FUJITSU SEMICONDUCTOR DATA SHEET DS04-27220-2E ASSP For Power Supply Applications 6-ch DC/DC Converter IC With Synchronous Rectifier MB3825A ■ DESCRIPTION The MB3825A is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with synchronous rectification (2-channels) designed for low voltage, high efficiency operation in high precision and high frequency applications, ideal for down conversion. The MB3825A is an ideal device offering low power consumption, compact size and light weight for products such as self-contained camcorders and digital still cameras. ■ FEATURES • • • • • • • Synchronous rectification (channels 1 and 4) High efficiency drive with power-on output enhanced by built-in speed-up circuit Wide range of operating power supply voltage : 2.5 V to 12 V Built-in high-precision reference voltage generator : 1.5 V±1% Wide operating oscillator frequency range, high frequency capability : 50 kHz to 800 kHz Wide input voltage range (all channels) : 0 V to Vcc - 0.9 V Error amplifier output for soft start (channels 1, 2, 4) (All channels may be set for same soft start time regardless of duty factor setting.) ■ PACKAGE 64-pin, Plastic LQFP (FPT-64P-M03) MB3825A 2 OUT1-5 VCC (O) 4, 5, 6 VB4 GND (O) 4, 5, 6 OUT2-4 CB1-4 CB2-4 OUT1-4 OUT1-3 CB2-3 CB1-3 GND (O) 1, 2, 3 VB3 VCC (O) 2 OUT1-2 CB2-2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 ■ PIN ASSIGNMENT CB2-5 1 48 CB1-2 CB1-5 2 47 VB2 VB5 3 46 OUT1-1 OUT1-6 4 45 CB2-1 CB2-6 5 44 CB1-1 CB1-6 6 43 OUT2-1 VB6 7 42 VCC (O) 1, 3 OVP5, 6 8 41 VB1 IN (C) 6 9 40 IN (C) 1 +IN (E) 6 10 39 −IN (E) 1 −IN (E) 6 11 38 FB1 FB6 12 37 IN (C) 2 30 31 32 DTC3 FB3 27 VREF CTL1 26 CS 29 25 GND2 28 24 GND1 VCC 23 CTL2 22 CT CSCP 21 −IN (E) 3 20 IN (C) 3 33 RT 34 16 FB4 15 −IN (E) 5 19 +IN (E) 5 −IN (E) 4 FB2 18 −IN (E) 2 35 17 36 14 FB5 13 IN (C) 4 SCP IN (C) 5 MB3825A ■ PIN DESCRIPTION Pin No. CH 1 CH 2 CH 3 CH 4 Symbol I/O Descriptions 38 FB1 O Channel 1 error amplifier output pin. 39 –IN(E)1 I Channel 1 error amplifier inverted input pin. 40 IN(C)1 I Channel 1 short detection comparator input pin. 46 OUT1-1 O Channel 1 main side output pin. 43 OUT2-1 O Channel 1 synchronous rectifier side output pin. 44 CB1-1 — 45 CB2-1 — 41 VB1 — Channel 1 output sink current setting pin. 35 FB2 O Channel 2 error amplifier output pin. 36 –IN(E)2 I Channel 2 error amplifier inverted input pin. 37 IN(C)2 I Channel 2 short detection comparator input pin. 50 OUT1-2 O Channel 2 output pin. 48 CB1-2 — 49 CB2-2 — 47 VB2 — Channel 2 output sink current setting pin. 32 FB3 O Channel 3 error amplifier output pin. 33 –IN(E)3 I Channel 3 error amplifier inverted input pin. 34 IN(C)3 I Channel 3 short detection comparator input pin. 56 OUT1-3 O Channel 3 output pin. 54 CB1-3 — 55 CB2-3 — 52 VB3 — 31 DTC3 I Channel 3 dead time control pin. 20 FB4 O Channel 4 error amplifier output pin. 19 –IN(E)4 I Channel 4 error amplifier inverted input pin. 18 IN(C)4 I Channel 4 short detection comparator input pin. 57 OUT1-4 O Channel 4 main side output pin. 60 OUT2-4 O Channel 4 synchronous rectifier side output pin. 59 CB1-4 — 58 CB2-4 — 62 VB4 — Channel 1 boot capacitor connection pin. Channel 2 boot capacitor connection pin. Channel 3 boot capacitor connection pin. Channel 3 output sink current setting pin. Channel 4 boot capacitor connection pin. Channel 4 output sink current setting pin. (Continued) 3 MB3825A (Continued) Pin No. CH 5 Control Circuit Triangular-Wave Oscillator Circuit CH 6 Symbol I/O Descriptions 17 FB5 O Channel 5 error amplifier output pin. 16 –IN(E)5 I Channel 5 error amplifier inverted input pin. 15 +IN(E)5 I Channel 5 error amplifier non-inverted input pin. 14 IN(C)5 I Channel 5 short detection comparator input pin. 64 OUT1-5 O Channel 5 output pin. 2 CB1-5 — 1 CB2-5 — 3 VB5 — 8 OVP5,6 I Channel 5, 6 output maximum voltage setting pin. 12 FB6 O Channel 6 error amplifier output pin. 11 –IN(E)6 I Channel 6 error amplifier inverted input pin. 10 +IN(E)6 I Channel 6 error amplifier non-inverted input pin. 9 IN(C)6 I Channel 6 short detection comparator input pin. 4 OUT1-6 O Channel 6 output pin. 6 CB1-6 — 5 CB2-6 — 7 VB6 — 8 OVP5,6 I 21 RT — Triangular wave frequency setting resistor connection pin. 22 CT — Triangular wave frequency setting capacitor connection pin. 30 CTL1 I Power supply control circuit. “H” level: Power supply operating mode “L” level: Standby mode Channel 5 boot capacitor connection pin. Channel 5 output sink current setting pin. Channel 6 boot capacitor connection pin. Channel 6 output sink current setting pin. Channel 5, 6 output maximum voltage setting pin. 29 CTL2 I Channel 3 control circuit. When CTL1 pin is “H” level “H” level: Channel 3 in operating mode “L” level: Channel 3 in OFF mode 13 SCP I Short detection comparator input pin. 23 CSCP — Short protection circuit capacitor connection pin. 26 CS — Soft start circuit capacitor connection pin. (Continued) 4 MB3825A (Continued) Power Supply Circuit Pin No. Symbol I/O Description 28 VCC — Reference voltage and control circuit power supply pin. 42 VCC(O)1,3 — Output circuit power supply pin (Channel 1, 3). 