ANPEC APW7089QBE-TRL

APW7095/A
6-Channel DC/DC Converter Control IC
Features
General Description
•
The APW7095/A is a 6-channel, frequency-settable, voltage-mode, DC/DC control IC providing a complete power
Supports for Synchronous Rectification
(CH1, CH2, and CH5)
•
supply solution for high-performance portable digital
cameras. The APW7095/A uses pulse-width-modulation
Supports for Down or Up-Down Zeta Conversions
(PWM) and synchronous rectification for high efficiency
step-up, step-down, up-down, and inverting converters
(CH1 and APW7095 CH2)
•
Supports for Up, Flyback, or Up-Down SEPIC
with free input and output settings in 2 or 4-cell AA, 1-cell
lithium-ion (Li+), and dual-battery designs. The APW7095/
Conversions (APW7095A CH2, CH3, APW7095
CH4, CH5, and CH6)
•
A incorporates error amplifiers, output short-circuit
detection, under-voltage lockout, soft-start, and output
Supports for Inverting Conversion
switch control into a chip. The AP7095/A improves
performance, component count, and size compared to
(APW7095A CH4)
•
•
Low Start-up Voltage : 1.4V (CH6)
conventional multi-channel controllers.
The APW7095/A has a power-good indicator (PGOOD)
Power Supply Voltage Range
that signals when CH1 output is within ±10% of the set
voltage by monitoring IN1 pin.
- CH1 to CH5 : 3.0V to 6.5V
- CH6 : 2.4V to 6.5V
•
•
•
•
•
•
•
The APW7095/A is available in compact 48-pin plastic
LQFP and TQFN packages.
1% Reference Voltage Accuracy
Wide Operating Frequency 100kHz to 1MHz
Applications
Soft-Start Function (CH1 to 6)
Power Good (PGOOD) Indicator for CH1
•
•
•
Low Shutdown Current
Output Short-Circuit Detections
Lead Free and Green Devices Available
Digital Camera
Camcorder
Hand-Held Instrument
(RoHS Compliant)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise
customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
1
www.anpec.com.tw
APW7095/A
Ordering and Marking Information
Package Code
QD : LQFP7x7-48
QB : TQFN7x7-48
Operating Ambient Temperature Range
E : -30 to 85 °C
Handling Code
TB : Tape & Box TR : Tape & Reel
Assembly Material
L : Lead Free Device G : Halogen and Lead Free Device
APW7095/A
Assembly Material
Handling Code
Temperature Range
Package Code
XXXXX - Date Code
APW7095
XXXXX
APW7095 QD/QB :
APW7095A QD/QB :
XXXXX - Date Code
APW7095A
XXXXX
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
1
SWOUT
2
48
47
46
45
44
43
42
41
40
39
38
37
PGOOD
O U T6
O U T5-2
O U T5-1
PGND
O U T4
PVCC
O U T3
O U T2-2
O U T2-1
O U T1-2
O U T1-1
Pin Configuration
D TC1
36
SWIN
FB1
35
3
FB6
IN1
34
4
IN6
D TC2
33
FB2
32
5
CIN6
6
D TC5
APW7095/A
IN2
31
30
C TL
C TL1,2
C TL3
C TL4
C TL5
21
22
23
24
25
20
RT
19
26
IN4
VCC
FB4
12
CSCP
11
GND
27
CT
18
VB
17
O U TA4
10
VREF
28
CS
INA4
9
16
29
IN3
15
FB3
D TC4
IN5
INS4
8
14
FB5
13
7
D TC3
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
2
IC
APW7095
APW7095A
CH1
Synchronous
Step-down
Synchronous
Step-down
CH2
Synchronous
Up-down
Synchronous
Step-up
CH3
Step-up
Step-up
CH4
Step-up
Inverting
CH5
Synchronous
Step-up
Synchronous
Step-up
CH6
Step-up
Step-up
www.anpec.com.tw
APW7095/A
Absolute Maximum Ratings
Symbol
VCC
VPVCC
Parameter
Rating
Unit
VCC Supply Voltage (VCC to GND)
-0.3 ~ 7
V
PVCC Supply Voltage (PVCC to GND)
-0.3 ~ 7
V
-0.3 ~ VCC+0.3
V
CTL, CTL1~5, SWIN Input Voltages
-0.3 ~ 7
V
PGOOD Pull High Voltage
-0.3 ~ 7
V
IN1~6, INA4, INS4, DTC1~5 Input Voltages
Maximum Junction Temperature
TSTG
TSDR
Storage Temperature
Maximum Lead Soldering Temperature, 10 Seconds
150
o
-65 ~ 150
o
260
o
C
C
C
Thermal Characteristics
Parameter
Symbol
Typical Value
Unit
Junction-to-Ambient Resistance in Free Air
θJA
o
80
48-pin Plastic LQFP
TQFN
C/W
Recommended Operating Conditions
Symbol
Parameter
Conditions
APW7095/A
Unit
Min.
Typ.
Max.
CH6
1.4
-
6.5
CH6
2.4
5.0
6.5
CH1 to CH5
3.0
5.0
6.5
Reference Voltage Output Current
VREF Pin
-1
-
0
mA
IB
VB Output Current
VB Pin
-0.5
-
0
mA
IN1 to IN5, INA4, INS4 Pins
0
-
VCC
VIN
Input Voltage
IN6 Pin
0
-
VCC
CTL Pin
0
-
6.5
OUT Pin (CH1 to CH5)
-
2
15
OUT Pin (CH6)
-
2
15
SWOUT Pin
-
1
4
Oscillator Frequency
100
500
1000
kHz
CT
Timing Capacitor
47
100
560
pF
RT
Timing Resistor
8.2
18
100
kΩ
CH1 to CH5
-
0.027
1.0
CH6
-
0.47
1.0
VCC
Start-up Power Supply Voltage
VCC
Operating Voltage
IREF
VCTL
IO
FOSC
Control Voltage
Output Current
CS
V
V
Soft-Start Capacitor
CCIN6
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
V
3
V
mA
µF
www.anpec.com.tw
APW7095/A
Recommended Operating Conditions (Cont.)
