FUJITSU SEMICONDUCTOR DATA SHEET DS04-21363-2E ASSP Dual Serial Input PLL Frequency Synthesizer MB15F72SP ■ DESCRIPTION The Fujitsu MB15F72SP is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1300 MHz and a 350 MHz prescalers. A 64/65 or a 128/129 for the 1300 MHz prescaler, and a 8/9 or a 16/17 for the 350 MHz prescaler can be selected for the prescaler that enables pulse swallow operation. MB15F72SP has the same configuration with MB15F02 or MB15F02L. The BiCMOS process is used , as a result a supply current is typically 2.7 mA typ. at 2.7 V.The supply voltage range is from 2.4 V to 3.6 V. A refined charge pump supplies well-balanced output current with 1.5 mA and 6 mA selectable by serial data. The new package(BCC20) decreases a area of MB15F72SP more than 30 % comparing with the former BCC16 (for dual PLL). MB15F72SP is ideally suited for wireless mobile communications, such as PDC ■ FEATURES • High frequency operation:RF synthesizer: 1300 MHz max :IF synthesizer: 350 MHz max • Low power supply voltage: VCC = 2.4 to 3.6 V • Ultra Low power supply current:ICC = 2.7 mA typ. (VCC = Vp = 2.7 V, SWIF = SWRF = 0, Ta = +25°C, in IF, RF locking state) • Direct power saving function:Power supply current in power saving mode Typ. 0.1 µA (VCC = Vp = 2.7 V, Ta = +25°C) Max. 10 µA (VCC = Vp = 2.7 V) (Continued) ■ PACKAGES 20-pin plastic TSSOP (FPT-20P-M06) 20-pad plastic BCC (LCC-20P-M04) MB15F72SP (Continued) • Software selectable charge pump current: 1.5 mA/6.0 mA (typ.) • Dual modulus prescaler: 1300 MHz prescaler (64/65 or 128/129 )/350 MHz prescaler (8/9 or 16/17) • 23 bit shift resister • Serial input 14-bit programmable reference divider: R = 3 to 16,383 • Serial input programmable divider consisting of: - Binary 7-bit swallow counter: 0 to 127 - Binary 11-bit programmable counter: 3 to 2,047 • On–chip phase control for phase comparator • Built-in digital locking detector circuit to detect PLL locking and unlocking. • Operating temperature: Ta = –40°C to +85°C • Sireal data format compatible with MB15F02SL • Small package BCC20 (3.4 mm × 3.6mm × 0.8mm) ■ PIN ASSIGNMENTS (TSSOP-20) (BCC-20) TOP VIEW TOP VIEW OSCIN 1 20 Clock GND 2 19 Data finIF 3 18 LE XfinIF 4 17 finRF GNDIF 5 16 XfinRF VCCIF 6 15 GNDRF PSIF 7 14 VpIF 8 13 DoIF 9 12 VpRF LD/fout 10 11 DoRF finIF 1 XfinIF 2 GNDIF VCCIF 3 4 VCCRF PSIF 5 PSRF VpIF 6 (FPT-20P-M06) 2 OSCIN Data GND Clock 20 19 18 17 7 8 9 10 16 LE 15 14 finRF 13 12 GNDRF 11 PSRF DoIF DoRF LD/fout VpRF (LCC-20P-M04) XfinRF VCCRF MB15F72SP ■ PIN DESCRIPTION Pin no. TSSOP BCC Pin name I/O Descriptions The programmable reference divider input. TCXO should be connected with a AC coupling capacitor. 1 19 OSCIN 2 20 GND 3 1 finIF I Prescaler input pin for the IF-PLL. Connection to an external VCO should be via AC coupling. 4 2 XfinIF I Prescaler complimentary input pin for the IF-PLL section. This pin should be grounded via a capacitor. 5 3 GNDIF 6 4 VCCIF 7 5 PSIF 8 6 VpIF Power supply voltage input pin for the IF-PLL charge pump. 9 7 DOIF O Charge pump output for the IF-PLL section. Phase characteristics of the phase detector can be reversed by FCbit. 10 8 LD/fout O Lock detect signal output (LD)/phase comparator monitoring output (fout).The output signal is selected by LDS bit in the serial data. LDS bit = “H” ; outputs fout signal / LDS bit = “L” ; outputs LD signal 11 9 DORF O Charge pump output for the RF-PLL section. Phase characterstics of the phase detector can be reversed by FCbitt. 