51 VCC(O)2 — Output circuit power supply pin (Channel 2). 63 VCC(O)4,5,6 — Output circuit power supply pin (Channel 4,5,6). 27 VREF O Reference voltage output pin. 24 GND1 — Ground pin. 25 GND2 — Ground pin. 53 GND(O)1,2,3 — Output circuit ground pin (Channel 1,2,3). 61 GND(O)4,5,6 — Output circuit ground pin (Channel 4,5,6). 5 MB3825A ■ BLOCK DIAGRAM • General view VCC(O)1, 3 42 CB1-1 44 < CH1> FB1 38 Error Amp.1 − + + 39 −IN(E)1 PWM Comp.1-1 + 45 CB2-1 Drive 1-1 − 1.5 V 46 OUT1-1 41 70 mV − 40 IN(C)1 + VB1 + SCP Comp.1 Drive 1-2 − 43 OUT2-1 PWM Comp.1-2 1.5 V A VCC(O)2 51 CB1-2 48 <CH2> FB2 35 Error Amp.2 − + + 36 −IN(E)2 PWM Comp.2 49 + CB2-2 Drive 2 − 50 OUT1-2 1.5 V 47 VB2 SCP Comp.2 − 37 IN(C)2 + 1.5 V <CH3> FB3 32 CB1-3 Error Amp.3 − 33 −IN(E)3 54 PWM Comp.3 55 + + − + Drive 3 CB2-3 56 OUT1-3 1.5 V 52 CTL2 VB3 29 IN(C)3 − 34 + SCP Comp.3 1.5 V DTC3 GND(O)1, 2, 3 53 31 VCC(O)4, 5, 6 <CH4> CB1-4 Error Amp.4 − + + 19 −IN(E)4 59 PWM Comp.4-1 58 + Drive 4-1 − 1.5 V SCP Comp.4 − 18 + CB2-4 57 OUT1-4 70 mV IN(C)4 B 63 FB4 20 62 VB4 + Drive 4-2 − 60 OUT2-4 PWM Comp.4-2 1.5 V <CH5> FB5 17 Error Amp.5 − + + 16 −IN(E)5 CB1-5 2 PWM Comp.5 + 1 Drive 5 − CB2-5 64 OUT1-5 3 14 − 15 + VB5 SCP Comp.5 0.6 V IN(C)5 +IN(E)5 <CH6> FB6 12 − + + 11 −IN(E)6 CB1-6 6 PWM Comp.6 Error Amp.6 5 + Drive 6 − CB2-6 4 OUT1-6 7 0.6 V IN(C)6 +IN(E)6 9 − 10 + VB6 SCP Comp.6 GND(O)4, 5, 6 61 OVP5, 6 8 SCP Comp. − 13 SCP VCC Comp. + 1.5 V − − − + 0.65 V 1 µA CS 26 Buff Soft Start Comp. 1 µA CSCP 23 −1.35V −0.65V −1.35V −0.65V − + 1.5 V SCP UVLO OSC Ref 1.5 V 21 22 27 RT CT VREF 6 VCC 28 Power ON/OFF 25 24 GND1 GND2 CTL1 30 C MB3825A • Enlarged view of A < CH1> FB1 38 39 −IN(E)1 − + + Error Amp.1 + PWM Comp.1-1 − 1.5 V 45 CB2-1 Drive 1-1 40 IN(C)1 − + 46 OUT1-1 41 70 mV SCP Comp.1 VCC(O)1, 3 42 CB1-1 44 VB1 + − Drive 1-2 43 OUT2-1 PWM Comp.1-2 1.5 V <CH2> FB2 35 36 −IN(E)2 − + + Error Amp.2 PWM Comp.2 49 + − VCC(O)2 51 CB1-2 48 CB2-2 Drive 2 50 OUT1-2 1.5 V 47 IN(C)2 37 − SCP Comp.2 VB2 + 1.5 V 7 MB3825A • Enlarged view of B <CH3> FB3 32 CB1-3 − 33 −IN(E)3 Error Amp.3 + + − + 54 PWM Comp.3 55 Drive 3 CB2-3 56 OUT1-3 1.5 V 52 CTL2 VB3 29 IN(C)3 34 − + 1.5 V DTC3 SCP Comp.3 GND(O)1, 2, 3 53 31 <CH4> FB4 20 19 −IN(E)4 CB1-4 − + + Error Amp.4 59 PWM Comp.4-1 58 + − 1.5 V Drive 4-1 70 mV IN(C)4 18 − SCP Comp.4 + 1.5 V 8 VCC(O)4, 5, 6 63 OUT1-4 62 + − PWM Comp.4-2 CB2-4 57 VB4 Drive 4-2 60 OUT2-4 MB3825A • Enlarged view of C <CH5> FB5 17 Error Amp.5 − + + 16 −IN(E)5 CB1-5 2 PWM Comp.5 + 1 Drive 5 − CB2-5 64 OUT1-5 3 14 − 15 + VB5 SCP Comp.5 0.6 V IN(C)5 +IN(E)5 <CH6> FB6 12 − + + 11 −IN(E)6 CB1-6 6 PWM Comp.6 Error Amp.6 5 + Drive 6 − CB2-6 4 OUT1-6 7 0.6 V IN(C)6 +IN(E)6 9 − 10 + VB6 SCP Comp.6 GND(O)4, 5, 6 61 OVP5, 6 8 SCP Comp. − 13 SCP VCC Comp. + 1.5 V − − − + 0.65 V 1 µA CS 26 Buff Soft Start Comp. 1 µA CSCP 23 −1.35V −0.65V −1.35V −0.65V − + 1.5 V SCP VCC 28 UVLO OSC 21 RT Ref 1.5 V 22 27 CT VREF Power ON/OFF CTL1 30 25 24 GND1 GND2 9 MB3825A ■ ABSOLUTE MAXIMUM RAGINGS Parameter Power supply voltage Symbol Conditions VCC — Rating Unit Min. Max. — 17 V Output current Io OUT pin — 50 mA Output peak current Io OUT pin, Duty ≤ 5% — 200 mA Power dissipation PD Ta ≤ +25°C — 800* mW Storage temperature Tstg −55 +125 °C — *: The packages are mounted on the epoxy board (10 cm × 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Conditions Power supply voltage VCC Reference voltage output current Value Unit Min. Typ. Max. — 2.5 6.0 12 V IOR — –1 — 0 mA Input voltage VIN -IN(E),IN(C),OVP pin 0 — VCC – 0.9 V Control input voltage VCTL CTL pin 0 — 12 V Main side OUT pin 2 — 20 mA Output current IO Output current setting resistor RB — 2.7 5.6 30 kΩ Oscillator frequency fOSC — 50 500 800 kHz Timing capacitor CT — 50 100 1500 pF Timing resistor RT — 20 39 82 kΩ Soft-start capacitor CS — — 0.1 1.0 µF CSCP — — 0.1 1.0 µF Ta — –30 +25 +85 °C Short detection capacitor