Symbol
Parameter
CSCP
Short Detection Capacitor
CVB
VB Pin Capacitor
TA
Operating Ambient Temperature
APW7095/A
Conditions
Unit
Min.
Typ.
Max.
-
0.1
1.0
µF
0.082
0.1
-
µF
-30
25
85
o
C
Electrical Characteristics
Refer to the typical application circuit. These specifications apply over, VCC = 5V and TA = -30 to 85°C, unless
otherwise specified. Typical values refer to TA = 25°C.
Symbol
ICCS
IPVCC
ICC
Parameter
Test Conditions
APW7095/A
Typ.
Max.
Min.
Unit
-
-
10
CTL = 0V
-
-
10
CTL, CTL1 to CTL5 = 5V
-
1.8
5
Rising VCC
2.5
2.7
2.9
-
0.2
-
Reset Voltage
Falling VCC
1.2
1.3
1.4
Threshold Voltage
Rising VCC
1.25
1.4
1.55
Reference Voltage
IREF = 0mA
2.46
2.49
2.51
V
Output Voltage Temperature
Stability
TA = -30°C to 85°C
-
0.5
-
%
Input Stability
VCC = 3.0V to 6.5V
-10
-
10
mV
Load Stability
IREF = 0mA to –1mA
-10
-
10
mV
Short-Circuit Output Current
VREF = 2V
-25
-18
-1
mA
-
50
100
mV
-1.4
-1.0
-0.6
µA
0.65
0.70
0.75
V
Input Standby Voltage
-
50
100
mV
Input Latch Voltage
-
50
100
mV
-1.4
-1.0
-0.6
µA
VCC Standby Current
CTL = 0V
PVCC Standby Current
VCC Nominal Supply Current
µA
mA
UNDER VOLTAGE LOCKOUT
VTH
VH
Threshold Voltage
CH1 to
CH5
VRST
VTH
CH6
Hysteresis Width
V
REFERENCE VOLTAGE
VREF
∆VREF/
VREF
Line
Load
IOS
SOFT-START
VSTB
ICS
Input Standby Voltage
Soft-Start Charge Current
SHORT-CIRCUIT DETECTION
VTH
VSTB
VI
ICSCP
Threshold Voltage
Input Source Current
TRIANGULAR WAVE OSCILLATOR
Oscillator Frequency
CT=100pF, RT=18kΩ,VB=2V
450
500
550
kHz
∆f/fdv
Frequency Stability for Voltage
VCC = 3V to 6.5V
-
1
10
%
∆f/fdt
Frequency Stability for Temperature
TA = -30°C to 85°C
-
1
-
%
1.23
1.25
1.27
V
-
0.5
-
%
fOSC
ERROR AMPLIFIER (CH1 to CH5)
VTH
Threshold Voltage
FB = 1.45V
∆VT/
VT
VT Temperature Stability
TA = -30°C to 85°C
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
4
www.anpec.com.tw
APW7095/A
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over, VCC=5V and TA= -30 to 85°C, unless otherwise specified. Typical values refer to TA =25°C.
Symbol
Parameter
APW7095/A
Test Conditions
Min.
Typ.
Max.
Unit
ERROR AMPLIFIER (CH1 to CH5) (Cont.)
IB
Input Bias Current
IN = 0V (CH1 to CH5)
-50
-
-
nA
AV
Voltage Gain
DC
60
100
-
dB
BW
Frequency Bandwidth
AV = 0dB
-
1.0
-
MHz
VOH
Maximum Output Voltage
4.9
4.99
-
V
VOL
Minimum Output Voltage
-
3
50
mV
Output Source Current
FB = 1.45V
-
-25
-10
mA
Output Sink Current
FB = 1.45V
5
16
-
mA
Threshold Voltage
FB = 0.55V
1.24
1.26
1.28
V
VTH Temperature Stability
TA = -30°C to 85°C
-
0.5
-
%
IB
Input Bias Current
IN6 = 0V
-50
-
-
nA
AV
Voltage Gain
DC
60
75
-
dB
BW
Frequency Bandwidth
AV = 0dB
-
1.0
-
MHz
VOH
Maximum Output Voltage
4.9
4.99
-
V
VOL
Minimum Output Voltage
-
3
50
mV
ISOURCE
ISINK
ERROR AMPLIFIER (CH6)
VTH
∆VTH/
VTH
Output Source Current
FB = 0.55V
-
-50
-10
mA
Output Sink Current
FB = 0.55V
60
120
-
µA
Input Offset Voltage
OUT = 1.25V
-10
0
10
mV
IB
Input Bias Current
IN = 0V
-50
-
-
nA
AV
Voltage Gain
DC
60
100
-
dB
BW
Frequency Bandwidth
AV = 0dB
-
1.0
-
MHz
VOH
Maximum Output Voltage
4.9
4.99
-
V
VOL
Minimum Output Voltage
-
3
50
mV
ISOURCE
ISINK
INVERTED AMPLIFIER (CH4)
VIO
ISOURCE
ISINK
Output Source Current
OUT = 1.25V
-
-26
-1.0
mA
Output Sink Current
OUT = 1.25V
5
16
-
mA
CH1 to CH5
0.97
1.00
1.03
V
IN = 0V (CH1 to CH3, CH5)
-50
-
-
INS4 = 0V (CH4)
-50
-
-
0.8
0.9
1.0
1.0
1.1
-
-
1.8
1.9
-50
-
-
SHORT DETECT COMPARATOR (CH1 to CH5)
VTH
Threshold Voltage
IB
Input Bias Current
nA
SHORT DETECT COMPARATOR (CH6)
VTH
Threshold Voltage
V
PWM COMPARATOR (CH1 to CH5)
VT0
Threshold Voltage
VT100
IDTC
Input Current
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
Duty = 0%
Duty = 100%
DTC = 0.4V (CH1 to CH5)
5
V
nA
www.anpec.com.tw
APW7095/A
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over, VCC=5V and TA= -30 to 85°C, unless otherwise specified. Typical values refer to TA =25°C.