12 10 VpRF Power supply voltage input pin for the RF-PLL charge pump. 13 11 PSRF I Power saving mode control for the RF-PLL section. This pin must be set at “L” Power-ON. (Open is prohibited.) PSRF = “H” ; Normal mode / PSRF = “L” ; Power saving mode 14 12 VCCRF Power supply voltage input pin for the RF-PLL section (except for the charge pump circuit). 15 13 GNDRF 16 14 XfinRF I Prescaler complimentary input pin for the RF-PLL section. This pin should be grounded via a capacitor. 17 15 finRF I Prescaler input pin for the RF-PLL. Connection to an external VCO should be via AC coupling. 18 16 LE I Load enable signal input(with the schmitt trigger circuit). When LE is set “H”, data in the shift register is transferred to the corresponding latch according to the control bit in a serial data. 19 17 Data I Serial data input(with the schmitt trigger circuit). A data is transferred to the corresponding latch(IF-ref. counter, IF-prog. counter, RF-ref. counter, RF-prog. counter) according to the control bit in a serial data. 20 18 Clock I Clock input for the 23-bit shift register (with the schmitt trigger circuit). One bit of data is shifted into the shift register on a rising edge of the clock. I Ground for OSC input buffer and the shift register circuit. Ground for the IF-PLL section. Power supply voltage input pin for the IF-PLL section(except for the charge pump circuit), the OSC input buffer and the shift register circuit. When power is OFF, latched data of IF-PLL is lost. I Power saving mode control for the IF-PLL section. This pin must be set at “L” Power-ON. (Open is prohibited.) PSIF = “H” ; Normal mode / PSIF = “L” ; Power saving mode Ground for the RF-PLL section. 3 MB15F72SP ■ BLOCK DIAGRAM VCCIF (4) 6 PSIF 7 (5) finIF 3 (1) XfinIF 4 (2) Intermittent mode control (IF-PLL) 3 bit latch 7 bit latch LDS SWIF FCIF Binary 7-bit Binary 11-bit proswallow counter grammable (IF-PLL) counter(IF-PLL) VpIF 8 (6) GNDIF 5 (3) 11 bit latch fpIF Charge Current pump Switch (IF-PLL) Phase comp. (IF-PLL) Prescaler (IF-PLL) (8/9, 16/17 9 DoIF (7) Lock Det. (IF-PLL) 2 bit latch T1 T2 14 bit latch 1 bit latch Binary 14-bit programmable ref. counter(IF-PLL) LDIF C/P setting counter frIF OSCIN 1 (19) T1 T2 OR 2 bit latch ( 15 ) finRF 17 XfinRF 16 ( 14 ) PSRF 13 (11) LE 18 ( 16 ) ( 17 ) Data 19 Clock 20 ( 18 ) Binary 14-bit programmable ref. counter(RF-PLL)) C/P setting counter 14 bit latch 1 bit latch LDS SWRF FCRF Intermittent mode control (RF-PLL) Schmitt circuit O : TSSOP ( ) : BCC Phase comp. (RF-PLL) Binary 11-bit proBinary 7-bit swallow counter grammable counter (RF-PLL) (RF-PLL) Charge Current pump Switch (RF-PLL) fpRF 3 bit latch Schmitt circuit 10 LD/ ( 8 ) fout Lock Det. (RF-PLL) 7 bit latch 11 bit latch Latch selector C C N N 1 2 23-bit shift register 2 ( 20 ) GND 4 LD frIF frRF fpIF fpRF Prescaler (RF-PLL) (64/65, 128/129) Schmitt circuit Selector AND frRF ( 12 ) 14 VCCRF 15 ( 13 ) GNDRF 12 ( 10 ) VpRF 11 DoRF (9) MB15F72SP ■ ABSOLUTE MAXIMUM RATINGS Parameter Symbol Unit Min. Max. VCC −0.5 4.0 V Vp VCC 4.0 V VI −0.5 VCC + 0.5 V LD/fout VO GND VCC V DoIF, DoRF VDO GND Vp V Tstg −55 +125 °C Power supply voltage Input voltage