Operating ambient temperature WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 10 MB3825A ■ ELECTRICAL CHARACTERISTICS (VCC = VCC(O) = +6 V, Ta = +25°C) Conditions Reference voltage VREF 27 — Output voltage temperature stability ∆VREF /VREF 27 Input stability Line Load stability Value Unit Typ. Max. 1.485 1.500 1.515 V Ta = –30°C to +85°C — 0.5* — % 27 VCC = 2.5 V to 12 V — 2 10 mV Load 27 VREF = 0 mA to –1 mA — 2 10 mV Short-circuit output current IOS 27 VREF = 2 V –10 –6 –1 mA Threshold voltage VTH 46 VCC = — 2.1 — V Hysteresis width VH 46 — — 0.1 — V Reset voltage VRST 46 — 1.8 2.0 — V Input standby voltage VSTB 26 — — 50 100 mV Charge current ICS 26 — –1.4 –1.0 –0.6 µA Threshold voltage VTH 23 — 0.65 0.70 0.75 V Input standby voltage VSTB 23 — — 50 100 mV VI 23 — — 50 100 mV Input source current ICSCP 23 — –1.4 –1.0 –0.6 µA Oscillator frequency fOSC 46,50,56, CT = 100 pF, 57,64,4 RT = 39 kΩ 450 500 550 kHz Under voltage lockout protection circuit block(U.V.L.O) Reference voltage block Min. Soft-start block Pin No. Short circuit detection block Symbol Triangular wave oscillator block Parameter Input latch voltage Frequency stability for voltage ∆f/fdv 46,50,56, VCC = 2.5 V to 12 V 57,64,4 — 1 10 % Frequency stability for temperature ∆f/fdt 46,50,56, Ta = –30°C to +85°C 57,64,4 — 1* — % *: Standard design value. (Continued) 11 MB3825A (Continued) (VCC = VCC(O) = +6 V, Ta = +25°C) Error amplifier bolck (CH5, CH6) Error amplifier block (CH1 to CH4) Parameter Conditions Threshold voltage VTH 38,35, FB = 1.0 V 32,20 VT temperature stability ∆VT /VT 38,35, Ta = –30°C to +85°C 32,20 Value Unit Min. Typ. Max. 1.45 1.50 1.55 V — 0.5* — % –200 –20 — nA Input bias current IB 39,36, −IN = 0 V 33,19 Voltage gain AV 38,35, DC 32,20 60 75 — dB Frequency bandwidth BW 38,35, AV = 0 dB 32,20 — 1.0* — MHz VOM+ 38,35, 32,20 — 1.45 1.55 — V VOM− 38,35, 32,20 — — 20 200 mV — –2.0 –0.6 mA Maximum output voltage width Output source current IO− 38,35, FB = 1.0 V 32,20 Output sink current IO+ 38,35, FB = 1.0 V (CH1,CH4) 32,20 FB = 1.0 V (CH2,CH3) 60 120 — µA 60 130 — µA Input offset voltage VIO 17,12 FB = 1.0 V –1 9 19 mV VT temperature stability ∆VT /VT 17,12 Ta = –30°C to +85°C — 0.5* — % 15,10 +IN = 0 V, +IN(E) pin –400 –40 — nA 16,11 −IN = 0 V, −IN(E) pin –200 –20 — nA 8 OVP = 0 V, OVP pin –400 –40 — nA 0 — VCC–0.9 V Input bias current IB Common mode input voltage range VCM 17,12 Voltage gain AV 17,12 DC 60 75 — dB Frequency bandwidth BW 17,12 AV = 0 dB — 1.0* — MHz + OM 17,12 — 1.45 1.55 — V VOM− 17,12 — — 20 200 mV Maximum output voltage width V — IO − 17,12 FB = 1.0 V — –2.0 –0.6 mA Output sink current IO + 17,12 FB = 1.0 V 60 130 — µA Threshold voltage VTH 1.45 1.50 1.55 V Input bias current IB –200 –20 — nA Output source current SCP Comp. block (CH1 to CH4, SCP) Symbol Pin No 46,50, 56,57 — 40,37, IN(C) = SCP = 0 V 34,18,13 *: Standard design value. (Continued) 12 MB3825A (Continued) (VCC = VCC(O) = +6 V, Ta = +25°C) VCC Comp. block Control block Synchronous rectifier side output block (CH1, CH4) (Drive-2) Main side output block (CH1 to CH6) (Drive-1) Dead time control block (CH3) (DTC pin) PWM Comp. block (CH1 to CH6) SCP Comp. block (CH5, CH6) Parameter Symbol Pin No. Input offset voltage VIO 64,4 Input bias current IIN+ 14,9 Common mode input voltage range VCM 64,4 VT0 Threshold voltage VT100 Conditions — IN(C) = 0 V — 46,50, 56,57, Duty cycle = 0 % 64,4 46,50, 56,57, Duty cycle = 100 % 64,4 Value Unit Min. Typ. Max. 0.55 0.60 0.65 V –400 –40 — nA 0 — VCC–0.9 V 0.55 0.65 — V — 1.35 1.45 V IB 31 DTC = 0.4 V –1.0 –0.2 — µA Sink current at CTL2 = “L” IIDTC 31 DTC = 1.5 V CTL2 = 0 V 80 500 — µA Input voltage at CTL2 = “L” VIDTC 31 IDTC = 40 µA CTL2 = 0 V — 0.2 0.3 V Input bias current Output source current IO− 46,50, 56,57, Duty cycle ≤ 5 % 64,4 — –100 — mA Output sink current IO+ 46,50, 56,57, RB = 5.6 kΩ 64,4 7 10 13 mA Output source current IO− 43,60 Duty cycle ≤ 5 %, VO = 2 V — –70 — mA Output sink current IO+ 43,60 Duty cycle ≤ 5 %, VO = 1 V — 70 — mA VOH 43,60 — 3.5 4.0 — V VOL 43,60 — — 0 0.1 V VON 27 IC active mode 2.1 — 12 V VOFF 27 IC standby mode 0 — 0.7 V Input current ICTL 30 CTL = 5 V — 100 200 µA Threshold voltage VTH 46,50, 56 VCC – 0.70 VCC – 0.65 VCC – 0.60 V Output voltage CTL input condition — *: Standard design value. (Continued) 13 MB3825A (Continued) (VCC = VCC(O) = +6 V, Ta = +25°C) Parameter Symbol Pin No. General ICCS Standby current ICCS(O) Power supply current *: Standard design value. 