Symbol
Parameter
APW7095/A
Test Conditions
Min.
Typ.
Max.
Unit
PWM COMPARATOR (CH6)
VT0
Threshold Voltage
VTmax
Dtr
Maximum Duty Cycle
Duty = 0%
Duty = Max.
CT = 100pF, RT = 18kΩ
0.2
0.3
-
-
0.74
0.84
70
80
90
V
%
PWM CONTROLLER DRIVER FOR P-MOS (CH1, CH2, CH5)
ISOURCE
ISINK
ROH
Output Source Current
Duty ≤ 5%, OUT = 0V
-
-130
-80
Output Sink Current
Duty ≤ 5%, OUT = 5V
100
160
-
OUT = -15mA
-
18
30
OUT = 15mA
-
10
20
Output ON Resistance
ROL
mA
Ω
PWM CONTROLLER DRIVER FOR N-MOS (CH1, CH2, CH5, CH6)
ISOURCE
ISINK
ROH
ROL
Output Source Current
Duty ≤ 5%, OUT = 0V
-
-130
-80
Output Sink Current
Duty ≤ 5%, OUT = 5V
100
160
-
OUT = -15mA
-
18
30
OUT = 15mA
-
10
20
Output ON Resistance
mA
Ω
PWM CONTROLLER DRIVER FOR P-MOS (CH3, CH4)
ISOURCE
ISINK
ROH
Output Source Current
Duty ≤ 5%, OUT = 0V
-
-290
-180
Output Sink Current
Duty ≤ 5%, OUT = 5V
300
470
-
OUT = -15mA
-
7
15
OUT = 15mA
-
4
10
SWOUT = ”L” level
1.2
-
6.5
SWOUT = ”H” level
0
-
0.5
SWIN = 5V
-
2.5
20
µA
Output ON Resistance
ROL
mA
Ω
OUTPUT SWITCH CONTROL (SW)
VIH
SW Input Voltage
VIL
ISWIN
ISOURCE
ISINK
ROH
ROL
Input Current
V
Output Source Current
SWOUT = 0V
-
-7
-
mA
Output Sink Current
SWOUT = 5V
-
19
-
mA
OUT = -4mA
-
325
400
OUT = 4mA
-
85
150
-
110
-
Output ON Resistance
Ω
POWER GOOD
VTH
IN1 Upper Threshold Voltage
Rising IN1
VTH
IN1 Lower Threshold Voltage
Rising IN1
VPGOOD
Upper/Lower Hysteresis
PGOOD Output Voltage
%
-
94
-
%
-
2
-
%
IPGOOD = 4mA
-
0.17
0.8
V
Active Mode
1.5
-
6.5
Standby Mode
0
-
0.5
CTL = 5V
-
2.6
20
CONTROL BLOCK (CTL, CT1 to CT5)
VIH
VIL
ICTL
CTL Input Voltage
Input Current
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
6
V
µA
www.anpec.com.tw
APW7095/A
Pin Description
PIN
I/O
FUNCTION
NO.
NAME
1
SWOUT
O
Output Switch Control Circuit Output Pin.
2
SWIN
I
Output Switch Control Circuit Input Pin.
3
FB6
O
CH6 Error Amplifier Output Pin.
4
IN6
I
CH6 Inverted Input Pin of Error Amplifier.
5
CIN6
I
CH6 Soft-Start Capacitor Connection Pin.
Leave this pin “Open” to disable the soft-start function.
6
DTC5
I
CH5 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
7
FB5
O
CH5 Error Amplifier Output Pin.
8
IN5
I
CH5 Inverted Input Pin of Error Amplifier.
9
INA4
I
CH4 Inverting Amplifier Input Pin.
10
OUTA4
O
CH4 Inverting Amplifier Output Pin.
Connect this pin to INA4 when the inverting amplifier is not used.
11
FB4
O
CH4 Error Amplifier Output Pin.
12
IN4
I
CH4 Inverted Input Pin of Error Amplifier.
13
INS4
I
CH4 Inverted Input Pin of Short Detection Comparator.
14
DTC4
I
CH4 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
15
CS
-
CH1 to CH5 Soft-Start Capacitor Connection Pin.
Leave this pin “Open” to disable the soft-start function.
16
VREF
O
Reference Voltage Output Pin.
17
GND
P
Reference Voltage and Control Circuit Ground Pin.
18
CSCP
-
Short-Circuit Detection Capacitor Connection Pin.
Connect this pin to GND with the shortest distance to disable the timer-latch short-circuit
protection circuit.
19
VCC
P
Reference Voltage and Control Circuit Power Supply Pin.
20
CTL
I
Power Supply and CH6 Control Pin.
“H” Level: Operation Mode.
“L” Level: Standby Mode
21
CTL1,2
I
CH1 and CH2 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
22
CTL3
I
CH3 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
23
CTL4
I
CH4 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
24
CTL5
I
CH5 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
7
www.anpec.com.tw
APW7095/A
Pin Description (Cont.)
PIN
I/O
FUNCTION
NO.
NAME
25
RT
-
Oscillator Frequency Setting Resistor Connection Pin.
26
CT
-
Oscillator Frequency Setting Capacitor Connection Pin.
27
VB
O
Triangular Wave Oscillator Regulator Output Pin.
28
IN3
I
CH3 Inverted Input Pin of Error Amplifier.
29
FB3
O
30
DTC3
I
31
IN2
I
32
FB2
O
CH3 Error Amplifier Output Pin.
CH3 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
CH2 Inverted Input Pin of Error Amplifier.
CH2 Error Amplifier Output Pin.