Output voltage Rating Storage temperature WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Value Unit Remark 3.6 V VCCRF = VCCIF 2.7 3.6 V GND VCC V −40 +85 °C Min. Typ. Max. VCC 2.4 2.7 Vp VCC Input voltage VI Operating temperature Ta Power supply voltage WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 5 MB15F72SP ■ ELECTRICAL CHARACTERISTICS (VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C) Symbol Parameter Power supply current “H” level input voltage “L” level input voltage “H” level input voltage “L” level input voltage “H” level input current “L” level input current “H” level input current “L” level input current Unit Min. Typ. Max. ICCIF *1 IF PLL 1.1 mA ICCRF *2 RF PLL 1.6 mA *8 10 µA PSIF = PSRF = “L” 0.1 IPSRF PSIF = PSRF = “L” 0.1 *8 10 µA fin finIF IF PLL 50 350 MHz finRF *3 finRF RF PLL 100 1300 MHz OSCIN fOSC 3 40 MHz IF *3 Input sensitivity Value IPSIF Power saving current Operating frequency Condition finIF PfinIF IF PLL, 50 Ω system −15 +2 dBm finRF PfinRF RF PLL, 50 Ω system −15 +2 dBm OSCIN VOSC 0.5 VCC VP − P Data, LE, Clock VIH Schmitt trigger input 0.7 VCC + 0.4 V VIL Schmitt trigger input 0.3 VCC − 0.4 V PSIF, PSRF VIH 0.7 VCC V VIL 0.3 VCC V IIH *4 −1.0 +1.0 µA IIL *4 −1.0 +1.0 µA IIH 0 +100 µA IIL *4 −100 0 µA VCC − 0.4 V 0.4 V Data, LE, Clock, PSIF, PSRF OSCIN VOH VCC = Vp = 2.7 V, IOH = −1 mA “L” level output voltage VOL VCC = Vp = 2.7 V, IOL = 1 mA “H” level output voltage VDOH VCC = Vp = 2.7 V, IDOH = −0.5 mA Vp − 0.4 V VDOL VCC = Vp = 2.7 V, IDOL = 0.5 mA 0.4 V IOFF VCC = Vp = 2.7 V VOFF = 0.5 V to Vp − 0.5 V 2.5 nA IOH *4 VCC = Vp = 2.7 V −1.0 mA IOL VCC = Vp = 2.7 V 1.0 mA “H” level output voltage “L” level output voltage High impedance cutoff current “H” level output current “L” level output current LD/fout DoIF, DoRF DoIF, DoRF LD/fout (Continued) 6 MB15F72SP (Continued) (VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C) Parameter Symbol “H” level output current DoIF DoRF IDOH *4 “L” level output current DoIF DoRF IDOL IDOL/IDOH IDOMT *5 Charge pump current rate Value Condition Unit Min. Typ. Max. VCC = Vp = 2.7 V, CS bit = “H” VDOH = Vp/2, CS bit = “L” Ta = +25 °C −6.0 mA −1.5 mA VCC = Vp = 2.7 V, CS bit = “H” VDOL = Vp/2, CS bit = “L” Ta = +25 °C 6.0 mA 1.5 mA VDO = Vp / 2 3 % vs. VDO IDOVD *6 0.5 V ≤ VDO ≤ Vp − 0.5 V 10 % vs.Ta IDOTA *7 −40 °C ≤ Ta ≤ +85 °C, VDO = Vp / 2 10 % *1 : finIF = 270 MHz, fosc = 12.8 MHz, VCCIF = VpIF = 2.7 V, SWIF = 0, Ta = +25°C, in locking state. *2 : finRF = 910 MHz, fosc = 12.8 MHz, VCCRF = VpRF = 2.7 V, SWRF = 0, Ta = +25°C, in locking state. *3 : AC coupling. 1000pF capacitor is connected under the condition of min. operating frequency. *4 : The symbol “–” (minus) means direction of current flow. *5 : VCC = Vp = 2.7 V, Ta = +25°C (||I3| – |I4||)/[(|I3| + |I4|)/2] × 100(%) *6 : VCC = Vp = 2.7 V, Ta = +25°C (Applied to each IDOL, IDOH) [(||I2| – |I1||)/2]/[(|I1| + |I2|)/2] × 100(%) *7 : VCC = Vp = 2.7 V, Ta = +25°C (Applied to each IDOL, IDOH) [||IDO(+85°C)| –|IDO(–40°C)||/2]/[|IDO(+85°C)| + |IDO(–40°C)|/2] × 100(%) *8 : fosc = 12.8 MHz, VCCRF = VpRF = VCCIF = 2.7 V, Ta = +25°C I1 I3 I2 IDOL I4 IDOH I1 0.5 Vp/2 Vp − 0.5 Vp Charge pump output voltage (V) 7 MB15F72SP ■ FUNCTIONAL DESCRIPTION 1. Pulse swallow function : fVCO = [(P × N) + A] × fOSC ÷ R fVCO : Output frequency