14 ICC Conditions Value Unit Min. Typ. Max. — — 10 µA 42,51, VCC(O) pin, CTL = 0V 63 — — 10 µA 28,42, 51,63 — 6.3 9.0 mA 28 VCC pin, CTL = 0V — MB3825A ■ TYPICAL CHARACTERISTICS Reference voltage vs. power supply voltage 2.5 10.0 Ta = +25 °C VCTL1, 2 = 6 V Reference voltage VREF (V) Power supply current ICC (mA) Power supply current vs. power supply voltage 8.0 6.0 4.0 2.0 5 10 15 1.5 1.0 0.5 20 0 Power supply voltage VCC (V) 5 10 15 20 Power supply voltage VCC (V) Reference voltage vs. ambient temperature Reference voltage vs. power supply voltage 1.55 Ta = +25 °C VCC = 6 V 1.54 VCTL1, 2 = 6 V IO = 0 mA 1.53 Reference voltage VREF (V) Reference voltage VREF (V) 2.0 0.0 0.0 0 2.5 Ta = +25 °C 2.0 1.5 1.0 0.5 1.52 1.51 1.50 1.49 1.48 1.47 1.46 0.0 0 1 2 3 4 5 1.45 −50 Power supply voltage VCC (V) 500 Ta = +25 °C VCC = 6 V Control current ICTL1 (µA) Reference voltage VREF (V) 2.0 1.5 1.0 0.5 0 1 2 3 Control voltage VCTL1 (V) 4 0 25 50 75 100 Ambient temperature Ta (°C) Control current vs. control voltage Reference voltage vs. control voltage 0.0 −25 5 Ta = +25 °C VCC = 6 V 400 300 200 100 0 0 5 10 15 20 Control voltage VCTL1 (V) (Continued) 15 MB3825A (Continued) Triangular wave upper and lower limit voltage vs. timing capacitor Control current vs. control voltage Ta = +25 °C VCC = 6 V VCTL1 = 6 V 400 300 200 100 0 0 1.6 Triangular wave upper and lower limit voltage VCT (V) Control current ICTL2 (µA) 500 5 10 15 Ta = +25 °C VCC = 6.0 V RT = 39 kΩ 1.2 1.0 10 1 0 10 102 103 104 Timing capacitor CT (pF) 10 k 1k 1k −5 −10 −15 −50 −25 0 25 50 75 Ambient temperature Ta (°C) 100 10 k 100 k 1M Timing resistor RT (Ω) Triangular wave upper and lower limit voltage vs. ambient temperature 1.6 0 CT = 1500 pF 100 k 1.7 5 104 Ta = +25 °C VCC = 6.0 V CT = 47 pF CT = 100 pF CT = 150 pF CT = 300 pF 1M 15 VCC = 6.0 V CT = 100 pF 10 RT = 39 kΩ 103 10 M Triangular wave upper and lower limit voltage VCT (V) Triangular wave frequency stability (%) Triangular wave frequency stability vs. ambient temperature 102 Timing capacitor CT (pF) Oscillator frequency vs. timing resistor CT1,CT2 oscillator frequency fOSC (Hz) Triangular wave time (µs) Ta = +25 °C VCC = 6 V RT = 39 kΩ Lower 0.8 10 20 Control voltage VCTL2 (V) Triangular wave time vs. timing capacitor 100 Upper 1.4 1.5 VCC = 6.0 V RT = 39 kΩ CT = 100 pF upper 1.4 1.3 1.2 1.1 1.0 0.9 lower 0.8 0.7 −50 −25 0 25 50 75 100 Ambient temperature Ta (°C) (Continued) 16 MB3825A (Continued) Duty vs. oscillator frequency (ch1) Duty vs. oscillator frequency (ch4) 100 100 70 70 Ta = +25 °C 90 VCC = 6.0 V VFB = 1.0 V 80 Duty Dtr (%) Duty Dtr (%) Ta = +25 °C 90 VCC = 6.0 V VFB = 1.0 V 80 60 50 40 30 60 50 40 30 20 20 10 10 0 1k 10 k 100 k 1M 10 M Oscillator frequency fOSC (Hz) 0 1k 10 k 100 k 1M 10 M Oscillator frequency fOSC (Hz) Output sink current vs. output sink current setting resistor Output sink current IO (mA) 20 Ta = +25 °C VCC = 6.0 V 18 16 14 12 10 8 6 4 2 0 0 5 10 15 20 25 30 Output sink current setting resistor RB (kΩ) (Continued) 17 MB3825A (Continued) Error amplifier gain and phase vs. frequency (ch1) Ta = +25 °C 180 VCC = 6 V 20 90 φ AV 0 0 −20 −90 −40 −180 1k 10 k 100 k 1M 4.7 kΩ Phase φ (deg) Gain AV (dB) 40 240 kΩ − + 2.4 kΩ IN 10 µF VREF CS 4.7 kΩ 39 26 − + + 38 OUT 10 M Frequency f (Hz) Error amplifier gain and phase vs. frequency (ch5) Ta = +25 °C 40 180 90 φ AV 0 0 −20 −90 −40 −180 1k 10 k 100 k 1M Phase φ (deg) Gain AV (dB) 3V 20 4.7 kΩ IN − + 4.7 kΩ 2.4 kΩ 10 µF 4.7 kΩ 4.7 kΩ 1M Frequency f (Hz) Power dissipation vs. ambient temperature Power dissipation PD (mW) 1000 800 600 400 200 0 −50 −25 0 25 50 75 Ambient temperature Ta (°C) 18 100 VCC = 6 V 240 kΩ 16 − 15 + 8 + 6V 17 OUT MB3825A ■ FUNCTIONAL DESCRIPTION 1. Switching Regulator Function (1) Reference voltage circuit The reference voltage circuit generates a temperature-compensated reference voltage (=: 1.500 V) using the voltage supplied from the power supply terminal (pin 28). This voltage is used as the reference voltage for the internal circuits of the IC. The reference voltage of up to 1mA can also be supplied to an external device from the VREF terminal (pin 27). (2) Triangular-wave oscillator circuit By connecting a timing capacitor and a resistor to the CT (pin 22) and the RT (pin 21) terminals, it is possible to generate any desired triangular oscillator waveform (CT : amplitude 1.0V to 1.4V, CT1 : amplitude 0.65V to 1.35V in phase with CT1, and CT2 : amplitude 0.65V to 1.35V in inverse phase with CT). The triangular