34
IN1
I
CH2 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
CH1 Inverted Input Pin of Error Amplifier.
35
FB1
O
CH1 Error Amplifier Output Pin.
36
DTC1
I
37
38
OUT1-1
OUT1-2
O
O
39
OUT2-1
O
40
OUT2-2
O
41
OUT3
O
CH3 MOSFET Drive Pin.
42
PVCC
P
Drive Circuit Power Supply Pin.
43
OUT4
O
33
DTC2
I
CH1 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not used.
CH1 Main-side MOSFET Drive Pin. Connect OUT1-1 to the main MOSFET.
CH1 MOSFET Drive Pin for Synchronous Rectifier.
CH2 Main-side MOSFET Drive Pin.
APW7095: Drive a p-channel MOSFET for a step-down converter.
APW7095A: Drive an n-channel MOSFET for a step-up converter.
CH2 MOSFET Drive Pin for Synchronous Rectifier
44
PGND
P
CH4 MOSFET Drive Pin.
APW7095: Drive an n-channel MOSFET for a step-up converter.
APW7095A: Drive a p-channel MOSFET for a inverting step-up/down converter.
Drive Circuit Ground Pin.
45
46
OUT5-1
OUT5-2
O
O
CH5 Main-side MOSFET Drive Pin. Connect OUT5-1 to the main MOSFET.
CH5 MOSFET Drive Pin for Synchronous Rectifier.
47
OUT6
O
CH6 MOSFET Drive Pin.
48
PGOOD
O
Indicator Output Pin. This pin is an open-drain output used to indicate status of the CH1
output voltage.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
8
www.anpec.com.tw
APW7095/A
Block Diagram
PVCC
D r iv e r 1 - 1
FB1
FB1
DTC1
Error
Amp.
IN1
CT2
OUT1-1
CH1
PWM
Controller
D r iv e r 1 - 2
C T L 1 ,2
OUT1-2
1 .2 5 V
SC P
Comp.
1 .2 5 V
x 1 .1
IN 1
PGOOD
Comp.
1 .0 V
DTC1
1 .2 5 V
x 0 .9
Driver 2-1
FB2
Drive
FB2
Error
IN2
DTC2
Amp.
CT1
OUT2-1
2-1
1-1
CH2
PWM
Controller
Driver 2-2
C T L 1 ,2
Drive
OUT2-2
1-2
1 .2 5 V
SC P
Comp.
1 .0 V
DTC2
FB3
Driver 3
FB3
IN3
CH3
PWM
Controller
DTC3
Error
Amp.
CT2
OUT3
CTL3
1 .2 5 V
SC P
Comp.
1 .0 V
DTC3
IN V
Amp.
INA4
OUTA 4
FB4
Driver 4
FB4
IN4
CH4
PWM
Controller
DTC4
Error
CT1
Amp.
CTL4
1 .2 5 V
INS4
OUT4
SC P
Comp.
1 .0 V
DTC4
Driver 5-1
FB5
FB5
OUT5-1
DTC5
Error
Amp.
IN5
CH5
PWM
Controller
CT2
CTL5
Driver 5-2
OUT5-2
1 .2 5 V
SC P
Comp.
1 .0 V
DTC5
FB6
FB6
6 2 .5 k
CIN6
CT
Soft-Start
SC P C o n tr o l
OUT6
( M a x . D u ty=80%)
SC P
Comp.
Po w e r
Comp.
0 .9 V
D r iv e r 6
CH6
PWM
Controller
Error
Amp.
3 7 .5 k
U VLO
VB:2V
IN6
0 .9 V
S W OUT
PGND
CTL1,2
CTL3
CTL4
CTL5
CS CTL
Logic
0 .8 V
CT
0 .3 V
1 .8 V
CT2
1 .1 V
1 .8 V
CT1
S W IN
VCC
U VL O
1 .1 V
Ref
OSC
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
CTL
2 .4 9 V
2V
CS
Po w e r
O N /O F F
CTL
SC P
VB
RT
CT
CSCP
9
VREF
GND
www.anpec.com.tw
APW7095/A
Typical Operating Characteristics
Power Supply Current vs.
Power Supply Voltage
Reference Voltage Current vs.
Power Supply Voltage
5
5
IREF=0mA
TA=25°C
4
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
3
2
1
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
3
2
1
0
0
0
1
2
3
4
5
6
7
0
8
Reference Voltage vs. Ambient Temperature
2.52
2
3
4
5
6
7
8
Reference Voltage vs. Control Voltage
5
VCC=5V
TA=25°C
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
IREF=0mA
Reference Voltage, VREF(V)
Reference Voltage, VREF(V)
2.54
1
Power Supply Voltage, VCC(V)
Power Supply Voltage, VCC(V)
2.56
TA=25°C
4
Reference Voltage, VREF(V)
Power Supply Current, ICC(mA)
VCC=5V
2.50
2.48
2.46
2.44
VCC=5V
TA=25°C
IREF=0mA
4
3
2
1
0
-40
-20
0
20
40
60
80
100
0
Ambient Temperature, TA(°C)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
1
2
3
4
5
Control Voltage, VCTL(V)
10
www.anpec.com.tw
APW7095/A
Typical Operating Characteristics (Cont.)
