 6.5e-3, tc1=1.2e-2,tc2=2.3e-5 res.rgate n9 n20 = 2 res.rslc1 n5 n51 = 1e-6, tc1=8e-3,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.1e-2, tc1=1e-3,tc2=8e-6 res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1e-5 res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=-2e-6 + 8 22 RVTHRES sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/100))** 5))} } ©2002 Fairchild Semiconductor Corporation Rev. A th HUFA75429D3S SPICE Thermal Model JUNCTION REV 23 February 2002 HUFA75429D3S CTHERM1 TH 6 2.49e-3 CTHERM2 6 5 7.6e-3 CTHERM3 5 4 7.8e-3 CTHERM4 4 3 8e-3 CTHERM5 3 2 1.3e-2 CTHERM6 2 TL 7.52e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 6e-3 RTHERM2 6 5 1.4e-2 RTHERM3 5 4 9e-2 RTHERM4 4 3 1.8e-1 RTHERM5 3 2 3.1e-1 RTHERM6 2 TL 3.35e-1 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model HUFA75429D3S template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =2.49e-3 ctherm.ctherm2 6 5 =7.6e-3 ctherm.ctherm3 5 4 =7.8e-3 ctherm.ctherm4 4 3 =8e-3 ctherm.ctherm5 3 2 =1.3e-2 ctherm.ctherm6 2 tl =7.52e-2 rtherm.rtherm1 th 6 =6e-3 rtherm.rtherm2 6 5 =1.4e-2 rtherm.rtherm3 5 4 =9e-2 rtherm.rtherm4 4 3 =1.8e-1 rtherm.rtherm5 3 2 =3.1e-1 rtherm.rtherm6 2 tl =3.35e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 CTHERM6 RTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE Rev. A TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx Bottomless CoolFET CROSSVOLT DenseTrench DOME EcoSPARK E2CMOSTM EnSignaTM FACT FACT Quiet Series FAST â FASTr FRFET GlobalOptoisolator GTO HiSeC I2C ISOPLANAR LittleFET MicroFET MicroPak MICROWIRE OPTOLOGIC â OPTOPLANAR PACMAN POP Power247 PowerTrench â QFET QS QT Optoelectronics Quiet Series SILENT SWITCHER â UHC SMART START UltraFET â SPM VCX STAR*POWER Stealth SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogic TruTranslation STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H5