wave is input to CT1, CT2 and the PWM comparator within the IC. (3) Error amplifier This amplifier detects the output voltage of the switching regulator and outputs a PWM control signal accordingly. It has a wide common-mode input voltage range from 0 V to VCC –0.9 V on channels 5 and 6 allows easy setting from an external power supply, making the system suitable for DC motor speed control. By connecting a feedback resistor and capacitor from the error amplifier output pin to the inverted input pin, you can form any desired loop gain, for stable phase compensation. (4) PWM comparator The PWM comparators in these channels are a voltage comparator with one inverted input and one non-inverted input (channels 1, 2, 4, 5, 6) as well as one inverted input and two non-inverted inputs (channel 3), and voltage pulse width modifier to control output duty according to input voltage. In the interval when the error amplifier output voltage is higher than the triangular waveform, the output transistor is turned on (channels 1, 2, 4, 5, 6). In the interval when the error amplifier output voltage is lower than the triangular waveform, the output transistor is turned on (channel 1,4 synchronous rectifier side). In the interval when the error amplifier output voltage and DTC3 voltage are higher than the triangular waveform, the output transistor is switched on (channel 3). (5) Output circuit The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier side, and can drive an external PNP transistor (main side) or N-ch MOSFET (synchronous rectifier side). Sink current (on the main side) can be set up to 20 mA depending on the resistance of the VB pin. 2. Channel Control Function Channel on and off levels are dependent on the voltage levels of the CTL1 terminal (pin 30) and CTL 2 terminal (pin 29). Table 1 Channel by Channel On/Off Setting Conditions. CTL pin voltage level CTL1 CTL2 L X H L H On/Off state of channel Power supply circuit Channel 1 Channel 2 Channel 4 Channel 5 Channel 6 Channel 3 OFF (standby mode)* ON OFF ON *: The power supply current in standby mode is 10 µA or less. 19 MB3825A 3. Protective Functions (1) Timer-latch short-circuit protection circuit The short detection comparator in each channel detects the output voltage level, and when any channel output voltage falls below the short detection voltage, or the SCP terminal (pin 13) voltage falls below the reference voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 23) starts charging. When the capacitor charge reaches approximately 0.7 V, the output transistor is turned off and the idle interval becomes 100%. When actuated, this protection circuit can be reset by turning on the power supply again.(See “METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT”.) (2) Under voltage lockout protection circuit A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. By detecting the internal reference voltage with respect to the power supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100 %, while at the same time holding the CSCP terminal (pin 23) at the “L”. The reset is cleared when the power supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit. (3) Output Supply Monitor Comparator (Vcc Comp.) The output supply monitor comparator compares the output circuit power supply (VCC(O)1, 3,VCC(O)2, VCC(O) 4, 5, 6) to the VCC level, and operates the timer-latch short protection circuit if any of the output circuit power supplies fall below Vcc –0.65V. 20 MB3825A ■ METHODS OF SETTING THE OUTPUT VOLTAGE Figure 1. CH1 to CH4 VO VO = R1 VO > R2 − + + 39 R3 −IN (E) 1 1.5 V (R1 + R2 + R3) R3 1.5 V R2 + R3 (R1 + R2 + R3) Error Amp.1 1.5 V − 40 IN (C) 1 SCP Comp.1 + 1.5 V Figure 2. CH5 and CH6 VO FB5 VO = 17 R1 − + + 16 R2 −IN (E)5 Error Amp.5 V+IN (E) 5 (R1 + R2) R2 VOVP5, 6 > V+IN (E) 5 VO = VOVP5, 6 (R1 + R2) R2 VOVP5, 6 < V+IN (E) 5 IN (C) 5 Motor control signal 0.6 V 14 − 15 + SCP Comp.5 +IN (E) 5 8 OVP5, 6 21 MB3825A ■ METHOD OF SETTING THE OUTPUT CURRENT Figure 3 shows the configuration of the output circuits, and Figure 4 illustrates how the sink current value of the output current waveform has a constant current setting. Note that the sink current is set by the following formula • Sink current = (VB/RB) × 60 =: 56/RB [A] Figure 3. Output circuit (main side) External PNP transistor VB RB VB VCC(O) Output ON base current speed-up 100 kΩ Source current CB1 OUT1 10 kΩ To PWM comparator Output OFF driver CB2 Sink current × 60 ×1 GND (O) Figure 4. Output current