Control Current vs. Control Voltage
Triangular Wave Upper & Lower Threshold
Voltages vs. Oscillator Frequency
5
1.0
Upper & Lower Threshold Voltage, VCT(V)
Control Current, ICTL(µA)
VCC=5V
TA=25°C
4
3
VTL, CTL1,2~CTL5
2
1
0
0
1
2
3
4
5
6
7
8
0.9
0.8
Upper
0.7
VCC=5V
0.6
TA=25°C
RT=18kΩ
0.5
0.4
0.3
Lower
0.2
0.1
0.0
0
Control Voltage, VCTL(V)
400
600
800
1000 1200
Oscillator Frequency, fosc(kHz)
Oscillator Frequency vs. Timing Capacitor
Oscillator Frequency vs. Timing Resistor
10000
10000
VCC=5V
VCC=5V
TA=25°C
TA=25°C
Oscillator Frequency, fosc(kHz)
Oscillator Frequency, fosc(kHz)
200
1000
RT=4.3kΩ
100
RT=18kΩ
RT=100kΩ
1000
CT=47pF
100
CT=100pF
CT=1000pF
CT=470pF
CT=220pF
10
10
10
100
1000
10000
1
100
1000
Timing Resistor, RT(kΩ)
Timing Capacitor, CT(pF)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
10
11
www.anpec.com.tw
APW7095/A
Typical Operating Characteristics (Cont.)
Triangular Wave Upper & Lower Threshold
Voltages vs. Ambient Temperature
1.0
Oscillator Frequency vs. Ambient Temperature
540
VCC=5V
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
RT=18kΩ
CT=100pF
Upper & Lower Threshold Voltage, VCT(V)
Oscillator Frequency, fosc(kHz)
560
520
500
480
460
440
-40
-20
0
20
40
60
80
100
0.8
Upper
0.7
VCC=5V
RT=18kΩ
CT=100pF
0.6
0.5
0.4
Lower
0.3
0.2
0.1
0.0
-40
-20
0
20
40
60
80
100
Ambient Temperature, TA (°C)
Ambient Temperature, TA (°C)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
0.9
12
www.anpec.com.tw
APW7095/A
Typical Application Circuit
vvv
1.VBAT=2.7V~6V (4-Cell Battery or 1-Cell LI-ION) for 2 Buck and 4 Boost Converter (Using APW7095)
VBAT
7.5V/20mA
D7
APW7095
C28
22µF
L6
22µH
VBAT
APM2301A
OUT1-1
SS12
C27
22µF
Q11
OUT4
CH4
Boost
Controller
Driver
APM2300A
R28
15k
CH1 Buck
Controller
Driver
OUT1-2
DTC1
1.25V
Vref
FB4
IN4
L5
22µH
1.25V
Vref
C4
22µF
Q3
L2
22µH
10µF
C5
APM2300A
C23
22µF
R24
300K
OUT5-2
Q9
APM2301A
R22
C22
1K
VREF
CH5
Boost
Controller
Driver
CH2 Buck
Controller
Driver
22µH
C7
FB2
IN5
18K
R21 24K
5V
R20 47K
C21
22µF
22µH
R7
R10
47K
T1
C8
22µF
SS12
D3
D5
APM2301A
C19
22µF
Q7
R18
309K
C20
22µF
D4
APM2312
C18
R17
R19
100K
APM2300A
Q6
SS12
1K
OUT6
Driver
FB3
IN6
IN3
CIN6
Q5
C12
1.25V
Vref
SWOUT
0.1µF
4700PF
C10
22µF
CTL
VCC
CTL3
PVCC
R11
165K
R12
1K
VREF
R14
CTL1,2
15K
18K
R15
47K
CTL4
SWIN
13
C14
100PF
C13
0.22µF
GND
CT
R16
30K
VREF
C15
CSCP
C16
0.1µF
RT
VB
CS
PGND
CTL5
0.1µF
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
C9
22µF
15V/20mA
SS12
R13
DTC3
1.26V
Vref
0.33µF
-10V/20mA
C11
OUT3
Driver
FB6
0.1µF
C17
CH3
Boost
Controller
CH6
Boost
Controller
15K
R9 VREF
VBAT
L4
24K
1K
DTC2
1.25V
Vref
1.25V
Vref
C6
100µF
R6
R8
0.1µF
IN2
DTC5
D2
SS12
Q4
OUT2-2
FB5
0.1µF
R23
100K
3.3V/300mA
L3
OUT5-1
APM2300A
Q10
5V
VBAT
APM2301A
OUT2-1
D6 SS12
Q8
15K
24K
R5
PGOOD
47K
VREF
DTC4
VBAT
R26 24K
R25 47K
C25
22µF
R2
1K
R4 VREF
INS4
R27
0
C24
22µF
OUTA4
R1
6.8K
R3
0.1µF
IN1
C26
0.1µF
R29
1K
C2
100µF
D1
SS0520
Q2
C3
FB1
INA4
1.8V/300mA
22µH
APM2300A
R31
75k
5V/300mA
APM2301A
C1
22µF
L1
Q1
VREF
www.anpec.com.tw
APW7095/A
Typical Application Circuit(Cont.)