of external voltage controlled oscillator (VCO) P : Preset divide ratio of dual modulus prescaler (8 or 16 for IF-PLL, 64 or 128 for RF-PLL) N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047) A : Preset divide ratio of binary 7-bit swallow counter (0 ≤ A ≤ 127, A < N) fOSC : Reference oscillation frequency (OSCIN input frequency) R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383) 2. Serial Data Input Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL sections, and programmable reference dividers of IF/RF-PLL sections are controlled individually. Serial data of binary data is entered through Data pin. On a rising edge of Clock, one bit of serial data is transferred into the shift register. On a rising edge of load enable signal, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting. The programmable reference counter for the IF-PLL The programmable reference counter for the RF-PLL The programmable counter and the swallow counter for the IF-PLL The programmable counter and the swallow counter for the RF-PLL CN1 0 1 0 1 CN2 0 0 1 1 (1) Shift Register Configuration • Programmable Reference Counter Data Flow (LSB) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (MSB) 15 16 17 18 19 20 21 22 23 CN1 CN2 T1 T2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 CS X CS R1 to R14 T1, T2 CN1, CN2 X X : Charge pump currnet select bit : Divide ratio setting bits for the programmable reference counter (3 to 16,383) : Test purpose bit : Control bit : Dummy bits (Set “0” or “1”) Note : Data input with MSB first. 8 X X MB15F72SP • Programmable Counter (LSB) 1 2 3 4 CN1 CN2 LDS (MSB) Data Flow 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 SWIF/ FCIF/ A1 A2 A3 A4 A5 A6 A7 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 SWRF FCRF A1 to A7 N1 to N11 LDS SWIF/SWRF FCIF/FCRF CN1, CN2 : Divide ratio setting bits for the swallow counter (0 to 127) : Divide ratio setting bits for the programmable counter (3 to 2,047) : LD/fout signal select bit : Divide ratio setting bit for the prescaler (IF : SWIF,RF : SWRF) : Phase control bit for the phase detector (IF: FCIF, RF: FCRF) : Control bit Note: Data input with MSB first. (2) Data setting • Binary 14-bit Programmable Reference Counter Data Setting (R1 to R14) Divide ratio R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 • • • 16383 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 1 • • • 1 0 • • • 1 0 • • • 1 Note : Divide ratio less than 3 is prohibited. • Binary 11-bit Programmable Counter Data Setting (N1 to N11) Divide ratio N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1 3 0 0 0 0 0 0 0 0 0 1 1 4 • • • 2047 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 1 • • • 1 0 • • • 1 0 • • • 1 Note : Divide ratio less than 3 is prohibited. • Binary 7-bit Swallow Counter Data Setting (A1 to A7) Divide ratio A7 A6 A5 A4 A3 A2 A1 0 0 0 0 0 0 0 0 1 • • • 127 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 0 • • • 1 1 • • • 1 9 MB15F72SP • Prescaler Data Setting (SW) SW = “1” SW = “0” Prescaler divide ratio IF-PLL 8/9 16/17 Prescaler divide ratio RF-PLL 64/65 128/129 Divide ratio • Charge Pump Current Setting (CS) • LD/fout Output Select Data Setting (LDS) Current value CS LD/fout output signal LDS ±6.0 mA 1 fout signal 1 ±1.5 mA 0 LD signal 0 • Test Purpose Bit Setting (T1, T2) LD/fout pin state T1 T2 Outputs frIF. 0 0 Outputs frRF. 1 0 Outputs fpIF. 0 1 Outputs fpRF. 1 1 • Phase Comparator Phase Switching Data Setting (FCIF, FCRF) Phase comparator input FCIF = “1” FCRF = “1” FCIF = “0” FCRF = “0” DoIF DoRF DoIF DoRF fr > fp H L fr < fp L H fr = fp Z Z Z : High-impedance Depending upon the VCO and LPF polarity, FC bit should be set. High (1) (1) VCO polarity FC = “1” (2) VCO polarity FC = “0” VCO Output Frequency (2) LPF Output voltage Note : Give attention to the polarity for using active type LPF. 10 Max. MB15F72SP 3. Power Saving Mode (Intermittent Mode Control Circuit) Status PSIF/PSRF pins Normal mode H Power saving mode L The intermittent mode control circuit reduces the PLL power consumption. By setting the PS pins low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value. The phase detector output, Do, becomes high impedance. For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table. Setting the PS pins high, releases the power saving mode, and the device works normally. The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time. To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation. Notes •When power (VCC) is first applied, the device must be in standby mode, PSIF = PSRF = Low, for at least 1 µs. •PS pins must be set at “L” for Power-ON. OFF V CC ON tV ≥ 1 µs Clock Data LE tPS ≥ 100 ns PS IF PS RF (1) (2) (3) (1) PS IF = PSRF = “L” (power saving mode) at Power-ON (2) Set serial data 1 µs later after power supply remains stable (VCC > 2.2 V). (3) Release power saving mode (PS IF, PSRF : “L” → “H”) 100 ns later after setting serial data. 11 MB15F72SP 4. SERIAL DATA INPUT TIMING Frequency multiplier setting is performed through a serial interface using the Data pin, Clock pin, and LE pin. Setting data is read into the shift register at the rise of the clock signal, and transferred to a latch at the rise of the LE signal. The following diagram shows the data input timing. 2nd data 1st data Control bit Data MSB Invalid data LSB Clock t1 t2 t3 t6 t7 LE t4 Max. Unit Parameter Min. Typ. Parameter Min. Typ. t1 20 ns t5 100 ns t2 20 ns t6 20 ns t3 30 ns t7 100 ns t4 30 ns Note : LE should be “L” when the data is transferred into the shift register. 12 t5 Max. Unit MB15F72SP ■ PHASE COMPARATOR OUTPUT WAVEFORM fr IF / fr RF fp IF / fp RF t WU t WL LD (FC bit = “1”) Do IF / Do RF H Z L (FC bit = “0”) H D o IF / Do RF Z L • LD Output Logic IF-PLL section RF-PLL section LD output Locking state/Power saving state Locking state/Power saving state H Locking state/Power saving state Unlocking state L Unlocking state Locking state/Power saving state L Unlocking state Unlocking state L Notes:•Phase error detection range = –2π to +2π •Pulses on DoIF/DoRF signals are output to prevent dead zone during locking state. •LD output becomes low when phase error is tWU or more. •LD output becomes high when phase error is tWL or less and continues to be so for three cycles or more. •tWU and tWL depend on OSCIN input frequency as follows. tWU > 2/fosc : e.g. tWU > 156.3 ns when fosc = 12.8 MHz tWU < 4/fosc : e.g. tWL < 312.5 ns when fosc = 12.8 MHz 13 MB15F72SP ■ TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN) fout Oscilloscope 1000 pF VCCIF VpIF 0.1 µF 1000 pF S.G. 50 Ω 0.1 µF 1000 pF LD/ fout DoIF VpIF PSIF VCCIF GNDIF XfinIF finIF GND OSCIN 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15 16 17 18 19 20 DoRF VpRF PSRF VCCRF GNDRF XfinRF finRF LE Data Clock 50 Ω 1000 pF Controller (divide ratio setting) 1000 pF VpRF 0.1 µF VCCRF 0.1 µF Note : Terminal number shows that of TSSOP-20. 