waveform Speed-up current Sink current Output current 0 Source current (peak) t 22 MB3825A Precautions: Output current setting resistance RB1 to RB6 should be connected to each channel as shown in Figure 5 below. • For channel 1 and 3, connect the respective VB terminals to VCC(O) 1, 3 through the setting resistor RB. • For channel 2, connect the VB2 terminal to VCC(O)2 through setting resistor RB2. • For channels 4 to 6, connect the respective VB terminals to VCC(O)4, 5, 6 through setting resistor RB. Figure 5. Output sink current setting pin connections VCC(O) 1, 3 VB1 RB1 VB3 RB3 VCC(O) 2 MB3825A VB2 RB2 VCC(O) 4, 5, 6 VB4 RB4 VB5 RB5 VB6 RB6 23 MB3825A ■ METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT The short detection comparator (SCP comparator) in each of the channels constantly compares the error amplifier output level to the reference voltage and the SCP terminal (pin 13). While the switching regulator load conditions are stable on all channels, or when the voltage level at the SCP terminal is higher than the reference voltage, the short detection comparator output remains at “L” level, transistor Q3 is turned on, and the CSCP terminal (pin 23) is held at input standby voltage (VSTB =: 50mV). If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if the voltage at the SCP terminal falls below the reference voltage level, the output from the short detection comparator on the corresponding channel or the input at the SCP pin goes to “H” level. This causes transistor Q3 to turn off and the external short protection capacitor CSCP connected to the CSCP terminal to charge at 1.0 µA. Short Detection Time (tPE) tPE(sec) =: 0.7 × CSCP (µF) When the capacitor CSCP is charged to the threshold voltage VTH =: 0.7 V the SR latch is set, and the external PNP is turned off (inactive interval is set to 100%). At this point the SR latch input is closed and the CSCP pin is held at input latch voltage (VI =: 50 mV). External PNP transistor Figure 6. Protection timer-latch short protection circuit A R1 − 40 R2 SCP Comp.1 IN (C) 1 Output stage 46 Output stage 43 OUT1-1 + 1.5 V R3 − 13 SCP SCP Comp. OUT2-1 + Output stage 1.5 V 1 µA 56 OUT1-3 CS Buff 26 Q2 Soft Start Comp. Output stage − + 1 µA CSCP 24 bias bias S CSCP Q1 29 CTL2 1.5 V 23 Q3 R Timer-latch short circuit protection circuit 4 OUT1-6 28 VCC UVLO Ref Power ON/OFF 30 CTL1 27 VREF MB3825A ■ TREATMENT WITHOUT USING CSCP When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 23) to GND with the shortest distance. Figure 7. Treatment when not using CSCP 23 CSCP 24 GND1 25 GND2 25 MB3825A ■ METHOD OF SETTING SOFT START TIME • Channels 1, 2, 4 To provide a soft start by preventing current surges at power-on, soft start capacitor (Cs) can be connected to the CS terminal (pin 26). When the IC is started (when the CTL1 terminal (pin 30) goes to “H” level, and Vcc ≥ UVLO threshold voltage), transistors Q2 switches off and the CS terminal begins charging the external soft start capacitors (Cs) at 1.0 µA. The error amplifier makes a soft start in a proportion to the output voltage to the CS teminal voltage regardless of the load current on the DC/DC converter. Note that the soft start time can be calculated by the following formula. Soft start time (output rise time) tS(sec) =: 1.5 × CS (µF) Figure 8. Soft start circuit External PNP transistor A FB1 38 R1 − + + 39 −IN (E )1 R2 Error Amp.1 Output stage 46 Output stage 43 1.5 V R3 Output stage 1 µA OUT1-1 OUT2-1 56 OUT1-3 CS 26 CS Buff Q2 Soft Start Comp. − Output stage + 1 µA CSCP 29 1.5 V SCP Q1 CTL2 28 VCC bias 23 CSCP 4 OUT1-6 UVLO Ref Power ON/OFF 30 CTL1 27 VREF 26 MB3825A • Channel 3 The capacitor CDTC3 is placed between the DTC3 terminal (pin 31) and GND, so that when the CTL2 terminal (pin 29) goes from “L” to “H” level, the transistor Q4 is turned off and the output voltage is in proportion to the DTC3 terminal voltage providing the soft start operation. As the short detection function is not turned off during soft start operation, this setting should be made under the following condition. Channel 3 soft start circuit time < Short detection time Figure 9. Channel 3 soft start circuit A External PNP transistor FB3 32 − 33 −IN (E) 3 Error Amp.3 + + − + PWM Comp.3 Output stage OUT1-3 1.5 V H:ON (CH3) CTL2 L:OFF 29 34 56 Q4 − IN (C) 3 + To VREF 1.5 V Ra SCP Comp.3 DTC3 34 Rb CDTC3 To CT1 To CSP To UVLO 27 MB3825A ■ PROCESSING WITHOUT USING CS PIN If the soft start function is not used, the CS terminal (pin 