2.VBAT=1.4V~3V (2-Cell Battery) for 1 Buck , 1 Inverting and 4 Boost Converter s (Using APW7095A)
VBAT
C28
Q11
APM2301A
-7.5V/20mA
3.3V ( from CH5 )
APW7095A
22µF
APM2301A
Q1
OUT1-1
SS12
C27
22µF
L5
22µH
R31
60k
OUT4
CH4
Inverting
Controller
Driver
CH1 Buck
Controller
Driver
OUT1-2
C3
R28
OUTA4
FB4
IN4
10k
R4 VREF
VREF
0
47K
R26 24K
R25 47K
C25
22µF
L4
3.3V/300mA
APM2301A
22µH
D2
SS12
4V/300mA
Q4
OUT2-1
C5
OUT5-1
1µF
APM2300A
Q10
APM2300A
C23
22µF
R24
24K
OUT5-2
Q9
APM2301A
R22
C22
1K
0.1µF
VREF
15K
OUT2-2
Driver
FB2
IN5
IN2
1.25V
Vref
C7
18K
R10
47K
R20
47K
5V
C8
22µF
C21
22µF
22µH
Q7
R18
C20
22µF
C18
R17
100K
OUT6
APM2312
309K
R19
APM2300A
Q6
SS12
1K
0.1µF
C17
CH3
Boost
Controller
CH6
Boost
Controller
Driver
OUT3
Driver
FB6
FB3
IN6
IN3
0.1µF
CTL
SWOUT
CTL1,2
VCC
CTL3
PVCC
C10
22µF
R12
1K
VREF
15K
18K
R15
47K
CTL4
SWIN
14
C14
100PF
C13
0.22µF
GND
CT
R16
30K
VREF
C15
0.1µF
CSCP
C16
0.1µF
RT
CS
VB
CTL5
PGND
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
SS12
R11
165K
R14
DTC3
1.25V
Vref
1.26V
Vref
0.33µF
D4
C11
1µF
R13
CIN6
18V/3mA
C9
22µF
15V/20mA
SS0520
Q5
C12
3.3V
D8
SS0520
D3
L6
22µH
D5
C19
22µF
15K
R9 VREF
R21 24K
APM2301A
R7
1K
0.1µF
DTC2
1.25V
Vref
33K
R8
VBAT
L3
R6
APM2301A
FB5
DTC5
C6
100µF
Q3
CH2
Boost
Controller
CH5
Boost
Controller
Driver
R23
5V
C4
22µF
L2
D6 SS12
Q8
VBAT
1.25V
Vref
DTC4
VBAT
22µH
15K
24K
R5
PGOOD
INS4
R27
R2
1K
DTC1
1.25V
Vref
R1
6.8K
R3
0.1µF
IN1
C26
0.1µF
R29
1K
C2
100µF
D1
SS0520
Q2
FB1
INA4
10k
1.8V/300mA
22µH
APM2300A
R30
C24
22µF
C1
22µF
L1
D7
VREF
www.anpec.com.tw
APW7095/A
Function Description
Channel Control Function
General
The APW7095/A provides voltage-mode feedback controls for six DC/DC PWM converters(CH1 to CH6). Each
The channel control function turns on/off one or more
channels depending on the states (“H” or “L” level) at
CTL, CTL1,2 to CTL5 pins. The on/off control logic is
channel operates with an error amplifier, PWM comparator,
short-circuit comparator, ON/OFF control, and output
shown as the following table:
driver. An internal temperature-compensated voltage provides reference voltages for each channel. An triangular-
Channel on/off Setting Table
Vol tage Level at CTL Pin
wave oscillator(CT) with a timing resistor and capacitor
generates triangular waves to each channel. A inverting
CTL CTL1,2 CTL3 CTL4 CTL5
L
x
x
x
L
amplifier(CH4) cooperates with the error amplifier for an
inverting converter (with negative output voltage) .
L
H
L
L
Reference Voltage
H
H
The APW7095 outputs a temperature- compensated ref-
H
L
erence voltage(2.49V) at VREF pin. It is regulated from
the voltage at VCC pin and can source current of max.
L
H
H
1mA to external loads. It also supplies bias for the IC’s
internal circuitry.
L
H
H
x
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
Channel ON/OFF State
Power CH1
CH3 CH4 CH6
/CH6 /CH2
OFF( Standby State)
OFF
OFF
ON
OFF
OFF
ON
ON
OFF
OFF
OFF
ON
ON
OFF
ON
ON
ON
OFF
OFF
ON
OFF
OFF
ON
ON
ON
OFF
OFF
ON
ON
OFF
ON
ON
Triangular-wave Oscillator
MOSFET Drive Circuits
The triangular-wave oscillator is designed to generates
a triangular oscillation signal (CT) with amplitude of
APW7095/A uses push-pull configuration at output of each
MOSFET driver for providing large drive current to MOSFET
0.3V~0.8V at CT pin, providing signal to CH6. The oscillator frequency is settable from 100kHz to 1MHz and set by
gate. The following table shows the MOSFETs connected
to the drivers:
a timing resistor and a timing capacitor connected respectively from RT and CT pins to ground. Additional two
IC
triangular oscillation signals (CT1 and CT2) are also internally generated with amplitude of 1.1V~1.8V. The CT1
CH1
is in phase with the CT to the PWM comparators of CH2
and CH4; the CT2 is out of phase with the CT to the PWM
CH2
comparators of CH1, CH3, and CH5.
CH3
CH4
Error Amplifier
CH5
The error amplifier is designed with unit-gain-bandwidth
of 1MHz and to satisfy wide application requirements. It
CH6
APW7095
OUT1-1 : PMOS
OUT1-2 : NMOS
OUT2-1 : PMOS
OUT2-2 : NMOS
OUT3 : NMOS
OUT4 : NMOS
OUT5-1 : NMOS
OUT5-2 : PMOS
OUT6 : NMOS
APW7095A
OUT1-1 : PMOS
OUT1-2 : NMOS
OUT2-1 : NMOS
OUT2-2 : PMOS
OUT3 : NMOS
OUT4 : PMOS
OUT5-1 : NMOS
OUT5-2 : PMOS
OUT6 : NMOS
Timer-Latch Short-Circuit Protection Circuit
works with enternal resistor-capacitor network for each
converter’s feedback compensation. The loop gain can
The short-circuit protection comparator in each channel
(CH1 to CH5) monitors converter’s output voltage via in-
be set by connecting a feedback resistor and capacitor
from the output pin(FB) to inverted input pin of the error
put pin of error amplifier. In CH6, the short-circuit comparator detects the voltage at output of error amplifier. As
amplifier for stable operations.
Inverting Amplifier (Inv Amp)
any detected voltages of CH1 to CH5 falls below 1.0V or
the detected voltage of CH6 is larger than 0.9V, the timer
The inverting amplifier detects the inverting DC/DC converter output voltage (as a negative voltage) and outputs a
circuits is actuated to start charging the external capacitor
CSCP connected from CSCP pin to ground. When the
control signal to the error amp.
rising voltage of CSCP reaches 0.7V, the IC turns off all
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
15
www.anpec.com.tw
APW7095/A
Function Description (Cont.)