14 50 Ω S.G. S.G. MB15F72SP ■ TYPICAL CHARACTERISTICS 1. fin input sensitivity RF-PLL input sensitivity - Input frequency Ta = +25 °C Input sensitivity PfinRF (dBm) 10 ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, 5 0 −5 SPEC −10 −15 −20 −25 −30 VCC = 2.4 V −35 VCC = 2.7 V −40 VCC = 3.0 V −45 VCC = 3.6 V −50 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Input frequency finRF (MHz) IF-PLL input sensitivity - Input frequency Ta = +25 °C 10 ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, Input sensitivity PfinIF (dBm) 5 0 −5 SPEC −10 −15 −20 −25 −30 VCC = 2.4 V −35 VCC = 2.7 V −40 VCC = 3.0 V −45 VCC = 3.6 V −50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 Input frequency finIF (MHz) 15 MB15F72SP 2. OSCIN input sensitivity ,,,, ,,,, Input sensitivity VOSC (dBm) 10 Input sensitivity vs Input frequency Ta = +25 °C SPEC 0 −10 −20 −30 VCC = 2.4 V −40 VCC = 2.7 V −50 VCC = 3.0 V VCC = 3.6 V −60 0 20 40 60 80 100 120 140 Input frequency fOSC (MHz) 16 160 180 200 220 MB15F72SP 3. RF-PLL Do output current • 1.5 mA mode Charge pump output current IDO (mA) IDO - VDO 10.0 Ta = +25 °C VCC = Vp = 2.7 V IDOL 0.0 IDOH −10.0 1.0 0.0 2.0 2.7 Charge pump output voltage VDO (V) • 6.0 mA mode Charge pump output current IDO (mA) IDO - VDO 10.0 Ta = +25 °C VCC = Vp = 2.7 V IDOL 0.0 IDOH −10.0 0.0 1.0 2.0 2.7 Charge pump output voltage VDO (V) 17 MB15F72SP 4. IF-PLL Do output current IDO − VDO • 1.5 mA mode Charge pump output current IDO (mA) 10.0 Ta = +25 °C VCC = Vp = 2.7 V IDOL 0.0 IDOH −10.0 0.0 1.0 2.0 2.7 Charge pump output voltage VDO (V) • 6.0 mA mode IDO − VDO Charge pump output current IDO (mA) 10.0 Ta = +25 °C VCC = Vp = 2.7 V IDOL 0.0 IDOH −10.0 0.0 1.0 2.0 Charge pump output voltage VDO (V) 18 2.7 MB15F72SP 5. fin input impedance finRF input impedance VCC = 2.7 V 1 : 266.06 Ω −661.69 Ω 100 MHz 2 : 21.406 Ω −146.27 Ω 500 MHz 3 : 11.1 Ω −62.982 Ω 1 GHz 1 4 : 10.35 Ω −38.861 Ω 1.3 GHz 2 4 3 START 100.000 000 MHz STOP 1 500.000 000 MHz finIF input impedance VCC = 2.7 V 1 : 712.91 Ω −967.81 Ω 50 MHz 2 : 251.59 Ω −650.97 Ω 100 MHz 3 : 40.648 Ω −241.14 Ω 300 MHz 1 2 4 START 50.000 000 MHz 4 : 20.391 Ω −141.98 Ω 500 MHz 3 STOP 500.000 000 MHz 19 MB15F72SP 6. OSCIN input impedance OSCIN input impedance VCC = 2.7 V 1 : 10.693 kΩ −11.664 kΩ 3 MHz 2 : 1.8725 kΩ −6.3285 kΩ 10 MHz 3 : 124.25 Ω −1.6726 kΩ 40 MHz 4 21 4 : 31.188 Ω 3 −664.28 Ω 100 MHz START 3.000 000 MHz 20 STOP 100.000 000 MHz MB15F72SP ■ REFERENCE INFORMATION (for Lock-up Time, Phase Noise and Reference Leakage) Test Circuit S.G. OSCIN LPF DO fin Spectrum Analyzer fVCO = 680 MHz KV = 50 MHz/V fr = 25 kHz fOSC = 14.4 MHz LPF VCC = 3.0 V VVCO = 2.2 V Ta = + 25 °C CP : 6 mA mode 1.0 kΩ VCO 2200 pF 2.2 kΩ 4700 pF 0.047 pF • PLL Reference Leakage ATTEN 10 dB RL 0 dBm VAVG 72 10 dB/ ∆MKR −73.67 dB 25.0 kHz ∆MKR 25.0 kHz −73.67 dB CENTER 680.0000 MHz RBW 1.0 kHz VBW 1.0 kHz SPAN 200.0 kHz SWP 500 ms • PLL Phase Noise ATTEN 10 dB RL 0 dBm VAVG 23 10 dB/ ∆MKR −55.00 dB 5.37 kHz ∆MKR 5.37 kHz −55.00 dB CENTER 680.0000 MHz RBW 100 Hz VBW 100 Hz