26) for channels 1, 2, and 4 should be left open. For channel 3, connect the DTC3 terminal (pin 31) to the VREF terminal (pin 27). Figure 10. When no soft start time is set (1,2,4 channel) Open 26 CS Figure 11. When no soft start time is set (3 channel) 27 VREF 31 DTC3 28 MB3825A ■ METHOD OF SETTING THE DEAD TIME When the device is set for step-up inverted output based on the flyback method, the output transistor is fixed to full-on state (ON-duty = 100 %) at power switch-on.To prevent this problem, you may determine the voltages on the DTC3 terminal (pin 31) from the VREF voltage so you can easily set the output transistor’s dead time (maximum ONduty) independently for each channel as shown Figure.12. When the voltage on the DTC3 terminal is lower than the triangular-wave (CT1) output voltage from the oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude =: 0.7 V and triangular-wave maximum voltage =: 1.35 V is given below. Duty (ON) MAX =: Vdt – 0.65 × 100 [%] 0.7 When you do not use this DTC3 terminal, connect then to VREF terminal (pin 27) as shown Figure.13.. Figure 12. When using DTC to set dead time 27 VREF Ra 31 DTC3 Vdt Rb Figure 13. When not using DTC to set dead time 27 VREF 31 DTC3 29 MB3825A ■ APPLICATION EXAMPLE • General view VFB1 VOUT1-1 VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 < CH1> 13.5 kΩ 3.5 kΩ V C1 10 µH 4.7 µF A FB1 38 0.033 µF PWM Comp.1-1 Error Amp.1 − + + 39 −IN(E)1 15 kΩ + Drive 1-1 − 1.5 V 46 OUT1-1 + Drive 1-2 − OUT2-1 VOUT2-1 10 µH 4.7 µF B 12 kΩ VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2 <CH2> 0.033 µF FB2 35 15 kΩ Error Amp.2 − + + 36 −IN(E)2 30Ω 43 PWM Comp.1-2 1.5 V 23.5 kΩ 6.8 µF U1FWJ44N 22 kΩ VB1 + SCP Comp.1 − 2SK2316 VO1 VO1(3.2 V) 41 70 mV 40 IN(C)1 FMMT717 A 68 µH PWM Comp.2 − Drive 2 + FMMT717 B VO2(5.05 V) A 33 µH 6.8 µF U1FWJ44N 50Ω 50 OUT1-2 1.5 V 22 kΩ 47 VB2 IN(C)2 SCP Amp.2 − 37 + 1.5 V C C <CH3> 42.5 kΩ 2.5 kΩ 0.033 µF FB3 32 CB1-3 Error Amp.3 − 33 −IN(E)3 5 kΩ PWM Comp.3 Drive 3 2.2 µF CB2-3 750Ω 56 OUT1-3 22 kΩ 1.5 V 52 CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3 30 kΩ VO3(15 V) 1SS196 560 pF 55 + + − + 2SB1121 54 VB3 − + SCP Comp.3 1.5 V DTC3 GND(O)1, 2, 3 53 31 B 120 kΩ 10 µH D VCC(O)4, 5, 6 <CH4> 13.5 kΩ 7.5 kΩ 0.033 µF 9.3 kΩ 63 FB4 20 CB1-4 Error Amp.4 − + + 19 −IN(E)4 IN(C)4 − 18 Drive 4-1 CB2-4 VO4(4.89 V) 33 µH 6.8 µF 57 2SK2316 OUT1-4 22 kΩ 70mV + D 560 pF 58 − SCP Comp.4 FMMT717 59 PWM Comp.4-1 + 1.5 V 4.7 µF U1FWJ44N 50Ω 62 + VB4 Drive 4-2 − 60 OUT2-4 PWM Comp.4-2 1.5 V E E 30 kΩ 0.033 µF <CH5> FB5 17 − + + 16 −IN(E)5 15 kΩ Error Amp.5 CB1-5 2 PWM Comp.5 FMMT717 560 pF 1 + Drive 5 − VO5(4.5 V) 47 µH 2.2 µF CB2-5 U1FWJ44N 100Ω 64 OUT1-5 22 kΩ 3 0.6 V IN(C)5 14 − 15 +IN(E)5 + VB5 SCP Comp.5 VIN (6V) F F 30 kΩ 0.033 µF − + + 11 −IN(E)6 15 kΩ VO6(4.5 V) <CH6> FB6 12 PWM Comp.6 Error Amp.6 FMMT717 CB1-6 6 560 pF 5 + Drive 6 − 47 µH 2.2 µF CB2-6 U1FWJ44N 100Ω 4 OUT1-6 22 kΩ 7 0.6 V IN(C)6 +IN(E)6 9 − 10 + C VB6 SCP Comp.6 GND(O)4, 5, 6 61 OVP5, 6 8 Over voltage threshold setting voltage − 13 SCP SCP Comp. VCC Comp. + 1.5 V FMMT717 : ZETEX plc. − − − + 2SB1121 : SANYO Electric Co., Ltd. 0.65 V 1 µA 2SK2316 : SANYO Electric Co., Ltd. CS 26 0.1 µF Buff Soft Start Comp. 1 µA CSCP 0.1 µF 23 1.5 V SCP 10 µH VCC 4.7 µF U1FWJ44N : TOSHIBA CORPORATION 28 UVLO OSC Ref Power ON/OFF 1.5 V 21 RT 39 k 22 CT 25 27 24 VREF GND1 GND2 100 pF VCT 30 1SS196 : TOSHIBA CORPORATION −1.35V −0.65V −1.35V −0.65V − + CTL1 30 H : ON (CH1,2,4 to 6) L : OFF (standby state) 15 kΩ 12 kΩ 23.5 kΩ B 15 kΩ 3.5 kΩ 38 IN(C)2 37 36 −IN(E)2 0.033 µF FB2 35 40 IN(C)1 39 −IN(E)1 0.033 µF FB1 Over voltage threshold setting voltage 13.5 kΩ A VFB1 SCP Comp.1 SCP Amp.2 1.5 V + − 1.5 V − + + Error Amp.2 1.5 V + − 1.5 V − + + Error Amp.1 − + + − PWM Comp.2 PWM Comp.1-2 70 mV − + PWM Comp.1-1 Drive 2 <CH2> Drive 1-2 Drive 1-1 < CH1> OUT2-1 VB1 OUT1-1 22 kΩ VB2 OUT1-2 22 kΩ L : OFF (standby state) H : ON (CH1,2,4 to 6) 47 50 VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2 43 41 46 VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 FMMT717 10 µH 4.7 µF VOUT2-1 2SK2316 6.8 µF 33 µH B 6.8 µF U1FWJ44N 68 µH A U1FWJ44N VC1 FMMT717 10 µH 4.7 µF 50Ω VO2(5.05 V) 30Ω VO1(3.2 V) VO1 U1FWJ44N : TOSHIBA CORPORATION 1SS196 : TOSHIBA CORPORATION 2SK2316 : SANYO Electric Co., Ltd. 2SB1121 : SANYO Electric Co., Ltd. FMMT717 : ZETEX plc. VOUT1-1 MB3825A • Enlarged view of A 31 32 C 9.3 kΩ 7.5 kΩ 13.5 kΩ D 5 kΩ 2.5 kΩ 42.5 kΩ FB3 32 31 FB4 20 DTC3 IN(C)4 18 19 −IN(E)4 