Input
CTL
CTL1,2
CTL3
CTL4
CTL5
Timer-Latch Short-Circuit Protection Circuit (Cont.)
external MOSFETs and pulls up the voltage at SWOUT
pin. Then the IC is latched. Applying a signal from “L” to
Output
2V
VB
“H” to CTL pin enables operation again. The short-circuit
detection function remains working during soft-start op-
0.9V
CIN6
eration on CH1 to CH5.
CH6 Output
Voltage (Vo6)
2.49V
Under-Voltage Lockout (UVLO) Circuit
VREF
1.25V
CS
The under-voltage lockout circuit monitors the supply voltage at VCC pin to prevent wrong logic control. The IC
CH1 to CH5
Output Voltages
(Vo1 to Vo5)
starts operation after the supply voltage rises above it’s
rising threshold. As the supply voltage falls below it’s
t
(3)
(1)
(2)
(4)
(1) to (2) : CH6 Soft-Start Interval
(3)
: VREF Output start
(3) to (4) : CH1 to CH5 Soft-Start Interval
falling threshold, the IC turns off the external MOSFETs
and pulls up the voltage at SWOUT pin.
Figure 1 Soft-Start Waveforms
Input
Soft-Start Operation
CTL
The soft-start function controls the output voltage rate of
rise to limit the current surge at start-up. For CH1 to CH5,
CTL1,2
CTL3
CTL4
CTL5
the soft-start interval is programmed by the soft-start
capacitor, CS connected from CS pin to ground and
Output
2V
VB
charged by an internal 1µA current source. For CH6, a
0.9V
soucing current from the internal resistor-divider charges
the capacitor, CCIN6 connected from CIN6 pin to ground,
CIN6
CH6 Output
Voltage (Vo6)
2.49V
providing soft-start control.
Figure 1 and 2 show the soft-start processes. In figure 1,
when all control pins (CTL, CTL1,2 to CTL 5) are driven
VREF
1.25V
CS
1.25V
CH1 to CH3
Output Voltages
(Vo1 to Vo3)
high (“H” level) at the same time, the voltage at CIN6 pin
starts to rise up by charging the capacitor CCIN6 , starting
CH4 to CH5
Output Voltages
(Vo4 to Vo5)
a soft-start operation on CH6. After the rising voltage at
CIN6 reaches 0.9V, the reference voltage starts to regu-
(1)
(3)
(2)
(4)
(5)
(6)'
(6)
(7)
t
(7)'
(1) to (2) : CH6 soft-start interval
(3)
: VREF Output start
(4) to (5) : CH1 to CH3 soft-start Interval
(6) to (7) : CH4, CH5 soft-start Interval
(6)' to (7)' : CH4(CH5) soft start interval as CTL4 (CTL5) go
"H" from "L" during CH1 to CH3 soft start interval
late and the internal source current starts to charge the
CS , starting a soft-start operation on CH1 to CH5. During
soft-start interval, the error amplifiers compares the CH1
to CH5 output voltage to the voltage at the CS pin. When
Figure 2 Soft-Start Waveforms
any control pins (CH1,2 to CH5) go “H” from “L” during the
soft-start interval (CH1 to CH5), the output rises rapidly to
Output Switch Control Circuit
The output switch control circuit outputs a signal to control external p-channel MOSFETs for preventing reactive
follow the rising voltage at CS pin.
current flow to external step-up circuits on CH5 and CH6.
When a “H” level signal is applied to SWIN pin after releasing the UVLO and the voltage at CIN6 pin rises above
0.9V(typical), the IC pulls low the voltage at SWOUT pin,
turning on the external p-channel MOSFETs to generate
output voltages.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
16
www.anpec.com.tw
APW7095/A
Application Information
(2) CH4
Soft-Start Interval Settings
Vo (V) = - 1.25V ⋅
The CH6 soft-start time depends on the capacitor CCIN6
and is determined as the following equation:
ts (S) = -
R1
R2
VO
CCIN6 (F) ⋅ 37.5 (k Ω ) ⋅ 62.5 (k Ω ) 
V CIN6 (V) 

⋅ ln1 −
100 (k Ω )
1.26 (V) 

R1
INV
Amp. 4
INA4
R2
VB(2V)
V CIN6
OUTA4
Error
Amp. 6
R3
CIN6
1.2 5V
62.5k
CCIN6
Error
Amp. 4
IN4
37.5k
(3) CH6
The soft-start time until CH6 output voltage reaches 95%
of the set voltage is determined as the following equation:
 R1 
Vo (V) = 1.26V ⋅ 1 +

 R2 
VO
ts (S) ≈ 0.07 ⋅ C CIN6 ( µ F)
VB(2V)
R1
On CH1 to CH5, the soft-start time depending on the
capacitor CS determined as the following equation :
IN6
Error
Amp. 6
37.5k
R2
ts (S) ≈ 1.25 ⋅ C S ( µ F)
CIN6
62.5k
Triangular Oscillator Frequency Setting
Time Constant Setting for Timer-Latch Short-Circuit
Protection Circuit
The triangular oscillator frequency set by the timing capacitor (CT) connected to the CT pin and the timing resistor (RT) connected to the RT pin determined as the fol-
The time constant for timer-latch short-circuit protection
is set by the capacitor CSCP and determined as the fol-
lowing equation:
f OSC (kHz) ≈
900000
RT (k Ω ) ⋅ CT (pF)
lowing equation :
tPE (S) = 0.70 ⋅ C SCP ( µ F)
Output Voltage Settings
Dead-Time Setting
The output voltage is set by the external resistor-divider
connected with converter output, error amplifier input, and
The dead-time control pin (DTC) is designed to set the
maximum ON duty of the main-side MOSFET. When the
device is set for step-up inverted output based on the
ground.