SPAN 20.00 kHz SWP 1.60 s (Continued) 21 MB15F72SP (Continued) • PLL Lock Up time • PLL Lock Up time 755 MHz→680 MHz within ± 1 kHz Hch→Lch 1.133 ms 680 MHz→755 MHz within±1 kHz Lch→Hch 1.244 ms 755.004250 MHz 680.004000 MHz 755.000250 MHz 680.000000 MHz 754.996250 MHz −822 µs 9.178 ms 679.996000 MHz −822 µs 855.00 MHz 780.00 MHz 755.00 MHz 680.00 MHz 655.00 MHz 580.00 MHz −822 µs 22 4.178 ms 1.000 ms/div −822 µs 4.178 ms 1.000 ms/div 9.178 ms 4.178 ms 1.000 ms/div 9.178 ms 4.178 ms 1.000 ms/div 9.178 ms MB15F72SP ■ APPLICATION EXAMPLE VCO OUTPUT 2.7 V 1000 pF from controller LPF 2.7 V 1000 pF 0.1 µF 0.1 µF Clock Data LE finRF XfinRF GNDRF VCCRF PSRF VpRF DoRF 20 19 18 17 16 15 14 13 12 11 MB15F72SP 1 2 3 4 5 6 7 8 9 10 OSCIN GND finIF XfinIF GNDIF VCCIF PSIF VpIF DoIF LD/fout Lock Det. 1000 pF 1000 pF 2.7 V 2.7 V 1000 pF 0.1 µF 0.1 µF TCXO OUTPUT VCO LPF Notes : • Clock, Data, LE : Schmitt trigger circuit is provided(insert a pull-down or pull-up registor to prevent oscillation when open-circuit in the input). • Terminal number shows that of TSSOP-20. 23 MB15F72SP ■ USAGE PRECAUTIONS (1) VCCRF, VpRF, VCCIF and VpIF must equal equal voltage. Even if either RF-PLL or IF-PLL is not used, power must be supplied to both VCCRF, VpRF, VCCIF and VpIF to keep them equal. It is recommended that the non-use PLL is controlled by power saving function. (2) To protect against damage by electrostatic discharge, note the following handling precautions: -Store and transport devices in conductive containers. -Use properly grounded workstations, tools, and equipment. -Turn off power before inserting or removing this device into or from a socket. -Protect leads with conductive sheet, when transporting a board mounted device. ■ ORDERING INFORMATION Part number 24 Package MB15F72SPPFT 20-pin plastic TSSOP (FPT-20P-M06) MB15F72SPPV 20-pad plastic BCC (LCC-20P-M04) Remarks MB15F72SP ■ PACKAGE DIMENSIONS 20-pin plastic TSSOP (FPT-20P-M06) Note 1 ) * : These dimensions do not include resin protrusion. Note 2 ) Pins width and pins thickness include plating thickness. * 6.50±0.10(.256±.004) 0.17±0.05 (.007±.002) 11 20 * 4.40±0.10 6.40±0.20 (.173±.004) (.252±.008) INDEX Details of "A" part 1.05±0.05 (Mounting height) (.041±.002) LEAD No. 1 10 0.65(.026) "A" 0.24±0.08 (.009±.003) 0.13(.005) M 0~8° +0.03 (0.50(.020)) 0.10(.004) C 1999 FUJITSU LIMITED F20026S-2C-2 0.45/0.75 (.018/.030) +.001 0.07 –0.07 .003 –.003 (Stand off) 0.25(.010) Dimensions in mm (inches) (Continued) 25 MB15F72SP (Continued) 20-pad plastic BCC (LCC-20P-M04) 3.00(.118)TYP 3.60±0.10(.142±.004) 16 0.80(.031)MAX (Mounting height) 11 11 0.25±0.10 (.010±.004) 16 0.50(.020) TYP 0.25±0.10 (.010±.004) INDEX AREA 3.40±0.10 (.134±.004) 2.70(.106) TYP "D" "A" 1 6 "C" 6 Details of "A" part 0.50±0.10 (.020±.004) 1 0.50(.020) TYP 2.80(.110)REF 0.085±0.04 (.003±.002) (Stand off) 0.05(.002) "B" Details of "B" part 0.50±0.10 (.020±.004) Details of "C" part 0.50±0.10 (.020±.004) Details of "D" part 0.30±0.10 (.012±.004) C0.20(.008) 0.60±0.10 (.024±.004) C 26 1999 FUJITSU LIMITED C20055S-1C-1 0.30±0.10 (.012±.004) 0.60±0.10 (.024±.004) 0.40±0.10 (.016±.004) Dimensions in mm (inches) MB15F72SP FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ F0002 FUJITSU LIMITED Printed in Japan All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.