0.033 µF 120 kΩ 30 kΩ CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3 33 −IN(E)3 0.033 µF Over voltage threshold setting voltage SCP Comp.4 Error Amp.4 SCP Comp.3 1.5 V + − 1.5 V − + + 1.5 V + − 1.5 V + − Error Amp.3 PWM Comp.4-2 − + 70mV − + PWM Comp.4-1 + + − PWM Comp.3 Drive 4-2 Drive 4-1 560 pF VB3 OUT1-3 22 kΩ CB2-3 CB1-3 60 62 57 58 59 63 53 560 pF OUT2-4 VB4 OUT1-4 22 kΩ CB2-4 CB1-4 VCC(O)4, 5, 6 GND(O)1, 2, 3 52 56 55 54 L : OFF (standby state) H : ON (CH1,2,4 to 6) <CH4> Drive 3 <CH3> 2SK2316 FMMT717 4.7 µF U1FWJ44N 6.8 µF 33 µH D 2.2 µF 1SS196 50Ω VO4(4.89 V) 750Ω VO3(15 V) U1FWJ44N : TOSHIBA CORPORATION 1SS196 : TOSHIBA CORPORATION 2SK2316 : SANYO Electric Co., Ltd. 2SB1121 : SANYO Electric Co., Ltd. FMMT717 : ZETEX plc. 10 µH 2SB1121 C MB3825A • Enlarged view of B VIN (6V) E Over voltage threshold setting voltage 15 kΩ 30 kΩ F 15 kΩ 30 kΩ 0.1 µF FB6 12 9 CSCP CS 23 26 13 SCP 8 10 OVP5, 6 +IN(E)6 IN(C)6 11 −IN(E)6 0.033 µF 0.1 µF 14 15 +IN(E)5 IN(C)5 16 −IN(E)5 0.033 µF FB5 17 SCP 1.5 V + − SCP Comp. SCP Comp.6 Error Amp.6 SCP Comp.5 1.5 V + − + − − + + + − Soft Start Comp. 1 µA Buff 1 µA 0.6 V 0.6 V − + + Error Amp.5 RT 39 kΩ UVLO − + 21 22 CT OSC PWM Comp.6 − + PWM Comp.5 Power ON/OFF 0.65 V 100 pF VCT 25 24 27 VREF GND1 GND2 Ref 1.5 V − − − + −1.35V −0.65V −1.35V −0.65V VCC Comp. Drive 6 <CH6> Drive 5 <CH5> 30 28 560 pF 22 kΩ 560 pF CTL1 10 µH U1FWJ44N 2.2 µF 47 µH F U1FWJ44N 2.2 µF 47 µH 4.7 µF L : OFF (standby state) H : ON (CH1,2,4 to 6) FMMT717 FMMT717 100Ω VO6(4.5 V) 100Ω VO5(4.5 V) U1FWJ44N : TOSHIBA CORPORATION 1SS196 : TOSHIBA CORPORATION 2SK2316 : SANYO Electric Co., Ltd. 2SB1121 : SANYO Electric Co., Ltd. FMMT717 : ZETEX plc. GND(O)4, 5, 6 VB6 OUT1-6 22 kΩ CB2-6 CB1-6 VB5 OUT1-5 CB2-5 CB1-5 VCC 61 7 4 5 6 3 64 1 2 E MB3825A • Enlarged view of C 33 MB3825A ■ REFERENCE DATA Channel 1 switching operation waveform (operation at 500 kHz) Vin = 6 V RL = 30 Ω CT = 100 pF RT = 39 kΩ 1V VC1 (V) 6 4 2 0 500 nS 0 1 2 3 4 5 t (µs) expansion 500 mV VC1 (V) 3 2 1 0 200 nS 0 0.4 0.8 1.2 1.6 2.0 t (µs) Synchronous rectifier length 34 =: 150 ns =: 120 ns MB3825A Channel 1 main side output waveform (operation at 500 kHz) 500 mV VC1 (V) 2V Vin = 6 V RL = 30 Ω CT = 100 pF RT = 39 kΩ VC1 6 4 2 0 VCT VCT (V) VFB1 (V) 1.0 VFB1 0.5 500 nS 500 mV 0 0 1 2 3 4 5 t (µs) Channel 1 main side base current waveform (operation at 500 kHz) IOUT1-1 (mA) 60 500 mV 40 IOUT1-1 Vin = 6 V RL = 30 Ω CT = 100 pF RT = 39 kΩ 20 0 −20 VCT −40 VCT (V) VFB1 (V) 1.0 −60 VFB1 0.5 500 mV 10 mV −80 500 nS −100 0 0 1 2 3 4 5 t (µs) Peak current when turned ON =: 42 mA Peak current when turned OFF =: 50 mA (Continued) 35 MB3825A (Continued) Channel 1 synchronous rectifier side output waveform (operation at 500 kHz) Vin = 6 V RL = 30 Ω CT = 100 pF RT = 39 kΩ 2V VC1 (V) 6 4 2 0 VOUT2-1 (V) 6 4 2 2V 500 nS 0 0 1 2 3 4 5 t (µs) Channel 1 synchronous rectifier side output waveform (operation at 500 kHz) IOUT2-1 (mA) 60 Vin = 6 V RL = 30 Ω CT = 100 pF RT = 39 kΩ 10 mV 40 20 0 −20 −40 VOUT2-1 (V) 4 2 500 nS 2V 0 0 1 2 3 4 5 t (µs) Output source current peak value =: 30 mA Output sink current peak value =: 52 mA 36 MB3825A ■ USAGE PRECAUTIONS 1. Printed circuit board ground lines should be set up with consideration for common impedance. 2. Take the following measures for protection against static charge: • For containing semiconductor devices, use an antistatic or conductive container. • When storing or transporting device-mounted circuit boards, use a conductive bag or container. • Ground the workbenches, tools, and measuring equipment to earth. • Make sure that operators wear wrist straps or other appropriate fittings grounded to earth via a resistance of 250 kΩ to 1 MΩ placed in series between the human body and earth. ■ ORDERING INFORMATION Part number MB3825APFV Package Remarks 64-pin plastic LQFP (FPT-64P-M03) 37 MB3825A ■ PACKAGE DIMENSION 64-pin Plastic LQFP (FPT-64P-M03) 12.00±0.20(.472±.008)SQ 10.00±0.10(.394±.004)SQ 48 33 49 32 0.08(.003) Details of "A" part INDEX +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 64 17 "A" LEAD No. 1 0.50±0.08 (.020±.003) 0~8° 16 0.18 .007 +0.08 –0.03 +.003 –.001 0.08(.003) M 0.145±0.055 (.006±.002) 0.50±0.20 (.020±.008) 0.45/0.75 (.018/.030) C 38 1998 FUJITSU LIMITED F64009S-3C-6 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) Dimensions in: mm (inches) MB3825A FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. http://www.fmap.com.sg/ F9906 FUJITSU LIMITED Printed in Japan 39