(1) CH1 to CH3, CH5
step-up or step-up/down Zeta method or flyback method,
the FB pin voltage may reach and exceed the triangular
 R1 
Vo (V) = 1.25V ⋅ 1+

 R2 
wave voltage due to load fluctuation. If this is the case, the
output MOSFET is fixed to a ON duty of 100 %. To prevent
VO
R1
Error
Amp. 1
IN1
this, set the maximum duty of the output MOSFET. Connecting a resistor- divider between VREF, DTC and GND
pins provides a voltage VDTC to DTC pin. When the the
voltage at the DTC pin is higher than the triangular wave
R2
1.25 V
voltage (CT1/2), the output transistor is turned on. The
maximum duty is calculated as the following equation:
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
17
www.anpec.com.tw
APW7095/A
Application Information (Cont.)
Dead-Time Setting (Cont.)
ON Duty (max) =
VDTC (V) =
VDTC - 1.1 V
⋅ 100 (%)
0.7 V
R2
⋅ VREF
R1 + R2
VREF
R1
VDTC
DTC1
R2
where VREF is the output of the reference voltage (2.49V
typical) at VREF pin. The amplitude of the triangular waves
CT1 and CT2 are typically 0.7V from 1.1V to 1.8V.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
18
www.anpec.com.tw
APW7095/A
Package Information
D
LQFP7x7-48
E1
E
A
e
0.25
c
A1
b
A2
D1
S
Y
M
B
O
L
θ
L
GAUGE PLANE
SEATING PLANE
LQFP7x7-48
MILLIMETERS
MIN.
INCHES
MAX.
A
MIN.
MAX.
1.60
0.063
A1
0.05
0.15
0.002
0.006
A2
1.35
1.45
0.053
0.057
b
0.17
0.27
0.007
0.011
c
0.09
0.20
0.004
0.008
D
8.80
9.20
0.346
0.362
D1
6.90
7.10
0.272
0.280
E
8.80
9.20
0.346
0.362
E1
6.90
7.10
0.272
0.280
e
0.50 BSC
0.020 BSC
L
0.45
0.75
0
0o
7o
0.018
0o
0.030
7o
Note : 1. Followed from JEDEC MS-026 BBC.
2. Dimension "D1" and "E1" do not include mold protrusions.
Allowable protrusions is 0.25 mm per side. "D1" and "E1" are
maximun plasticbody size dimensions including mold mismatch.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
19
www.anpec.com.tw
APW7095/A
Package Information
TQFN7x7-48
D
E
A
b
Pin 1
A1
D2
A3
L K
E2
Pin 1 Corner
e
S
Y
M
B
O
L
TQFN7x7-48
MILLIMETERS
INCHES
MIN.
MAX.
0.80
0.028
0.031
0.05
0.000
0.002
0.18
0.30
0.007
0.012
D
6.90
7.10
0.272
0.280
D2
5.50
5.80
0.217
0.228
E
6.90
7.10
0.272
0.280
E2
5.50
5.80
0.217
0.228
0.45
0.014
MIN.
MAX.
A
0.70
A1
0.00
A3
b
0.20 REF
e
0.008 REF
0.50 BSC
L
0.35
K
0.20
0.020 BSC
0.018
0.008
Note : 1. Followed from JEDEC MO-220 WKKD-4.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
20
www.anpec.com.tw
APW7095/A
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
TQFN7x7-48
A
H
T1
330.0±2.00
50 MIN.
P0
P1
P2
4.0±0.10
12.0±0.10
2.0±0.10
C
d
D
1.5 MIN.
20.2 MIN.
D0
D1
T
A0
B0
K0
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
7.30±0.20
7.30±0.20
1.3±0.20
16.4+2.00 13.0+0.50
-0.00
-0.20
W
E1
16.0±0.30 1.75±0.10
F
5.5±0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
TQFN7x7-48
Tape & Reel
2500
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
21
www.anpec.com.tw
APW7095/A
Taping Direction Information
(T)QFN7x7
USER DIRECTION OF FEED
Reflow Condition
(IR/Convection or VPR Reflow)
tp
TP
Critical Zone
TL to TP
Temperature
Ramp-up
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
t 25°C to Peak
25
Time
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TST
ESD
Latch-Up
Method
MIL-STD-883D-2003
MIL-STD-883D-1005.7
JESD-22-B, A102
MIL-STD-883D-1011.9
MIL-STD-883D-3015.7
JESD 78
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
22
Description
245°C, 5 sec
1000 Hrs Bias @125°C
168 Hrs, 100%RH, 121°C
-65°C~150°C, 200 Cycles
VHBM > 2KV, VMM > 200V
10ms, 1tr > 100mA
www.anpec.com.tw
APW7095/A
Classification Reflow Profiles
Profile Feature
Average ramp-up rate
(TL to TP)
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
Time maintained above:
- Temperature (TL)
- Time (tL)
Peak/Classification Temperature (Tp)
Time within 5°C of actual
Peak Temperature (tp)
Ramp-down Rate
Sn-Pb Eutectic Assembly
Pb-Free Assembly
3°C/second max.
3°C/second max.
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
183°C
60-150 seconds
217°C
60-150 seconds
See table 1
See table 2
10-30 seconds
20-40 seconds
6°C/second max.
6°C/second max.
6 minutes max.
8 minutes max.
Time 25°C to Peak Temperature
Note: All temperatures refer to topside of the package. Measured on the body surface.
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures
3
Package Thickness
Volume mm
<350
<2.5 mm
240 +0/-5°C
≥2.5 mm
225 +0/-5°C
3
Volume mm
≥350
225 +0/-5°C
225 +0/-5°C
Table 2. Pb-free Process – Package Classification Reflow Temperatures
3
3
3
Package Thickness
Volume mm
Volume mm
Volume mm
<350
350-2000
>2000
<1.6 mm
260 +0°C*
260 +0°C*
260 +0°C*
1.6 mm – 2.5 mm
260 +0°C*
250 +0°C*
245 +0°C*
≥2.5 mm
250 +0°C*
245 +0°C*
245 +0°C*
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the
stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C)
at the rated MSL level.
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Dec., 2008
23
www.anpec.com.tw